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LCK manifolds

DEFINITION: A complex Hermitian manifold (M,1I,g,w) is called locally
conformally Kahler (LCK) if there exists a closed 1-form 6 such that dw =
O ANw. The 1-form 6 is called the Lee form and the g-dual vector field 6! is
called the Lee field.

REMARK: This definition is equivalent with the existence of a Kahler
cover (M,%) — M such that the deck group I acts on (M,%) by holo-
morphic homotheties. Indeed, suppose that 6 is exact, df = 6. Then e /w
iIs a Kahler form.

THEOREM: (Vaisman)
A compact LCK manifold with non-exact Lee form does not admit a Kahler

structure.

REMARK: Such manifold are called strict LCK. Further on, we shall con-
sider only strict LCK manifolds.
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Vaisman manifolds

DEFINITION: The LCK manifold (M, I,g,w) is a Vaisman manifold if the
Lee form is parallel with respect to the Levi-Civita connection.

THEOREM: A compact (strictly) LCK manifold M is Vaisman if and only
If it admits a non-trivial action of a complex Lie group of positive
dimension, acting by holomorphic isometries.

™o

DEFINITION: A linear Hopf manifold is a quotient M = A where A is

a linear contraction. When A is diagonalizable, M is called diagonal Hopf.

CLAIM: All diagonal Hopf manifolds are Vaisman, and all non-diagonal
Hopf manifolds are LCK and not Vaisman.

THEOREM: A compact complex manifold admits a Vaisman structure if
and only if it admits a holomorphic embedding to a diagonal Hopf
manifold.
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Vaisman manifolds and algebraic cones

DEFINITION: Let L be an ample bundle on a projective orbifold, and
Tot°(L) the set of non-zero vectors in its total space. Then Tot°(L) is
called an open algebraic cone.

PROPOSITION: “Calabi formula (2.6)”
Let h be a metric with positive curvature on Tot°(L). Consider h as a function
on Tot°(L), with h(v) := (v,v);. Then dd°h is a Kahler form on Tot°(L).

THEOREM: Let X be a projective orbifold, L an ample bundle, h a metric
with positive curvature w on L (in this case, w is a Kahler form on X). Consider
an isometry ¢ : X — X which can be extended to a holomorphic isometry of
Tot°(L) (such an isometry is called linearizable, or hamiltonian), and let ~
be the Z-action on Tot°(L) which takes a vector v € Tot°(L) to A¢(v), where
AeC, |\l >1. Then %@ Is Vaisman, and all Vaisman manifolds are
obtained this way.
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Canonical foliation

REMARK: On a Vaisman manifold, the Lee vector field 0% and the anti-Lee
field I6% are Killing and holomorphic. Moreover, they commute: [Gﬁ,leﬁ] =
0. Therefore, they define a holomorphic 1-dimensional foliation >. This
foliation is called the canonical foliation.

CLAIM: Let (M,w,0) be a Vaisman manifold, and 6¢ := I(6(. Then the form
wo = —dB° satisfies wg = w — 6 A 6¢. Moreover, this form is pseudo-Hermitian,
invariant with respect to the action generated by 6%, 16¢, vanishes on >~ and
IS positive in the transversal direction.

REMARK: Using the form wq, it is easy to see that the canonical foliation
2 iIs independent from the choice of the metric.

REMARK: This form is transversally Kahler with respect to 2.
EXAMPLE: Let H = CZLT\O be a classical Hopf manifold, and = : H — Cpn—1
the standard projection. >'I'hen its fibers are the leaves of the canonical
foliation.

EXAMPLE: Consider a Vaisman manifolds obtained as above, e such
that v(v) = Ap(v). Then its Lee field is tangent to the fibers of the
bundle [, and the corresponding diffeomorphism flow takes v to elwv, for
t e C.

Tot°(L)
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Quasi-regular foliations

DEFINITION: A foliation is called quasi-regular if all its leaves are compact.
If this is not so, it is called irregular. A foliation is called regular if all its
leaves are compact, and the leaf space is smooth.

DEFINITION: A Vaisman manifold is regular/quasi-regular/irregular if its
canonical foliation is regular/quasi-regular/irregular.

THEOREM: The quasi-regular Vaisman manifolds are elliptically fibered
over a projective orbifold.

REMARK: A Vaisman manifolds Toz:;>(L) such that v(v) = A¢(v) is quasi-

regular if and only if ¢ is a map of finite order.
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Gauduchon metrics

DEFINITION: A Hermitian metric w on a complex n-manifold is called
Gauduchon if dd¢w™ 1 = 0.

THEOREM: (P. Gauduchon, 1978) Let M be a compact, complex man-
ifold, and A a Hermitian form. Then there exists a Gauduchon metric
conformally equivalent to A, and it is unique, up to a constant multiplier.

EXAMPLE: A VVaisman metric is Gauduchon. It follows from an elemen-
tary calculation: sdd¢w" 1 = const - d*.

REMARK: If w is Gauduchon, then (by Stokes’' theorem) [,;w" 1dd‘f = 0
for any f. The curvature ©; of a holomorphic line bundle L is well-defined up
to dd€log |h|, where h is a conformal factor. Therefore, for any line bundle
L, the number deg, L := [j;w" 1 A O is well defined.

REMARK: Unlike the Kahler case, deg, L is a holomorphic invariant of L,
and not topological.

