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Flat affine manifolds

DEFINITION: A flat affine manifold is a smooth manifold equipped with
a flat, torsion-free connection.

EXAMPLE: Let Γ be a group acting on an open subset U ⊂ Rn freely,
properly discontinuously, by affine transforms. Then U/Γ is affine.

REMARK: All flat affine manifolds are obtained this way.

DEFINITION: A flat affine manifold (M,∇) is called special affine if it
admits a ∇-invariant volume form, or, equivalently, it its holonomy belongs
to SL(n,R). A flat affine manifold is complete if it is a quotient of Rn by a
discrete group of affine transforms.

CONJECTURE: Markus conjecture (1961)
a compact affine manifold is complete if and only if it is special.

CONJECTURE: Auslander conjecture (1964)
For any complete affine manifold Rn/Γ, the group Γ is solvable.

CONJECTURE: Chern conjecture (1955)
The Euler class of a compact affine manifold vanishes (proven by Bruno
Klingler in 2017 for special affine manifolds).
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Hessian manifolds

DEFINITION: Let (M,∇) be a flat affine manifold. Since ∇ is torsion-free,

the tensor ∇2(f) is symmetric for any f ∈ C∞M . A Riemannian metric g

on M is called Hessian if locally g = ∇2(f), for some f which is called the

potential of the metric.

EXERCISE: Prove that a metric g on (M,∇) is Hessian if and only if

∇(g) is a symmetric 3-form.

EXERCISE: Prove that the complex

C∞(M)
∇2
−→ Sym2 T ∗M ∇−→

Λ1(M)⊗ Sym2 T ∗M

Sym3 T ∗M

is elliptic.

REMARK: Cohomology of this complex are called Hessian cohomology,

and the cohomology classes represented by Hessian metrics are called Hessian

classes.

REMARK: This geometry is in many ways similar to Kähler geometry.
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Special Kähler manifolds

DEFINITION: Let (M, I, g) be a complex Hermitian manifold, with I :

TM −→ TM, I2 = − Id being the complex structure operator, and g an I-

invariant Riemannian form. Then ω(·, ·) := g(·, I·) is an anti-symmetric form,

called fundamental form of (M, I, g). If it is closed, (M, I, g) is called Kähler.

In physics, the following structure occurs very often.

DEFINITION: Let (M, I,∇, g, ω) be a Kähler manifold equipped with a flat,

torsion-free connection ∇ which satisfies ∇(ω) = 0 (but does not necessarily

preserve g). Assume that g is Hessian. Then (M, I,∇, g, ω) is called a special

Kähler manifold.

REMARK: A cotangent space to a special Kähler manifold is always hy-

perkähler (see the next slide).

EXAMPLE: The base of an “algebraic Hamiltonion system” is always equipped

with a special Kähler structure (Donagi, Markman).
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EXAMPLE: The moduli space of 3-dimensional Calabi-Yau manifolds is a

special pseudo-Kähler manifold (“pseudo” here refers to the Kähler metric

having Lorentzian signature).

REMARK: Special Kähler manifolds satisfy det g = ωn, hence ∇det g = const.

This implies that they are flat affine Calabi-Yau, in the sense of Cheng-

Yau.
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Hyperkähler manifolds

DEFINITION: A hypercomplex manifold is a manifold M equipped with

three complex structure operators I, J,K, satisfying quaternionic relations

IJ = −JI = K, I2 = J2 = K2 = − IdTM

(the last equation is a part of the definition of almost complex structures).

DEFINITION: A hyperkähler manifold is a hypercomplex manifold equipped

with a metric g which is Kähler with respect to I, J,K.

REMARK: This is equivalent to ∇I = ∇J = ∇K = 0: the parallel translation

along the connection preserves I, J,K.

DEFINITION: Let M be a Riemannian manifold, x ∈ M a point. The

subgroup of GL(TxM) generated by parallel translations (along all paths) is

called the holonomy group of M .

REMARK: A hyperkähler manifold can be defined as a manifold which

has holonomy in Sp(n) (the group of all endomorphisms preserving I, J,K).
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Holomorphically symplectic manifolds

Let (M, g, I, J,K) be hyperkähler, and ωI(·, ·) := g(·, I·) ωJ(·, ·) := g(·, J ·),

ωK(·, ·) := g(·,K·) the corresponding Kähler forms.

