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Ergodic complex structures

DEFINITION: Let M be a smooth manifold. A complex structure on M is

an endomorphism I ∈ EndTM , I2 = − IdTM such that the eigenspace bundles

of I are involutive, that is, satisfy [T1,0M,T1,0M ] ⊂ T1,0M .

REMARK: Let Comp be the space of such tensors equipped with a topology

of convergence of all derivatives. It is a Fréchet manifold.

DEFINITION: The diffeomorphism group Diff is a Fréchet Lie group acting

on Comp in a natural way. A complex structure is called ergodic if its Diff-

orbit is dense in Comp.

REMARK: The “moduli space” of complex structures (if it exists) is identi-

fied with Comp /Diff; existence of ergodic complex structures guarantees

that the moduli space does not exist (all points are non-separable).

THEOREM: Let M be a compact torus, dimCM > 2, or a simple hyperkähler

manifold. A complex structure on M is ergodic if and only if Pic(M) is

not of maximal rank.
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Period space as a Grassmannian of positive 2-planes

PROPOSITION: The period space

Per := {l ∈ PH2(M,C) | q(l, l) = 0, q(l, l) > 0.}

is identified with Gr+,+(H2(M,R)) = SO(b2 − 3,3)/SO(2) × SO(b2 − 3,1),

which is a Grassmannian of positive oriented 2-planes in H2(M,R).

Proof. Step 1: Given l ∈ PH2(M,C), the space generated by Im l,Re l is

2-dimensional, because q(l, l) = 0, q(l, l) implies that l ∩H2(M,R) = 0.

Step 2: This 2-dimensional plane is positive, because q(Re l,Re l) = q(l+

l, l + l) = 2q(l, l) > 0.

Step 3: Conversely, for any 2-dimensional positive plane V ∈ H2(M,R), the

quadric {l ∈ V ⊗R C | q(l, l) = 0} consists of two lines; a choice of a line

is determined by orientation.
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Birational Teichmüller moduli space

DEFINITION: Let M be a topological space. We say that x, y ∈M are non-

separable (denoted by x ∼ y) if for any open sets V 3 x, U 3 y, U ∩ V 6= ∅.

THEOREM: (Huybrechts) Two points I, I ′ ∈ Teich are non-separable if

and only if there exists a bimeromorphism (M, I)−→ (M, I ′) which is

non-singular in codimension 2.

DEFINITION: The space Teichb := Teich / ∼ is called the birational Te-

ichmüller space of M .

THEOREM: The period map Teichb
Per−→ Per is an isomorphism, for each

connected component of Teichb.

THEOREM: Let (M, I) be a hyperkähler manifold, and W a connected

component of its birational moduli space. Then the set of isomorphism

classes of complex holomorphically symplectic structures is identified

with Per/Γ, where Per = SO(b2−3,3)/SO(2)×SO(b2−3,1) and Γ is a finite

index subgroup in O(H2(M,Z), q), called the monodromy group.
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Ergodic complex structures

DEFINITION: Let (M,µ) be a space with measure, and G a group acting on

M preserving measure. This action is ergodic if all G-invariant measurable

subsets M ′ ⊂M satisfy µ(M ′) = 0 or µ(M\M ′) = 0.

CLAIM: Let M be a manifold, µ a Lebesgue measure, and G a group acting

on M ergodically. Then the set of non-dense orbits has measure 0.

Proof. Step 1: Consider a non-empty open subset U ⊂M . Then µ(U) > 0,

hence M ′ := G · U satisfies µ(M\M ′) = 0. For any orbit G · x not intersecting

U , x ∈M\M ′. Therefore the set ZU of such orbits has measure 0.

Proof. Step 2: Choose a countable base {Ui} of topology on M . Then the

set of points with dense orbits is M\
⋃
iZUi.

DEFINITION: Let M be a complex manifold, Teich its Techmüller space,

and Γ the mapping group acting on Teich An ergodic complex structure

is a complex structure with dense Γ-orbit.
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Ergodicity of the monodromy group action

DEFINITION: A lattice in a Lie group is a discrete subgroup Γ ⊂ G such

that G/Γ has finite volume with respect to Haar measure.

