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LCK manifolds

DEFINITION: A complex Hermitian manifold (M, I, g, ω) is called locally

conformally Kähler (LCK) if there exists a closed 1-form θ such that dω =

θ ∧ ω. The 1-form θ is called the Lee form and the g-dual vector field θ] is

called the Lee field.

REMARK: This definition is equivalent with the existence of a Kähler

cover (M̃, ω̃)−→M such that the deck group Γ acts on (M, ω̃) by holo-

morphic homotheties. Indeed, suppose that θ is exact, df = θ. Then e−fω
is a Kähler form.

THEOREM: (Vaisman)

A compact LCK manifold with non-exact Lee form does not admit a Kähler

structure.

REMARK: Such manifold are called strict LCK. Further on, we shall con-

sider only strict LCK manifolds.
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Vaisman manifolds

DEFINITION: The LCK manifold (M, I, g, ω) is a Vaisman manifold if the

Lee form is parallel with respect to the Levi-Civita connection.

THEOREM: A compact (strictly) LCK manifold M is Vaisman if and only

if it admits a non-trivial action of a complex Lie group of positive

dimension, acting by holomorphic isometries.

DEFINITION: A linear Hopf manifold is a quotient M := Cn\0
〈A〉 where A is

a linear contraction. When A is diagonalizable, M is called diagonal Hopf.

CLAIM: All diagonal Hopf manifolds are Vaisman, and all non-diagonal

Hopf manifolds are LCK and not Vaisman.

THEOREM: A compact complex manifold admits a Vaisman structure if

and only if it admits a holomorphic embedding to a diagonal Hopf

manifold.
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Vaisman manifolds and algebraic cones

DEFINITION: Let L be an ample bundle on a projective orbifold, and

Tot◦(L) the set of non-zero vectors in its total space. Then Tot◦(L) is

called an open algebraic cone.

PROPOSITION: “Calabi formula (2.6)”

Let h be a metric with positive curvature on Tot◦(L). Consider h as a function

on Tot◦(L), with h(v) := (v, v)h. Then ddch is a Kähler form on Tot◦(L).

THEOREM: Let X be a projective orbifold, L an ample bundle, h a metric

with positive curvature ω on L (in this case, ω is a Kähler form on X). Consider

an isometry ϕ : X → X which can be extended to a holomorphic isometry of

Tot◦(L) (such an isometry is called linearizable, or hamiltonian), and let γ

be the Z-action on Tot◦(L) which takes a vector v ∈ Tot◦(L) to λϕ(v), where

λ ∈ C, |λ| > 1. Then Tot◦(L)
〈γ〉 is Vaisman, and all Vaisman manifolds are

obtained this way.
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Canonical foliation

REMARK: On a Vaisman manifold, the Lee vector field θ] and the anti-Lee
field Iθ] are Killing and holomorphic. Moreover, they commute: [θ], Iθ]] =
0. Therefore, they define a holomorphic 1-dimensional foliation Σ. This
foliation is called the canonical foliation.

CLAIM: Let (M,ω, θ) be a Vaisman manifold, and θc := I(θ(. Then the form
ω0 = −dθc satisfies ω0 = ω − θ ∧ θc. Moreover, this form is pseudo-Hermitian,
invariant with respect to the action generated by θ], Iθ], vanishes on Σ and
is positive in the transversal direction.

REMARK: Using the form ω0, it is easy to see that the canonical foliation
Σ is independent from the choice of the metric.

REMARK: This form is transversally Kähler with respect to Σ.

EXAMPLE: Let H = Cn\0
〈λ〉 be a classical Hopf manifold, and π : H → CPn−1

the standard projection. Then its fibers are the leaves of the canonical
foliation.
EXAMPLE: Consider a Vaisman manifolds obtained as above, Tot◦(L)

〈γ〉 such
that γ(v) = λϕ(v). Then its Lee field is tangent to the fibers of the
bundle L, and the corresponding diffeomorphism flow takes v to etv, for
t ∈ C.
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Quasi-regular foliations

DEFINITION: A foliation is called quasi-regular if all its leaves are compact.