DEFINITION: A holomorphically symplectic manifold is a complex manifold

equipped with non-degenerate, holomorphic (2,0)-form.

REMARK: All hyperkähler manifolds are holomorphically symplectic.

Indeed, Sp(n) is a compact form of the symplectic group Sp(2n,C), and the

form ωJ +
√
−1 ωK is holomorphically symplectic on (M, I).

THEOREM: (Calabi-Yau) A compact, Kähler, holomorphically symplectic

manifold admits a unique hyperkähler metric in any Kähler class.
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Holomorphic Lagrangian fibrations

THEOREM: (Matsushita, 1997)

Let π : M −→X be a surjective holomorphic map from a hyperkähler manifold

M to X, whith 0 < dimX < dimM . Then dimX = 1/2 dimM, and the

fibers of π are holomorphic Lagrangian (this means that the symplectic

form vanishes on π−1(x)).

DEFINITION: Such a map is called holomorphic Lagrangian fibration.

REMARK: The base of π is conjectured to be rational. Hwang (2007)

proved that X ∼= CPn, if it is smooth. Matsushita (2000) proved that it has

the same rational cohomology as CPn.

REMARK: The base of π has a natural flat, torsion-free connection

on the smooth locus of π. The combinatorics of this connection can be

used to determine the topology of M (Strominger-Yau-Zaslow, Kontsevich-

Soibelman).

If we want to learn something about M, it’s recommended to start

from a holomorphic Lagrangian fibration.
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Trianalytic subvarieties and hyperholomorphic bundles

Let (M, g, I, J,K) be a hyperkähler manifold. Define trianalytic subvarieties

as closed subsets which are complex analytic with respect to I, J, K.

0. Trianalytic subvarieties are singular hyperkähler.

1. Let L ∈ H be a generic complex structure induced by quaternions. Then

all compact complex subvarieties of (M,L) are trianalytic.

2. A normalization of a hyperkähler variety is smooth and hyperkähler. This

gives a desingularization (“hyperkähler Hironaka”).

3. A complex deformation of a trianalytic subvariety is again trianalytic, the

corresponding moduli space is (singularly) hyperkähler.

4. Similar results (also very strong) are true for vector bundles which are

holomorphic under I, J, K (“hyperholomorphic bundles”)
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Special Lagrangian subvarieties

DEFINITION: (Harvey-Lawson)

Let (M, g, ω, I) be an n-dimensional Calabi-Yau manifold, and Ω ∈ Λn,0(M) its

holomorphic volume form. Special Lagrangian subvariety is a Lagrangian

subvariety S ⊂ (M,ω) such that Re Ω is equal to the Riemannian volume form

on S.

THEOREM: (McLean)

Deformations of special Lagrangian subvarieties are unobstructed, and

in a neighbourhood of S ⊂ M this deformation space is locally identified

with H1(S,R).

REMARK: This implies that any special Lagrangian torus belongs to a

special Lagrangian fibration, defined in its neighbourhood.

REMARK: All known examples of special Lagrangian fibrations are obtained

by “hyperkähler rotation”: one takes a holomorphic Lagrangian fibration

on (M, I), where (M, I, J,K, g) is hyperkähler, and considers it as a real La-

grangian fibration on (M,J, ωJ).
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Mirror symmetry

Kontsevich’s homological mirror symmetry. Derived category of coherent

sheaves on a Calabi-Yau is equivalent to the Fukaya category on the mirror

dual Calabi-Yau, with Hamiltonion isotopy classes of Lagrangian subvarieties

as objects, and the Floer cohomology as morphisms.

SYZ (Strominger, Yau, Zaslow) interpretation of mirror symmetry.

Each Calabi-Yau manifold is equipped with a special Lagrangian toric fibra-

tion, dualizing the tori one obtains the mirror dual Calabi-Yau manifold.
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Chern connections and holomorphic structure operators

DEFINITION: let (B,∇) be a smooth bundle with connection and a holo-

morphic structure ∂ B −→ Λ0,1(M) ⊗ B. Consider a Hodge decomposition

∇ = ∇0,1 +∇1,0,

∇0,1 : B −→ Λ0,1(M)⊗B, ∇1,0 : B −→ Λ1,0(M)⊗B.

We say that ∇ is compatible with the holomorphic structure if ∇0,1 = ∂.