THEOREM: (Calvin C. Moore, 1966) Let Γ be a lattice in a non-compact

simple Lie group G with finite center, and H ⊂ G a non-compact subgroup.

Then the left action of Γ on G/H is ergodic.

THEOREM: Let Per be a component of a birational Teichmüller space, and

Γ its monodromy group. Let Pere be a set of all points with dense orbits.

Then Z := Per \Pere has measure 0.

Proof: Let G = SO(b2 − 3,3), H = SO(2) × SO(b2 − 3,1). Then ΓI-action

on G/H = Per is ergodic, by Moore’s theorem. Therefore, all orbits outside

of a measure 0 set are dense.

REMARK: Generic deformation of M has no rational curves, and no non-

trivial birational models. Therefore, outside of a measure zero subset,

Teich = Teichb. This implies that almost all complex structures on M are

ergodic.
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Ratner’s theorem

DEFINITION: Let G be a connected Lie group equipped with a Haar mea-

sure. A lattice Γ ⊂ G is a discrete subgroup of finite covolume (that is, G/Γ

has finite volume).

REMARK: Arithmetic lattices in simple Lie groups have finite covolume

(Borel, Harish-Chandra).

THEOREM: Let H ⊂ G be a Lie subroup generated by unipotents, and

Γ ⊂ G an arithmetic lattice. Then a closure of any H-orbit in G/Γ is an

orbit of a closed, connected subgroup S ⊂ G, such that S ∩ Γ ⊂ S is a

lattice.

REMARK: A closure of H ·x in G/Γ and a closure of x ·Γ in H\G are related

as follows. Let π1 : G−→H\G, π2 : G−→G/Γ be the projections. Then

the connected component of π−1
2 (H · xG/Γ) is the connected component of

π−1
1 (x · ΓH\G).

EXAMPLE: Let V be a real vector space with a non-degenerate bilinear sym-

metric form of signature (3, k), k > 0, G := SO+(V ) a connected component
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of the isometry group, H ⊂ G a subgroup fixing a given positive 2-dimensional

plane, H ∼= SO+(1, k)×SO(2), and Γ ⊂ G an arithmetic lattice. Consider the

quotient Per := G/H. Then a closure of Γ · J in G/H is Γ · J · S, for some

Lie subgroup S ⊃ H. Moreover, S = H if and only if the orbit Γ · J is closed.
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Characterization of ergodic complex structures

CLAIM: Let G = SO+(3, k), and H ∼= SO+(1, k) × SO(2) ⊂ G. Then any
closed connected Lie subgroup S ⊂ G containing H coincides with G or
with H.

COROLLARY: Let J ∈ Per = G/H. Then either J is ergodic, or its
Γ-orbit is closed in Per.

REMARK: By Ratner’s theorem, in the latter case the H-orbit of J has finite
volume in G/Γ. Therefore, its intersection with Γ is a lattice in H. This
brings

COROLLARY: Let J ∈ Per be a point, such that its Γ-orbit is closed in Per.
Consider its stabilizer St(J) ∼= H ⊂ G. Then St(J) ∩ Γ is a lattice in St(J).

COROLLARY: Let J be a non-ergodic complex structure on a hyperkähler
manifold, and W ⊂ H2(M,R) be a plane generated by Re Ω, Im Ω. Then W

is rational.

REMARK: This can be used to show that any hyperkähler manifold is
Kobayashi non-hyperbolic.
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Kobayashi pseudometric

REMARK: The results further on are from a joint paper arXiv:1308.5667 by
Ljudmila Kamenova, Steven Lu, Misha Verbitsky.

DEFINITION: Pseudometric on M is a function d : M ×M −→ R>0 which
is symmetric: d(x, y) = d(y, x) and satisfies the triangle inequality d(x, y) +
d(y, z) > d(x, z).

REMARK: Let D be a set of pseudometrics. Then dmax(x, y) := supd∈D d(x, y)
is also a pseudometric.

DEFINITION: The Kobayashi pseudometric on a complex manifold M is
dmax for the set D of all pseudometrics such that any holomorphic map from
the Poincaré disk to M is distance-non-increasing.

