Lagrangian fibrations and special Kähler geometry

Misha Verbitsky (IMPA)

Estruturas geométricas em variedades,

IMPA, June 30, 2022

Joint work with Ljudmila Kamenova

Flat affine manifolds

DEFINITION: A flat affine manifold is a smooth manifold equipped with a flat, torsion-free connection.

EXAMPLE: Let Γ be a group acting on an open subset $U \subset \mathbb{R}^n$ freely, properly discontinuously, by affine transforms. Then U/Γ is affine.

REMARK: All flat affine manifolds are obtained this way.

DEFINITION: A flat affine manifold (M, ∇) is called **special affine** if it admits a ∇ -invariant volume form, or, equivalently, it its holonomy belongs to $SL(n, \mathbb{R})$. A flat affine manifold is **complete** if it is a quotient of \mathbb{R}^n by a discrete group of affine transforms.

CONJECTURE: Markus conjecture (1961)

a compact affine manifold is complete if and only if it is special.

CONJECTURE: Auslander conjecture (1964)

For any complete affine manifold \mathbb{R}^n/Γ , the group Γ is solvable.

CONJECTURE: Chern conjecture (1955)

The Euler class of a compact affine manifold vanishes (proven by Bruno Klingler in 2017 for special affine manifolds).

Hessian manifolds

DEFINITION: Let (M, ∇) be a flat affine manifold. Since ∇ is torsion-free, the tensor $\nabla^2(f)$ is symmetric for any $f \in C^{\infty}M$. A Riemannian metric g on M is called **Hessian** if locally $g = \nabla^2(f)$, for some f which is called **the potential** of the metric.

EXERCISE: Prove that a metric g on (M, ∇) is Hessian if and only if $\nabla(g)$ is a symmetric 3-form.

EXERCISE: Prove that the complex

$$C^{\infty}(M) \xrightarrow{\nabla^2} \operatorname{Sym}^2 T^*M \xrightarrow{\nabla} \frac{\Lambda^1(M) \otimes \operatorname{Sym}^2 T^*M}{\operatorname{Sym}^3 T^*M}$$

is elliptic.

REMARK: Cohomology of this complex are called **Hessian cohomology**, and the cohomology classes represented by Hessian metrics are called **Hessian classes**.

REMARK: This geometry is in many ways similar to Kähler geometry.

Special Kähler manifolds

DEFINITION: Let (M, I, g) be a complex Hermitian manifold, with I: $TM \longrightarrow TM, I^2 = -$ Id being the complex structure operator, and g an Iinvariant Riemannian form. Then $\omega(\cdot, \cdot) := g(\cdot, I \cdot)$ is an anti-symmetric form,
called fundamental form of (M, I, g). If it is closed, (M, I, g) is called Kähler.

In physics, the following structure occurs very often.

DEFINITION: Let $(M, I, \nabla, g, \omega)$ be a Kähler manifold equipped with a flat, torsion-free connection ∇ which satisfies $\nabla(\omega) = 0$ (but does not necessarily preserve g). Assume that g is Hessian. Then $(M, I, \nabla, g, \omega)$ is called a special Kähler manifold.

REMARK: A cotangent space to a special Kähler manifold is always hyperkähler (see the next slide).

EXAMPLE: The base of an "algebraic Hamiltonion system" is always equipped with a special Kähler structure (Donagi, Markman).

EXAMPLE: The moduli space of 3-dimensional Calabi-Yau manifolds **is a special pseudo-Kähler manifold** ("pseudo" here refers to the Kähler metric having Lorentzian signature).

REMARK: Special Kähler manifolds satisfy det $g = \omega^n$, hence $\nabla \det g = const$. **This implies that they are flat affine Calabi-Yau**, in the sense of Cheng-Yau.

Hyperkähler manifolds

DEFINITION: A hypercomplex manifold is a manifold M equipped with three complex structure operators I, J, K, satisfying quaternionic relations

$$IJ = -JI = K$$
, $I^2 = J^2 = K^2 = -\operatorname{Id}_{TM}$

(the last equation is a part of the definition of almost complex structures).