DEFINITION: A Chern connection on a holomorphic Hermitian vector

bundle is a connection compatible with the holomorphic structure and pre-

serving the metric. THEOREM: On any holomorphic Hermitian vector

bundle, the Chern connection exists, and is unique.

REMARK: The curvature of a Chern connection on B is an End(B)-valued

(1,1)-form: ΘB ∈ Λ1,1(End(B)).

REMARK: A converse is true, too. Given a Hermitian connection ∇ on

a vector bundle B with curvature in Λ1,1(End(B)), we obtain a holomorphic

structure operator ∂ = ∇0,1. Then, ∇ is a Chern connection of (B, ∂).
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Kobayashi-Hitchin correspondence

DEFINITION: Let F be a coherent sheaf over an n-dimensional compact
Kähler manifold M . Let

slope(F ) :=
1

rank(F )

∫
M

c1(F ) ∧ ωn−1

vol(M)
.

A torsion-free sheaf F is called (Mumford-Takemoto) stable if for all sub-
sheaves F ′ ⊂ F one has slope(F ′) < slope(F ). If F is a direct sum of stable
sheaves of the same slope, F is called polystable.

DEFINITION: A Hermitian metric on a holomorphic vector bundle B is called
Yang-Mills (Hermitian-Einstein) if the curvature of its Chern connection sat-
isfies ΘB ∧ωn−1 = slope(F ) · IdB ·ωn, or, equivalently, Λ(ΘB) = slope(F ) · IdB.
A Yang-Mills connection is a Chern connection induced by the Yang-Mills
metric.

REMARK: Yang-Mills connections minimize the integral∫
M
|ΘB|2 VolM

Kobayashi-Hitchin correspondence: (Donaldson, Uhlenbeck-Yau). Let B
be a holomorphic vector bundle. Then B admits Yang-Mills connection if
and only if B is polystable. Moreover such a connection is unique.
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Higgs bundles

DEFINITION: Let M be a complex manifold, and B a holomorphic vector

bundle. Higgs field on B is and End(B)-valued holomorphic 1-form θ ∈
H0(Ω1(M)⊗End(B)) which satisfies θ ∧ θ = 0, where θ ∧ θ is exterior square,

considered as a section of Ω2(M) ⊗ End(B); if θ =
∑
i vi ⊗ Ai, then θ ∧ θ =∑

i,j vi ∧ vj ⊗ [Ai, Aj].

DEFINITION: Let (B, θ) be a Higgs bundle. Higgs subsheaf is a coherent

subsheaf F ⊂ B such that for each f ∈ F the section θ(f) ∈ B belongs to F .

DEFINITION: A Higgs bundle B is called stable if for all Higgs subsheaves

F ⊂ B one has slope(F ) < slope(B). If B is a direct sum of stable bundles of

the same slope, B is called polystable.
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Corlette-Simpson correspondence

DEFINITION: Let ∇ be a Chern connection on a Higgs bundle. Its Higgs

connection is ∇θ := ∇+ θ + θ
∗
, where θ

∗
=

∑
i vi ⊗ATi for θ =

∑
i vi ⊗Ai. Its

Higgs curvature is Θ := (∇θ)2 ∈ Λ2(M) ⊗ End(B). We say that the Higgs

bundle (B,∇, θ) is Hermitian Yang-Mills, if ΛΘ = const IdB.

THEOREM: Corlette-Simpson correspondence: Let (B, θ) be a Higgs

bundle. Then (B, θ) admits Yang-Mills Higgs connection if and only if

(B, θ) is polystable. Moreover such a connection is unique.

THEOREM: (“Bogomolov-Lübke inequality”, due to Corlette and Simp-

son) Let (B,∇, θ) be a Yang-Mills Higgs bundle with c1(B) = 0, c2(B) = 0.

Then the connection ∇θ := ∇+ θ + θ
∗

is flat.

THEOREM: (Simpson) Let M be a compact Kähler manifold, and π1(M)
ρ−→

GL(n,C) a representation. Assume that the algebraic closure of ρ(π1(M)) is a

reductive Lie group. Then ρ is obtained from a polystable Higgs bundle

(B, θ) using the Corlette-Simpson correspondence. Moreover, (B, θ) is

determined uniquely from ρ.
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Narasimhan-Seshadri

THEOREM: (Kobayashi-Lubke)

The Yang-Mills connection on a holomorphic bundle with c1(B) = 0, c2(B) =

0 is flat.

