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Ergodic complex structures

DEFINITION: Let M be a smooth manifold. A complex structure on M is
an endomorphism I € EndTM, I?2 = —1Id7j, such that the eigenspace bundles
of I are involutive, that is, satisfy [T1:9M, 719M] c T1.0M.

REMARK: Let Comp be the space of such tensors equipped with a topology
of convergence of all derivatives. It is a Fréchet manifold.

DEFINITION: The diffeomorphism group Diff is a Fréchet Lie group acting
on Comp in a natural way. A complex structure is called ergodic if its Diff-
orbit is dense in Comp.

REMARK: The “moduli space” of complex structures (if it exists) is identi-
fied with Comp / Diff; existence of ergodic complex structures guarantees
that the moduli space does not exist (all points are non-separable).

THEOREM: Let M be a compact torus, dimgc M > 2, or a simple hyperkahler
manifold. A complex structure on M is ergodic if and only if Pic(M) is
not of maximal rank.
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Period space as a Grassmannian of positive 2-planes

PROPOSITION: The period space
Per := {l € PH?(M,C) | q¢(l,1) =0,q(l,1) > 0.}

is identified with Gry 4 (H?(M,R)) = SO(by — 3,3)/S0(2) x SO(by — 3,1),
which is a Grassmannian of positive oriented 2-planes in H2(M,R).

Proof. Step 1: Given | € PH2(M,C), the space generated by Im!/, Rel is
2-dimensional, because ¢(I,1) = 0, ¢(1,1) implies that N H2(M,R) = 0.

Step 2: This 2-dimensional plane is positive, because g(Rel,Rel) = q(I+
LL+1) =21 > 0.

Step 3: Conversely, for any 2-dimensional positive plane V & HQ(M, R), the
quadric {{ e V®rC | q(,I) = 0} consists of two lines; a choice of a line
IS determined by orientation. =
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Birational Teichmuller moduli space

DEFINITION: Let M be a topological space. We say that =,y € M are non-
separable (denoted by =z ~ y) if for any open sets Vo xz, U >y, UNV # 0.

THEOREM: (Huybrechts) Two points I,I’ € Teich are non-separable if
and only if there exists a bimeromorphism (M,I) — (M,I’) which is
non-singular in codimension 2.

DEFINITION: The space Teich, := Teich / ~ is called the birational Te-
ichmuller space of M.

THEOREM: The period map Teichy Pe Per is an iIsomorphism, for each
connected component of Teichy,.

THEOREM: Let (M,I) be a hyperkahler manifold, and W a connected
component of its birational moduli space. Then the set of isomorphism
classes of complex holomorphically symplectic structures is identified
with Per/I", where Per = SO(b>—3,3)/5S0(2) x SO(bp—3,1) and I is a finite
index subgroup in O(H?%(M,Z),q), called the monodromy group.
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Ergodic complex structures

DEFINITION: Let (M, ) be a space with measure, and G a group acting on
M preserving measure. This action is ergodic if all G-invariant measurable
subsets M’ C M satisfy u(M’') =0 or u(M\M") = 0.

CLAIM: Let M be a manifold, u a Lebesgue measure, and G a group acting
on M ergodically. Then the set of non-dense orbits has measure 0.

Proof. Step 1: Consider a non-empty open subset U C M. Then u(U) > 0,
hence M’ := G - U satisfies u(M\M') = 0. For any orbit G -z not intersecting
U, € M\M'. Therefore the set Z;; of such orbits has measure O.

Proof. Step 2: Choose a countable base {U;} of topology on M. Then the
set of points with dense orbits is M\ U; Zy,. =

DEFINITION: Let M be a complex manifold, Teich its Techmuller space,
and [ the mapping group acting on Teich An ergodic complex structure
IS a complex structure with dense [ -orbit.
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Ergodicity of the monodromy group action

DEFINITION: A lattice in a Lie group is a discrete subgroup I' C G such
that G/I" has finite volume with respect to Haar measure.