DEFINITION: A hyperkähler manifold is a hypercomplex manifold equipped with a metric g which is Kähler with respect to I, J, K.

REMARK: This is equivalent to $\nabla I = \nabla J = \nabla K = 0$: the parallel translation along the connection preserves I, J, K.

DEFINITION: Let M be a Riemannian manifold, $x \in M$ a point. The subgroup of $GL(T_xM)$ generated by parallel translations (along all paths) is called **the holonomy group** of M.

REMARK: A hyperkähler manifold can be defined as a manifold which has holonomy in Sp(n) (the group of all endomorphisms preserving I, J, K).

Holomorphically symplectic manifolds

Let (M, g, I, J, K) be hyperkähler, and $\omega_I(\cdot, \cdot) := g(\cdot, I \cdot) \omega_J(\cdot, \cdot) := g(\cdot, J \cdot),$ $\omega_K(\cdot, \cdot) := g(\cdot, K \cdot)$ the corresponding Kähler forms.

DEFINITION: A holomorphically symplectic manifold is a complex manifold equipped with non-degenerate, holomorphic (2,0)-form.

REMARK: All hyperkähler manifolds are holomorphically symplectic. Indeed, Sp(n) is a compact form of the symplectic group $Sp(2n, \mathbb{C})$, and the form $\omega_J + \sqrt{-1} \omega_K$ is holomorphically symplectic on (M, I).

THEOREM: (Calabi-Yau) A compact, Kähler, holomorphically symplectic manifold admits a unique hyperkähler metric in any Kähler class.

Holomorphic Lagrangian fibrations

THEOREM: (Matsushita, 1997)

Let $\pi : M \longrightarrow X$ be a surjective holomorphic map from a hyperkähler manifold M to X, whith $0 < \dim X < \dim M$. Then $\dim X = 1/2 \dim M$, and the fibers of π are holomorphic Lagrangian (this means that the symplectic form vanishes on $\pi^{-1}(x)$).

DEFINITION: Such a map is called **holomorphic Lagrangian fibration**.

REMARK: The base of π is conjectured to be rational. Hwang (2007) proved that $X \cong \mathbb{C}P^n$, if it is smooth. Matsushita (2000) proved that it has the same rational cohomology as $\mathbb{C}P^n$.

REMARK: The base of π has a natural flat, torsion-free connection on the smooth locus of π . The combinatorics of this connection can be used to determine the topology of M (Strominger-Yau-Zaslow, Kontsevich-Soibelman).

If we want to learn something about M, it's recommended to start from a holomorphic Lagrangian fibration.

Trianalytic subvarieties and hyperholomorphic bundles

Let (M, g, I, J, K) be a hyperkähler manifold. Define trianalytic subvarieties as closed subsets which are complex analytic with respect to I, J, K.

0. Trianalytic subvarieties are singular hyperkähler.

1. Let $L \in \mathbb{H}$ be a generic complex structure induced by quaternions. Then all compact complex subvarieties of (M, L) are trianalytic.

2. A normalization of a hyperkähler variety is smooth and hyperkähler. This gives a desingularization ("hyperkähler Hironaka").

3. A complex deformation of a trianalytic subvariety is again trianalytic, the corresponding moduli space is (singularly) hyperkähler.

4. Similar results (also very strong) are true for vector bundles which are holomorphic under I, J, K ("hyperholomorphic bundles")

Special Lagrangian subvarieties

DEFINITION: (Harvey-Lawson)

Let (M, g, ω, I) be an *n*-dimensional Calabi-Yau manifold, and $\Omega \in \Lambda^{n,0}(M)$ its holomorphic volume form. **Special Lagrangian subvariety** is a Lagrangian subvariety $S \subset (M, \omega)$ such that $\operatorname{Re} \Omega$ is equal to the Riemannian volume form on S.

THEOREM: (McLean)

Deformations of special Lagrangian subvarieties are unobstructed, and in a neighbourhood of $S \subset M$ this deformation space is locally identified with $H^1(S, \mathbb{R})$.

REMARK: This implies that any special Lagrangian torus belongs to a special Lagrangian fibration, defined in its neighbourhood.