If this is not so, it is called irregular. A foliation is called regular if all its

leaves are compact, and the leaf space is smooth.

DEFINITION: A Vaisman manifold is regular/quasi-regular/irregular if its

canonical foliation is regular/quasi-regular/irregular.

THEOREM: The quasi-regular Vaisman manifolds are elliptically fibered

over a projective orbifold.

REMARK: A Vaisman manifolds Tot◦(L)
〈γ〉 such that γ(v) = λϕ(v) is quasi-

regular if and only if ϕ is a map of finite order.
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Gauduchon metrics

DEFINITION: A Hermitian metric ω on a complex n-manifold is called
Gauduchon if ddcωn−1 = 0.

THEOREM: (P. Gauduchon, 1978) Let M be a compact, complex man-
ifold, and h a Hermitian form. Then there exists a Gauduchon metric
conformally equivalent to h, and it is unique, up to a constant multiplier.

EXAMPLE: A Vaisman metric is Gauduchon. It follows from an elemen-
tary calculation: ∗ddcωn−1 = const · d∗θ.

REMARK: If ω is Gauduchon, then (by Stokes’ theorem)
∫
M ωn−1ddcf = 0

for any f . The curvature ΘL of a holomorphic line bundle L is well-defined up
to ddc log |h|, where h is a conformal factor. Therefore, for any line bundle
L, the number degω L :=

∫
M ωn−1 ∧ΘL is well defined.

REMARK: Unlike the Kähler case, degω L is a holomorphic invariant of L,
and not topological.

DEFINITION: Given a torsion-free coherent sheaf F of rank r, let F ∗ :=
HomOM(F,OM) be the dual coherent sheaf. We define its determinant as
detF := ΛrOMF

∗∗. From algebraic geometry it is known that detF is a line

bundle. Define the degree degω F := degω detF =
∫
M Tr ΘF ∧ ωn−1.
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Kobayashi-Hitchin correspondence

DEFINITION: Let F be a coherent sheaf over an n-dimensional Gauduchon
manifold (M,ω), and slope(F ) := degω F

rank(F ). A torsion-free sheaf F is called

stable if for all subsheaves F ′ ⊂ F one has slope(F ′) < slope(F ). If F is a
direct sum of stable sheaves of the same slope, F is called polystable.

DEFINITION: A Hermitian metric on a holomorphic vector bundle B is called
Yang-Mills (Hermitian-Einstein) if ΘB ∧ωn−1 = slope(F ) · IdB ·ωn, where ΘB

is its curvature.

THEOREM: (Kobayashi-Hitchin correspondence; Donaldson, Buchsdahl,
Uhlenbeck-Yau, Li-Yau, Lübke-Teleman): Let B be a holomorphic vector
bundle. Then B admits a Yang-Mills metric if and only if B is polystable.

COROLLARY: Any tensor product of polystable bundles is polystable.

REMARK: This result was generalized to coherent sheaves by Bando
and Siu.

REMARK: Stability is required if you want to classify vector bundles or
construct their moduli spaces.
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Stable bundles on transversally Kähler manifolds

THEOREM: Let (M,ω) be a Vaisman manifold, dimM > 2. Consider a

vector bundle B with a Yang-Mills connection ∇, degωB = 0. Then the

curvature ΘB of ∇ satisfies ΘB(x, ·) = 0 for any x ∈ Σ.

Proof: Yesterday’s lecture.

COROLLARY: In these assumptions, let X ∈ Σ be a holomorphic vector

field tangent to the foliation Σ. Then ∇X takes holomorphic sections of

B to holomorphic sections. In particular, it defines a holomorphic vector

field on Tot(B) which projects to X.

Proof: Yesterday’s lecture.

YESTERDAY’S MAIN THEOREM: Let B be a stable coherent bundle on

a quairegular Vaisman manifold, and let π : M −→X = M/Σ be the projection

map. Then F = π∗B0 ⊗ L, where B0 is a coherent sheaf on M/Σ, and L

a line bundle.