COROLLARY: (Narasimhan, Seshadri)

A stable bundle with c1(B) = 0, c2(B) = 0 admits a unique flat unitary

Chern connection

REMARK: Let U ⊂ XD be the space of Higgs bundles (B, θ), where B

is stable. Then U is clearly open. Let Z is the space of stable bundles

with c1(B) = 0, c2(B) = 0. The natural forgetful map (B, θ)−→B is a

Lagrangian fibration, which is locally identifies U with T ∗Z.
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Non-Abelian Hodge theory

REMARK: Let γ1, ..., γn ∈ π1(M) be generators of π1(M), and R1, ..., Rk
the relations. The space Hom(π1(M), GL(n,C)) of complex-valued repre-
sentations π1(M)

ρ−→ GL(n,C) is a set of matrices A1, ..., An such that
R1(A1, ..., An) = ... = Rm(A1, ..., An) = Id. Therefore, Hom(π1(M), GL(n,C))
is an affine variety. The moduli of representations of π1(M) is the quotient
Hom(π1(M), GL(n,C))//GL(n,C) by the adjoint action, where ∗//GL(n,C) sig-
nifies the GIT reduction (that is, the symplectic reduction).

DEFINITION: Let X̃ be the subset of Hom(π1(M), GL(n,C))//GL(n,C) con-
sisting of representations ρ with reductive Zariski closure of im ρ, and XB :=
X̃//GL(n,C). Then XB is called the Betti moduli space of representations
of π1(M). The complex structure on XB is induced from the complex struc-
ture on Hom(π1(M), GL(n,C)) as indicated above. The Dolbeault moduli
space XD is the same space with different complex structure. The complex
structure on the Dolbeault moduli space is induced from the moduli of
Higgs bundles.

THEOREM: (Simpson) The moduli space X is equipped with a natural
hyperkähler structure, and the Dolbeault and Betti complex structures
are induced from the quaternion action associated with this hyperkähler
structure.
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Kapustin-Witten duality

DEFINITION: The Hitchin system is the space of stable Higgs bundles
on a compact curve C. It is equipped with a Lagranian fibration with proper
fibers and a base

⊕
iH

0(C,K⊗jiC ). In a similar way one defines a principal
Higgs bundle (which is a holomorphic G-bundle P with a Higgs field θ ∈
H0(Ω1(M)⊗ Lie(P )) and a Hitchin system on a G-bundle over C.

Kapustin-Witten duality (a. k. a “Montonen-Olive/geometric Lang-
lands duality”) is the duality between Hitchin systems associated with Lang-
lands dual Lie groups.

1. The corresponding holomorphic Lagrangian fibrations are expected to
be SYZ dual.
2. In place of the Fukaya category on the symplectic side of Mirror Symme-
try, one has a category of holomorphic Lagrangian subvarieties (called
“BAA”, “ABA” and “AAB branes”).
3. In place of the derived category of coherent sheaves on the complex side
of Mirror Symmetry there is a category which has pairs (trianalytic subva-
riety, hyperholomorphic bundle on it) as objects; these are called “BBB
branes”.

Kapustin-Witten duality is expected to exchange the BBB branes and
the holomorphic Lagrangian subvarieties.
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Holomorphic Lagrangian fibrations

DEFINITION: Let M be a holomorphically symplectic manifold, and π :

M −→B a proper surjective holomorphic map with B normal and all fibers

holomorphically Lagrangian. Then π is called a holomorphic Lagrangian

fibration.

CLAIM: (Liouville) A smooth fiber F of a holomorphic Lagrangian

fibration π : M −→B is always a torus.

Proof: For any fibration π : M −→B, any smooth fiber F = π−1(x) has

trivial normal bundle NF = π∗(TxB). For any function on B, its Hamiltonian

gives a section of TF . Choose a collection of holomorphic functions such that

their Hamiltonians give a basis in TF . Since these Hamiltonians commute,

the corresponding vector fields in TF also commute. This gives a locally free

action of an abelian Lie group on F , and therefore F is a quotient of an

abelian group by a lattice.