REMARK: All known examples of special Lagrangian fibrations **are obtained by "hyperkähler rotation":** one takes a holomorphic Lagrangian fibration on (M, I), where (M, I, J, K, g) is hyperkähler, and considers it as a real Lagrangian fibration on (M, J, ω_J) .

Mirror symmetry

Kontsevich's homological mirror symmetry. Derived category of coherent sheaves on a Calabi-Yau is equivalent to the Fukaya category on the mirror dual Calabi-Yau, with Hamiltonion isotopy classes of Lagrangian subvarieties as objects, and the Floer cohomology as morphisms.

SYZ (Strominger, Yau, Zaslow) interpretation of mirror symmetry. Each Calabi-Yau manifold is equipped with a special Lagrangian toric fibration, dualizing the tori one obtains the mirror dual Calabi-Yau manifold.

Chern connections and holomorphic structure operators

DEFINITION: let (B, ∇) be a smooth bundle with connection and a holomorphic structure $\overline{\partial} B \longrightarrow \Lambda^{0,1}(M) \otimes B$. Consider a Hodge decomposition $\nabla = \nabla^{0,1} + \nabla^{1,0}$,

 $\nabla^{0,1}: B \longrightarrow \Lambda^{0,1}(M) \otimes B, \quad \nabla^{1,0}: B \longrightarrow \Lambda^{1,0}(M) \otimes B.$

We say that ∇ is compatible with the holomorphic structure if $\nabla^{0,1} = \overline{\partial}$.

DEFINITION: A Chern connection on a holomorphic Hermitian vector bundle is a connection compatible with the holomorphic structure and preserving the metric. **THEOREM:** On any holomorphic Hermitian vector bundle, **the Chern connection exists, and is unique.**

REMARK: The curvature of a Chern connection on *B* is an End(*B*)-valued (1,1)-form: $\Theta_B \in \Lambda^{1,1}(\text{End}(B))$.

REMARK: A converse is true, too. Given a Hermitian connection ∇ on a vector bundle *B* with curvature in $\Lambda^{1,1}(\text{End}(B))$, we obtain a holomorphic structure operator $\overline{\partial} = \nabla^{0,1}$. Then, ∇ is a Chern connection of $(B,\overline{\partial})$.

Kobayashi-Hitchin correspondence

DEFINITION: Let F be a coherent sheaf over an n-dimensional compact Kähler manifold M. Let

slope(F) :=
$$\frac{1}{\operatorname{rank}(F)} \int_M \frac{c_1(F) \wedge \omega^{n-1}}{\operatorname{vol}(M)}$$
.

A torsion-free sheaf F is called **(Mumford-Takemoto) stable** if for all subsheaves $F' \subset F$ one has slope(F') < slope(F). If F is a direct sum of stable sheaves of the same slope, F is called **polystable**.

DEFINITION: A Hermitian metric on a holomorphic vector bundle *B* is called **Yang-Mills** (Hermitian-Einstein) if the curvature of its Chern connection satisfies $\Theta_B \wedge \omega^{n-1} = \text{slope}(F) \cdot \text{Id}_B \cdot \omega^n$, or, equivalently, $\Lambda(\Theta_B) = \text{slope}(F) \cdot \text{Id}_B$. A Yang-Mills connection is a Chern connection induced by the Yang-Mills metric.

REMARK: Yang-Mills connections minimize the integral

$$\int_{M} |\Theta_B|^2 \operatorname{Vol}_M$$

Kobayashi-Hitchin correspondence: (Donaldson, Uhlenbeck-Yau). Let B be a holomorphic vector bundle. Then B admits Yang-Mills connection if and only if B is polystable. Moreover such a connection is unique.

Higgs bundles

DEFINITION: Let M be a complex manifold, and B a holomorphic vector bundle. **Higgs field** on B is and End(B)-valued holomorphic 1-form $\theta \in$ $H^0(\Omega^1(M) \otimes End(B))$ which satisfies $\theta \wedge \theta = 0$, where $\theta \wedge \theta$ is exterior square, considered as a section of $\Omega^2(M) \otimes End(B)$; if $\theta = \sum_i v_i \otimes A_i$, then $\theta \wedge \theta =$ $\sum_{i,j} v_i \wedge v_j \otimes [A_i, A_j]$.