DEFINITION: Given a torsion-free coherent sheaf F of rank r, let F* =
Homp,,(F,Opr) be the dual coherent sheaf. We define its determinant as
det F = /\’bMF**. From algebraic geometry it is known that det F' is a line

bundle. Define the degree deg,, F :=deg,det F = [, TrOp Aw™ 1.
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Kobayashi-Hitchin correspondence

DEFINITION: Let F' be a coherent sheaf over an n-dimensional Gauduchon
manifold (M,w), and slope(F) = %. A torsion-free sheaf F' is called
stable if for all subsheaves F/ C F one has slope(F’) < slope(F). If F is a

direct sum of stable sheaves of the same slope, F' is called polystable.

DEFINITION: A Hermitian metric on a holomorphic vector bundle B is called
Yang-Mills (Hermitian-Einstein) if © g Aw™ 1 = slope(F) -Idg -w"”, where ©p
IS its curvature.

THEOREM: (Kobayashi-Hitchin correspondence; Donaldson, Buchsdahl,
Uhlenbeck-Yau, Li-Yau, Libke-Teleman): Let B be a holomorphic vector
bundle. Then B admits a Yang-Mills metric if and only if B is polystable.

COROLLARY: Any tensor product of polystable bundles is polystable.

REMARK: This result was generalized to coherent sheaves by Bando
and Siu.

REMARK: Stability is required if you want to classify vector bundles or
construct their moduli spaces.
8
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Stable bundles on transversally Kahler manifolds

THEOREM: Let (M,w) be a Vaisman manifold, dimM > 2. Consider a
vector bundle B with a Yang-Mills connection V, deg,B = 0. Then the
curvature ©p of V satisfies ©g(x,-) =0 for any z € >.

Proof: Yesterday's lecture.

COROLLARY: In these assumptions, let X € > be a holomorphic vector
field tangent to the foliation >.. Then Vy takes holomorphic sections of
B to holomorphic sections. In particular, it defines a holomorphic vector
field on Tot(B) which projects to X.

Proof: Yesterday's lecture.

YESTERDAY'S MAIN THEOREM: Let B be a stable coherent bundle on
a quairegular Vaisman manifold, and let 7 : M — X = M/X be the projection
map. Then F =7*By® L, where B is a coherent sheaf on M/X>, and L
a line bundle.

Today’s main question: What can be done when M is not quasiregular?
9
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Equivariant structure on stable bundles

THEOREM 1: Let (M,X,wg) be a Vaisman manifold, dimM > 2, B a
stable line bundle of degree 0, and V its Yang-Mills metric. Consider the
holomorphic vector fields Vy € T Tot(B), Vix € T Tot(B), denoted by X,
I(X). Then the corresponding diffeomorphism flow acts on Tot(B) by
holomorphic isometries, and its closure, denoted by G°, is a compact
Lie group.

Proof: Since Vxy commutes with 0, the corresponding vector field on the total
space Tot B preserves holomorphic sections and acts on Tot B by holomorphic
isometries. Since this action preserves the length of a section, it acts on
the corresponding sphere bundle, and its closure is a compact Lie group.
|
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Closure of the diffeomorphism flow generated by the Lee fields

THEOREM: Let M be a Vaisman manifold, and M = C(X) its Z-covering,
identified with an algebraic cone C(Z) = Tot°(L) over a Kahler orbifold Z.
Denote by X its Lee field, and G C Diff(M) be the closure of the group of
diffeomorphisms denerated by X and e/(X), t ¢ R. Then G is a compact
torus, acting on X by holomorphic Hamiltonian isometries.

Proof: GG is compact because X and I(X) are Killing, and acts by holomorphic
automorphisms because X and I(X) are holomorphic. It is Hamiltonian,
because X and I(X) are Hamiltonian vector fields. =

THEOREM: In assumptions of this theorem, let G be the lift of G to the

cone C(Z), and ~ the generator of the Z-action on C(Z), such that M := CfT%)

Then 4" belongs to G for some n € Z>9.

Proof: Principles of Locally Conformally Kahler Geometry, by Liviu Ornea, Misha Verbitsky.
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The difference between G and G°

Let B be a stable bundle over a Vaisman manifold, deg B = 0. Then B is
G°-equivariant (Theorem 1), with G° obtained by lifting the Lee vector field
to Tot(B) and taking the closure.

CLAIM: The natural projection u: G° — G is surjective, and its kernel is
naturally embedded to U(1).

Proof: The groups G, G° are compact, and obtained by taking the closure
of the diffeomorphism flow of the Lee field; this implies the surjectivity. For
any g € keru, g acts by a Hermitian automorphism on B, since B is stable,
Aut(B) = C*, and its group of isometries is U(1). =

COROLLARY: The group G° is isomorphic to a connected finite cov-
ering of G or to G x U(1).

Proof: This group is compact, hence the kernel of the map v : G° — G is
either U(1) or a finite subgroup of U(1). Also, G° is connected, hence in the
second case G° is a finite connected covering. =

An idea: Passing to principal PU(n)-bundles, we can forget about the dif-
ference between G°-equivariant structure and G-equivariant structure.
12
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Equivariance of PU(n)-bundles

Let M be a Vaisman manifold, and M = C(X) its Z-covering, with M =

%(T?' Assume that v € G. Clearly, vector bundles on M are the same as

(v)-equivariant bundles on M. However, since (y) C G, (v)-equivariancy is
implied by G-equivariance.

THEOREM: Every PU(n)-principal bundle equipped with a Yang-Mills met-
ric on M is obtained as a pullback of a G-equivariant Yang-Mills PU(n)-
bundle on Z. Conversely, every G-equivariant Yang-Mills PU(n)-bundle
on Z is pulled back to a PU(n)-principal Yang-Mills bundle on M.

COROLLARY: Stable coherent sheaves on VVaisman manifolds are filtrable,
that is, admit a filtration by coherent sheaves with subquotients of rank 1.
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