DEFINITION: Let π : M −→B be a proper, regular fibration. The flat

connection on the bundle Riπ∗(RM) on B with the fiber Hi(π−1(x) for all

x ∈ B is called the Gauss-Manin connection.
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Special Kähler geometry and algebraic Hamiltonian systems

DEFINITION: Let π : M −→B be a Lagrangian fibration, and F := π−1(x)

a regular fiber. Then π∗TxB = NF = T ∗F . This identifies TB with the bundle

R1π∗(RM) of first cohomology of fibers. Then TB is equipped with a natural

flat connection, called the Arnold-Liouville connection.

EXERCISE: Prove that this connection is torsion-free.

REMARK: Let π : M −→B be a holomorphic Lagrangian fibration. A

Kähler form ω on M restricted to a smooth fiber F of π defines a cohomology

class [ω] ∈ H2(F ). Since F is a torus, we can consider [ω] as a 2-form on

R1π∗(RM) = TB. This form is clearly parallel under the Gauss-Manin

connection, and defines a Kähler structure on B.

THEOREM: (Donagi-Markman, Freed)

Let π : M −→B be a holomorphic Lagrangian fibration on a Kähler holomor-

phic symplectic manifold (Donagi-Markman call this “an algebraic Hamil-

tonian system”) and B0 ⊂ B be the complement to the discriminant locus

of B. Then (B0,∇, ω) is a special Kähler manifold.
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Lagrangian subvarieties in Hitchin systems

Note that the Hitchin systems are equipped with a natiral C∗-action
which multiplies the Higgs field by a number. Hitchin proved the following
result related to the Kapustin-Witten duality.

THEOREM: (Hitchin) Let π : M −→B be the Hitchin system. Then any C∗-
invariant holomorphic Lagrangian submanifold has an open set with the
structure of a fibration over a C∗-invariant special Kähler submanifold
of B, and each fiber is a disjoint union of translates of an abelian
subvariety.

He asked whether this is true in a more general situation.

THEOREM: (Kamenova-V.) Let π : M −→B be a holomorphic symplectic
Kähler manifold equipped with a holomorphic Lagrangian fibration π with
compact fibers, Z ⊂ M its holomorphic Lagrangian subvariety, X := π(Z),
and X0 ⊂ B the set of all regular values of π : Z −→X. Then X0 is a special
Kähler submanifold of B, and each fiber of π : Z −→X ober X0 is a
disjoint union of translates of the same torus.
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Lagrangian subspaces in W ⊕W ∗

Lemma 1: Suppose V ⊂W ⊕W ∗ is a Lagrangian vector subspace in W ⊕W ∗

with standard symplectic structure, and π : W ⊕W ∗ −→W the projection.

Then π(V )⊥ = V ∩W ∗, where R⊥ ⊂W ∗ denotes the annihilator of a subspace

R ⊂W , and W ∗ is considered as a subspace in W ⊕W ∗.

THEOREM: (Kamenova-V.) Let π : M −→B be a holomorphic symplec-

tic Kähler manifold equipped with a holomorphic Lagrangian fibration π with

compact fibers, Z ⊂M an irreducible, closed holomorphic Lagrangian subvari-

ety, X := π(Z), and X0 ⊂ B the set of all regular values of π : Z −→X. Then

X0 is a special Kähler submanifold of B, and each fiber of π : Z −→X

over X0 is a disjoint union of translates of the same torus.

Proof. Step 1: Let Zx := π−1(x) ∩ Z, where x ∈ X0. The holomorphic

symplectic form induces non-degenerate pairing between TπzM (the fiberwise

tangent space) and TxB. By Lemma 1, for all z ∈ Zx, one has TzZx =

π(TzZ)⊥∩TπzM , hence the spaces TzZx are translates for all z ∈ Zx. There-

fore, Zx is a disconnected union of subtori of π−1(x), and all of these

subtori are translates.
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Step 2: It remains only to show that X0 ⊂ B is flat with respect to
the Arnold-Liouville connection. We may identify the vertical tangent
space TπzM with H1(π−1(x)). Then TzZx is identified with the cohomology
of a compact torus H1(Zx), hence it stays constant under deformations of
x. Then π(TzZ) = π((TzZ)⊥) is constant under the Arnold-Liouville
connection.

Friedrich Hirzebruch, Nigel Hitchin

and Edward Witten, 2009, MFO
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