DEFINITION: Let (B, θ) be a Higgs bundle. Higgs subsheaf is a coherent subsheaf $F \subset B$ such that for each $f \in F$ the section $\theta(f) \in B$ belongs to F.

DEFINITION: A Higgs bundle *B* is called **stable** if for all Higgs subsheaves $F \subset B$ one has slope(*F*) < slope(*B*). If *B* is a direct sum of stable bundles of the same slope, *B* is called **polystable**.

Corlette-Simpson correspondence

DEFINITION: Let ∇ be a Chern connection on a Higgs bundle. Its **Higgs** connection is $\nabla_{\theta} := \nabla + \theta + \overline{\theta}^*$, where $\overline{\theta}^* = \sum_i \overline{v}_i \otimes A_i^T$ for $\theta = \sum_i v_i \otimes A_i$. Its **Higgs curvature** is $\Theta := (\nabla_{\theta})^2 \in \Lambda^2(M) \otimes \text{End}(B)$. We say that the Higgs bundle (B, ∇, θ) is **Hermitian Yang-Mills**, if $\Lambda \Theta = const \operatorname{Id}_B$.

THEOREM: Corlette-Simpson correspondence: Let (B, θ) be a Higgs bundle. Then (B, θ) admits Yang-Mills Higgs connection if and only if (B, θ) is polystable. Moreover such a connection is unique.

THEOREM: ("Bogomolov-Lübke inequality", due to Corlette and Simpson) Let (B, ∇, θ) be a Yang-Mills Higgs bundle with $c_1(B) = 0, c_2(B) = 0$. Then the connection $\nabla_{\theta} := \nabla + \theta + \overline{\theta}^*$ is flat.

THEOREM: (Simpson) Let M be a compact Kähler manifold, and $\pi_1(M) \xrightarrow{\rho} GL(n, \mathbb{C})$ a representation. Assume that the algebraic closure of $\rho(\pi_1(M))$ is a reductive Lie group. Then ρ is obtained from a polystable Higgs bundle (B, θ) using the Corlette-Simpson correspondence. Moreover, (B, θ) is determined uniquely from ρ .

Narasimhan-Seshadri

THEOREM: (Kobayashi-Lubke)

The Yang-Mills connection on a holomorphic bundle with $c_1(B) = 0, c_2(B) = 0$ is flat.

COROLLARY: (Narasimhan, Seshadri)

A stable bundle with $c_1(B) = 0, c_2(B) = 0$ admits a unique flat unitary Chern connection

REMARK: Let $U \subset \mathcal{X}_D$ be the space of Higgs bundles (B,θ) , where B is stable. Then U is clearly open. Let Z is the space of stable bundles with $c_1(B) = 0, c_2(B) = 0$. The natural forgetful map $(B,\theta) \longrightarrow B$ is a Lagrangian fibration, which is locally identifies U with T^*Z .

Non-Abelian Hodge theory

REMARK: Let $\gamma_1, ..., \gamma_n \in \pi_1(M)$ be generators of $\pi_1(M)$, and $R_1, ..., R_k$ the relations. The space $\text{Hom}(\pi_1(M), GL(n, \mathbb{C}))$ of complex-valued representations $\pi_1(M) \xrightarrow{\rho} GL(n, \mathbb{C})$ is a set of matrices $A_1, ..., A_n$ such that $R_1(A_1, ..., A_n) = ... = R_m(A_1, ..., A_n) = \text{Id}$. Therefore, $\text{Hom}(\pi_1(M), GL(n, \mathbb{C}))$ is an affine variety. **The moduli of representations of** $\pi_1(M)$ is the quotient $\text{Hom}(\pi_1(M), GL(n, \mathbb{C}))//GL(n, \mathbb{C})$ by the adjoint action, where $*//GL(n, \mathbb{C})$ sig**nifies the GIT reduction** (that is, **the symplectic reduction**).