Today’s main question: What can be done when M is not quasiregular?
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Equivariant structure on stable bundles

THEOREM 1: Let (M,Σ, ω0) be a Vaisman manifold, dimM > 2, B a

stable line bundle of degree 0, and ∇ its Yang-Mills metric. Consider the

holomorphic vector fields ∇X ∈ T Tot(B), ∇IX ∈ T Tot(B), denoted by X̃,

I(X̃). Then the corresponding diffeomorphism flow acts on Tot(B) by

holomorphic isometries, and its closure, denoted by G�, is a compact

Lie group.

Proof: Since ∇X commutes with ∂, the corresponding vector field on the total

space TotB preserves holomorphic sections and acts on TotB by holomorphic

isometries. Since this action preserves the length of a section, it acts on

the corresponding sphere bundle, and its closure is a compact Lie group.
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Closure of the diffeomorphism flow generated by the Lee fields

THEOREM: Let M be a Vaisman manifold, and M̃ = C(X) its Z-covering,

identified with an algebraic cone C(Z) = Tot◦(L) over a Kähler orbifold Z.

Denote by X its Lee field, and G ⊂ Diff(M) be the closure of the group of

diffeomorphisms denerated by etX and etI(X), t ∈ R. Then G is a compact

torus, acting on X by holomorphic Hamiltonian isometries.

Proof: G is compact because X and I(X) are Killing, and acts by holomorphic

automorphisms because X and I(X) are holomorphic. It is Hamiltonian,

because X and I(X) are Hamiltonian vector fields.

THEOREM: In assumptions of this theorem, let G̃ be the lift of G to the

cone C(Z), and γ the generator of the Z-action on C(Z), such that M := C(Z)
〈γ〉 .

Then γn belongs to G̃ for some n ∈ Z>0.

Proof: Principles of Locally Conformally Kähler Geometry, by Liviu Ornea, Misha Verbitsky.
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The difference between G and G�

Let B be a stable bundle over a Vaisman manifold, degB = 0. Then B is
G�-equivariant (Theorem 1), with G� obtained by lifting the Lee vector field
to Tot(B) and taking the closure.

CLAIM: The natural projection u : G� → G is surjective, and its kernel is
naturally embedded to U(1).

Proof: The groups G, G� are compact, and obtained by taking the closure
of the diffeomorphism flow of the Lee field; this implies the surjectivity. For
any g ∈ ker u, g acts by a Hermitian automorphism on B; since B is stable,
Aut(B) = C∗, and its group of isometries is U(1).

COROLLARY: The group G� is isomorphic to a connected finite cov-
ering of G or to G× U(1).

Proof: This group is compact, hence the kernel of the map u : G� → G is
either U(1) or a finite subgroup of U(1). Also, G� is connected, hence in the
second case G� is a finite connected covering.

An idea: Passing to principal PU(n)-bundles, we can forget about the dif-
ference between G�-equivariant structure and G-equivariant structure.
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Equivariance of PU(n)-bundles

Let M be a Vaisman manifold, and M̃ = C(X) its Z-covering, with M =
C(Z)
〈γ〉 . Assume that γ ∈ G̃. Clearly, vector bundles on M are the same as

〈γ〉-equivariant bundles on M̃ . However, since 〈γ〉 ⊂ G̃, 〈γ〉-equivariancy is

implied by G̃-equivariance.

THEOREM: Every PU(n)-principal bundle equipped with a Yang-Mills met-

ric on M is obtained as a pullback of a G̃-equivariant Yang-Mills PU(n)-

bundle on Z. Conversely, every G̃-equivariant Yang-Mills PU(n)-bundle

on Z is pulled back to a PU(n)-principal Yang-Mills bundle on M.

COROLLARY: Stable coherent sheaves on Vaisman manifolds are filtrable,

that is, admit a filtration by coherent sheaves with subquotients of rank 1.
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