THEOREM: (Calvin C. Moore, 1966) Let I' be a lattice in a non-compact
simple Lie group G with finite center, and H C G a non-compact subgroup.
Then the left action of ' on GG/H is ergodic.

THEOREM: Let Per be a component of a birational Teichmuller space, and
[ its monodromy group. Let Pere be a set of all points with dense orbits.
Then Z := Per\ Per. has measure O.

Proof: Let G = SO(by —3,3), H= SO(2) x SO(bp, —3,1). Then [ j-action
on GG/H = Per is ergodic, by Moore's theorem. Therefore, all orbits outside
of a measure O set are dense. =

REMARK: Generic deformation of M has no rational curves, and no non-
trivial birational models. Therefore, outside of a measure zero subset,
Teich = Teichy. This implies that almost all complex structures on M are
ergodic.
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Ratner’s theorem

DEFINITION: Let G be a connected Lie group equipped with a Haar mea-
sure. A lattice I' C G is a discrete subgroup of finite covolume (that is, G/I"
has finite volume).

REMARK: Arithmetic lattices in simple Lie groups have finite covolume
(Borel, Harish-Chandra).

THEOREM: Let H C G be a Lie subroup generated by unipotents, and
[ C G an arithmetic lattice. Then a closure of any H-orbit in G/I" is an
orbit of a closed, connected subgroup S C G, such that SNl C S is a
lattice.

REMARK: A closure of H-z in G/T" and a closure of - in H\G are related
as follows. Let mq : G— H\G, m : G— G/ be the projections. Then
the connected component of wz_l(H-xG/,—) is the connected component of

W;l(x—rH\G)

EXAMPLE: Let V be a real vector space with a non-degenerate bilinear sym-
metric form of signature (3,k), k> 0, G := SOT(V) a connected component
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of the isometry group, H C G a subgroup fixing a given positive 2-dimensional
plane, H = SOT(1,k) x SO(2), and I’ C G an arithmetic lattice. Consider the
quotient Per := G/H. Then a closure of I - J in G/H is I - J- S, for some
Lie subgroup S D H. Moreover, S = H if and only if the orbit I - J is closed.
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Characterization of ergodic complex structures

CLAIM: Let G = SO+ (3,k), and H = SO+ (1,k) x SO(2) c G. Then any
closed connected Lie subgroup S C G containing H coincides with G or
with H.

COROLLARY: Let J € Per = G/H. Then either J is ergodic, or its
[ -orbit is closed in Per.

REMARK: By Ratner’'s theorem, in the latter case the H-orbit of J has finite
volume in G/I". Therefore, its intersection with I is a lattice in H. This
brings

COROLLARY: Let J € Per be a point, such that its -orbit is closed in Per.
Consider its stabilizer St(J) = H C G. Then St(J)NT is a lattice in St(J).

COROLLARY: Let J be a non-ergodic complex structure on a hyperkahler
manifold, and W C H?(M,R) be a plane generated by ReQ,ImQ. Then W
IS rational.

REMARK: This can be used to show that any hyperkahler manifold is
Kobayashi non-hyperbolic.
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Kobayashi pseudometric

REMARK: The results further on are from a joint paper arXiv:1308.5667 by
Ljudmila Kamenova, Steven Lu, Misha Verbitsky.

DEFINITION: Pseudometric on M is a function d: M x M —s R=0 which
is symmetric: d(x,y) = d(y,x) and satisfies the triangle inequality d(z,y) +

d(y,z) > d(xz, z).

REMARK: Let © be a set of pseudometrics. Then dmax(z,y) := sSupgep d(z,y)
IS also a pseudometric.

DEFINITION: The Kobayashi pseudometric on a complex manifold M is
dmax for the set ® of all pseudometrics such that any holomorphic map from
the Poincaré disk to M is distance-non-increasing.