DEFINITION: Let \tilde{X} be the subset of $\text{Hom}(\pi_1(M), GL(n, \mathbb{C}))//GL(n, \mathbb{C})$ consisting of representations ρ with reductive Zariski closure of im ρ , and $\mathcal{X}_B := \tilde{X}//GL(n, \mathbb{C})$. Then \mathcal{X}_B is called **the Betti moduli space** of representations of $\pi_1(M)$. The complex structure on \mathcal{X}_B is induced from the complex structure on Hom $(\pi_1(M), GL(n, \mathbb{C}))$ as indicated above. The Dolbeault moduli **space** \mathcal{X}_D is the same space with different complex structure. The complex structure on the Dolbeault moduli space **is induced from the moduli of Higgs bundles**.

THEOREM: (Simpson) The moduli space \mathcal{X} is equipped with a natural hyperkähler structure, and the Dolbeault and Betti complex structures are induced from the quaternion action associated with this hyperkähler structure.

Kapustin-Witten duality

DEFINITION: The Hitchin system is the space of stable Higgs bundles on a compact curve C. It is equipped with a Lagranian fibration with proper fibers and a base $\bigoplus_i H^0(C, K_C^{\otimes j_i})$. In a similar way one defines a principal Higgs bundle (which is a holomorphic *G*-bundle *P* with a Higgs field $\theta \in$ $H^0(\Omega^1(M) \otimes \text{Lie}(P))$ and a Hitchin system on a *G*-bundle over *C*.

Kapustin-Witten duality (a. k. a "Montonen-Olive/geometric Langlands duality") is the duality between Hitchin systems associated with Langlands dual Lie groups.

1. The corresponding holomorphic Lagrangian fibrations are expected to be SYZ dual.

2. In place of the Fukaya category on the symplectic side of Mirror Symmetry, one has **a category of holomorphic Lagrangian subvarieties** (called "BAA", "ABA" and "AAB branes").

3. In place of the derived category of coherent sheaves on the complex side of Mirror Symmetry there is a category which has pairs (trianalytic subvariety, hyperholomorphic bundle on it) as objects; these are called "BBB branes".

Kapustin-Witten duality is expected to exchange the BBB branes and the holomorphic Lagrangian subvarieties.

Holomorphic Lagrangian fibrations

DEFINITION: Let M be a holomorphically symplectic manifold, and π : $M \longrightarrow B$ a proper surjective holomorphic map with B normal and all fibers holomorphically Lagrangian. Then π is called a holomorphic Lagrangian fibration.

CLAIM: (Liouville) A smooth fiber *F* of a holomorphic Lagrangian fibration $\pi: M \longrightarrow B$ is always a torus.

Proof: For any fibration $\pi : M \longrightarrow B$, any smooth fiber $F = \pi^{-1}(x)$ has trivial normal bundle $NF = \pi^*(T_xB)$. For any function on B, its Hamiltonian gives a section of TF. Choose a collection of holomorphic functions such that their Hamiltonians give a basis in TF. Since these Hamiltonians commute, the corresponding vector fields in TF also commute. This gives a locally free action of an abelian Lie group on F, and therefore F is a quotient of an abelian group by a lattice.

DEFINITION: Let π : $M \longrightarrow B$ be a proper, regular fibration. The flat connection on the bundle $R^i \pi_*(\mathbb{R}_M)$ on B with the fiber $H^i(\pi^{-1}(x)$ for all $x \in B$ is called **the Gauss-Manin connection**.

Special Kähler geometry and algebraic Hamiltonian systems

DEFINITION: Let $\pi : M \longrightarrow B$ be a Lagrangian fibration, and $F := \pi^{-1}(x)$ a regular fiber. Then $\pi^*T_xB = NF = T^*F$. This identifies TB with the bundle $R^1\pi_*(\mathbb{R}_M)$ of first cohomology of fibers. Then TB is equipped with a natural flat connection, called **the Arnold-Liouville connection**.

EXERCISE: Prove that this connection is torsion-free.