THEOREM: Let π : M−→X be a smooth holomorphic family, which is
trivialized as a smooth manifold: M = M ×X, and dx the Kobayashi metric
on π−1(x). Then dx(m,m′) is upper continuous on x.

COROLLARY: Denote the diameter of the Kobayashi pseudometric by
diam(dx) := supm,m′ dx(m,m′). Then the Kobayashi diameter of a fiber
of π is an upper continuous function: diam : X −→ R>0.
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Vanishing of Kobayashi pseudometric

THEOREM: Let (M, I) be a complex manifold with vanishing Kobayashi
pseudometric. Then the Kobayashi pseudometric vanishes for all ergodic
complex structures in the same deformation class.

Proof: Let diam : Comp −→ R>0 map a complex structure J to the diame-
ter of the Kobayashi pseudometric on (M,J). Let J be an ergodic complex
structure. The set of points J ′ = ν(J) ∈ Comp such that (M,J ′) is biholo-
morphic to (M,J) is dense, because J is ergodic. By upper semi-continuity,
0 = diam(I) > infJ ′=ν(J) diam(J).

EXAMPLE: Let M be a projective K3 surface. Then the Kobayashi metric
on M vanishes. Since all non-projective K3 are ergodic, the Kobayashi
metric vanishes on non-projective K3 surfaces as well.

THEOREM: Let M be a compact simple hyperkähler manifold. Assume
that a deformation of M admits a holomorphic Lagrangian fibration and the
Picard rank of M is not maximal. Then the Kobayashi pseudometric on
M vanishes.

THEOREM: Let M be a Hilbert scheme of K3. Then the Kobayashi
pseudometric on M vanishes.
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Kobayashi hyperbolic manifolds

DEFINITION: An entire curve is a non-constant map C−→M .

DEFINITION: A compact complex manifold M is called Kobayashi hyper-

bolic if there exist no entire curves C−→M .

THEOREM: (Brody, 1975)

Let Ii be a sequence of complex structures on M which are not hyperbolic,

and I its limit. Then (M, I) is also not hyperbolic.

THEOREM: All hyperkähler manifolds are non-hyperbolic.

REMARK: This theorem would follow if we produce an ergodic com-

plex structure which is non-hyperbolic. Indeed, a closure of its orbit is

the whole Teich, and a limit of non-hyperbolic complex structures is non-

hyperbolic.
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Twistor spaces and hyperkähler geometry

DEFINITION: A hyperkähler structure on a manifold M is a Riemannian

structure g and a triple of complex structures I, J,K, satisfying quaternionic

relations I ◦ J = −J ◦ I = K, such that g is Kähler for I, J,K.

DEFINITION: Induced complex structures on a hyperkähler manifold are

complex structures of form S2 ∼= {L := aI + bJ + cK, a2 + b2 + c2 = 1.}

DEFINITION: A twistor space Tw(M) of a hyperkähler manifold is a com-

plex manifold obtained by gluing these complex structures into a holo-

morphic family over CP1. More formally:

Let Tw(M) := M ×S2. Consider the complex structure Im : TmM → TmM on

M induced by J ∈ S2 ⊂ H. Let IJ denote the complex structure on S2 = CP1.

The operator ITw = Im ⊕ IJ : TxTw(M) → TxTw(M) satisfies I2
Tw = − Id.

It defines an almost complex structure on Tw(M). This almost complex

structure is known to be integrable (Obata).
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Entire curves in twistor fibers

THEOREM: (F. Campana, 1992)

Let M be a hyperkähler manifold, and Tw(M)
π−→ CP1 its twistor projection.

Then there exists an entire curve in some fiber of π.

CLAIM: There exists a twistor family which has only ergodic fibers.

Proof: There are only countably many complex structures which are not

ergodic.

THEOREM: All hyperkähler manifolds are non-hyperbolic.

Proof: Let Tw(M)−→ CP1 be a twistor family with all fibers ergodic. By

Campana’s theorem, one of these fibers, denoted (M, I), is non-hyperbolic.

Since any complex structure I ′ ∈ Teich lies in the closure of Diff(M) · I, all

complex structures I ′ ∈ Teich are non-hyperbolic.
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