THEOREM: Let 1 : M — X be a smooth holomorphic family, which is
trivialized as a smooth manifold: M = M x X, and d; the Kobayashi metric
on 7~ 1(2). Then d.(m,m’) is upper continuous on z. =

COROLLARY: Denote the diameter of the Kobayashi pseudometric by
diam(dz) = SUP,, y dz(m, m’). Then the Kobayashi diameter of a fiber
of m IS an upper contlnuous function: diam: X — R>0,
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Vanishing of Kobayashi pseudometric

THEOREM: Let (M,I) be a complex manifold with vanishing Kobayashi
pseudometric. Then the Kobayashi pseudometric vanishes for all ergodic
complex structures in the same deformation class.

Proof: Let diam : Comp —+RrR=0 map a complex structure J to the diame-
ter of the Kobayashi pseudometric on (M, J). Let J be an ergodic complex
structure. The set of points J' = v(J) € Comp such that (M, J") is biholo-
morphic to (M, J) is dense, because J is ergodic. By upper semi-continuity,
0 =diam(l) > inf y—,n diam(J). =

EXAMPLE: Let M be a projective K3 surface. Then the Kobayashi metric
on M vanishes. Since all non-projective K3 are ergodic, the Kobayashi
metric vanishes on non-projective K3 surfaces as well.

THEOREM: Let M be a compact simple hyperkahler manifold. Assume
that a deformation of M admits a holomorphic Lagrangian fibration and the
Picard rank of M is not maximal. Then the Kobayashi pseudometric on
M vanishes.

THEOREM: Let M be a Hilbert scheme of K3. Then the Kobayashi
pseudometric on M vanishes.
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Kobayashi hyperbolic manifolds
DEFINITION: An entire curve is a non-constant map C — M.

DEFINITION: A compact complex manifold M is called Kobayashi hyper-
bolic if there exist no entire curves C — M.

THEOREM: (Brody, 1975)
Let I, be a sequence of complex structures on M which are not hyperbolic,
and I its limit. Then (M, 1) is also not hyperbolic.

THEOREM: All hyperkahler manifolds are non-hyperbolic.
REMARK: This theorem would follow if we produce an ergodic com-
plex structure which is non-hyperbolic. Indeed, a closure of its orbit is

the whole Teich, and a limit of non-hyperbolic complex structures is non-
hyperbolic.
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Twistor spaces and hyperkahler geometry

DEFINITION: A hyperkahler structure on a manifold M is a Riemannian
structure g and a triple of complex structures I, J, K, satisfying quaternionic
relations ToJ = —J oI = K, such that g is Kahler for I, J, K.

DEFINITION: Induced complex structures on a hyperkahler manifold are
complex structures of form S2 =2 {L :=al +bJ +cK, a’+b°+c*=1.}

DEFINITION: A twistor space Tw(M) of a hyperkahler manifold is a com-
plex manifold obtained by gluing these complex structures into a holo-
morphic family over CPl. More formally:

Let Tw(M) := M x S2. Consider the complex structure Ip, : TinM — T;nM on
M induced by J & S2 C H. Let I ; denote the complex structure on S2 = cpl.

The operator Iy = I;m®1j: Ty TW(M) — T, Tw(M) satisfies I-QI-W = —Id.
It defines an almost complex structure on Tw(M). This almost complex
structure is known to be integrable (Obata).
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Entire curves in twistor fibers

THEOREM: (F. Campana, 1992)
Let M be a hyperkdhler manifold, and Tw(M) = CP! its twistor projection.
Then there exists an entire curve in some fiber of .

CLAIM: There exists a twistor family which has only ergodic fibers.

Proof: There are only countably many complex structures which are not
ergodic. =

THEOREM: All hyperkahler manifolds are non-hyperbolic.
Proof: Let Tw(M) — CPl be a twistor family with all fibers ergodic. By
Campana’s theorem, one of these fibers, denoted (M, I), is non-hyperbolic.

Since any complex structure I’ € Teich lies in the closure of Diff(M) - I, all
complex structures I’ € Teich are non-hyperbolic. =
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