REMARK: Let π : $M \longrightarrow B$ be a holomorphic Lagrangian fibration. A Kähler form ω on M restricted to a smooth fiber F of π defines a cohomology class $[\omega] \in H^2(F)$. Since F is a torus, we can consider $[\omega]$ as a 2-form on $R^1\pi_*(\mathbb{R}_M) = TB$. This form is clearly parallel under the Gauss-Manin connection, and defines a Kähler structure on B.

THEOREM: (Donagi-Markman, Freed)

Let $\pi : M \longrightarrow B$ be a holomorphic Lagrangian fibration on a Kähler holomorphic symplectic manifold (Donagi-Markman call this "an algebraic Hamiltonian system") and $B_0 \subset B$ be the complement to the discriminant locus of B. Then (B_0, ∇, ω) is a special Kähler manifold.

Lagrangian subvarieties in Hitchin systems

Note that the Hitchin systems are equipped with a natiral \mathbb{C}^* -action which multiplies the Higgs field by a number. Hitchin proved the following result related to the Kapustin-Witten duality.

THEOREM: (Hitchin) Let $\pi : M \longrightarrow B$ be the Hitchin system. Then any \mathbb{C}^* invariant holomorphic Lagrangian submanifold has an open set with the
structure of a fibration over a \mathbb{C}^* -invariant special Kähler submanifold
of B, and each fiber is a disjoint union of translates of an abelian
subvariety.

He asked whether this is true in a more general situation.

THEOREM: (Kamenova-V.) Let $\pi : M \to B$ be a holomorphic symplectic Kähler manifold equipped with a holomorphic Lagrangian fibration π with compact fibers, $Z \subset M$ its holomorphic Lagrangian subvariety, $X := \pi(Z)$, and $X_0 \subset B$ the set of all regular values of $\pi : Z \to X$. Then X_0 is a special Kähler submanifold of B, and each fiber of $\pi : Z \to X$ ober X_0 is a disjoint union of translates of the same torus.

Lagrangian subspaces in $W \oplus W^*$

Lemma 1: Suppose $V \subset W \oplus W^*$ is a Lagrangian vector subspace in $W \oplus W^*$ with standard symplectic structure, and $\pi : W \oplus W^* \longrightarrow W$ the projection. **Then** $\pi(V)^{\perp} = V \cap W^*$, where $R^{\perp} \subset W^*$ denotes the annihilator of a subspace $R \subset W$, and W^* is considered as a subspace in $W \oplus W^*$.

THEOREM: (Kamenova-V.) Let $\pi : M \to B$ be a holomorphic symplectic Kähler manifold equipped with a holomorphic Lagrangian fibration π with compact fibers, $Z \subset M$ an irreducible, closed holomorphic Lagrangian subvariety, $X := \pi(Z)$, and $X_0 \subset B$ the set of all regular values of $\pi : Z \to X$. Then X_0 is a special Kähler submanifold of B, and each fiber of $\pi : Z \to X$ over X_0 is a disjoint union of translates of the same torus.

Proof. Step 1: Let $Z_x := \pi^{-1}(x) \cap Z$, where $x \in X_0$. The holomorphic symplectic form induces non-degenerate pairing between $T_z^{\pi}M$ (the fiberwise tangent space) and T_xB . By Lemma 1, for all $z \in Z_x$, one has $T_zZ_x = \pi(T_zZ)^{\perp} \cap T_z^{\pi}M$, hence the spaces T_zZ_x are translates for all $z \in Z_x$. Therefore, Z_x is a disconnected union of subtori of $\pi^{-1}(x)$, and all of these subtori are translates.

M. Verbitsky

Step 2: It remains only to show that $X_0 \,\subset B$ is flat with respect to the Arnold-Liouville connection. We may identify the vertical tangent space $T_z^{\pi}M$ with $H^1(\pi^{-1}(x))$. Then T_zZ_x is identified with the cohomology of a compact torus $H^1(Z_x)$, hence it stays constant under deformations of x. Then $\pi(T_zZ) = \pi((T_zZ)^{\perp})$ is constant under the Arnold-Liouville connection.

Friedrich Hirzebruch, Nigel Hitchin and Edward Witten, 2009, MFO 23