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Hyperkahler manifolds

DEFINITION: A hyperkahler structure on a manifold M is a Riemannian
structure g and a triple of complex structures I, J, K, satisfying quaternionic
relations ToJ = —J oI = K, such that g is Kahler for I, J, K.

REMARK: A hyperkahler manifold has three symplectic forms
Wy .= g(Ia)' W L= g(‘]a)’ WK -— g(Ka)

REMARK: This is equivalent to VI =VJ = VK = 0: the parallel translation
along the connection preserves I, J, K.

DEFINITION: Let M be a Riemannian manifold, € M a point. The
subgroup of GL(T,M) generated by parallel translations (along all paths) is
called the holonomy group of M.

REMARK: A hyperkahler manifold can be defined as a manifold which
has holonomy in Sp(n) (the group of all endomorphisms preserving I, J, K).
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Holomorphically symplectic manifolds

DEFINITION: A holomorphically symplectic manifold is a complex manifold
equipped with non-degenerate, holomorphic (2,0)-form.

REMARK: Hyperkahler manifolds are holomorphically symplectic. Indeed,
Q:=wj+ v—1wg is a holomorphic symplectic form on (M, ).

THEOREM: (Calabi-Yau) A compact, Kahler, holomorphically symplectic
manifold admits a unique hyperkahler metric in any Kahler class.

DEFINITION: For the rest of this talk, a hyperkahler manifold is a com-
pact, Kahler, holomorphically symplectic manifold.

DEFINITION: A hyperkahler manifold M is called simple if Hl(M) = 0,
H29(M) =C.

Bogomolov’s decomposition: Any hyperkahler manifold admits a finite cov-
ering which is a product of a torus and several simple hyperkahler manifolds.

Remark: A simple hyperkahler manifold is always simply connected (Cheeger-
Gromoll theorem).

Further on, all hyperkahler manifolds are assumed to be simple.
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The Teichmuller space and the mapping class group

Definition: Let M be a compact complex manifold, and Diffg C Diff a
connected component of its diffeomorphism group (the group of isotopies).
Denote by Comp the space of complex structures on M, and let Teich =
Comp / Diffg. We call it the Teichmuiller space.

Remark: Teich is a finite-dimensional complex space (Kodaira), but often
non-Hausdorff.

Definition: We call ' := Diff / Diffg the mapping class group. The moduli
space of complex structures on M is a connected component of Teich /T,
but this quotient is not always well-defined.

Remark: This terminology is standard for curves.

REMARK: For hyperkahler manifolds, it is convenient to take for Teich the
space of all complex structures of hyperkahler type, that is, holomor-
phically symplectic and Kahler. It is open in the usual Teichmuller space.

REMARK: Two ingredients of global Torelli theorem:
(a) determine the mapping class group
(b) determine the Teichmiller space.
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The Bogomolov-Beauville-Fujiki form

THEOREM: (Fujiki). Let n € H2(M), and dimM = 2n, where M is hy-
perkdhler. Then [,;7°" = cq(n,n)"™, for some primitive integer quadratic form
g on H2(M,Z), and ¢ > 0 an integer number.

Definition: This form is called Bogomolov-Beauville-Fujiki form. It is
defined by the Fujiki’'s relation uniquely, up to a sign. The sign is
determined from the following formula (Bogomolov, Beauville)

Aa(n, 1) = /Xn AnAQTTIAT L

1 _ e
_n (/ n/\Q”_l/\Q”> (/ nAQPAQ" 1)
n X X

where €2 is the holomorphic symplectic form, and A\ > 0.

Remark: ¢ has signature (b, — 3,3). It is negative definite on primitive
forms, and positive definite on (Q2,Q,w), where w is a Kahler form.
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Lefschetz sl(2)-action

Let (M, 1I,qg) be a Kaehler manifold, w its Kaehler form. Consider the following
operators.

1. L(a) ;= w A«

2. N := L* (Hermitian dual of L).

3. The Weil operator WI‘,\p,q(M) =+v—-1(p—q)

CLAIM: The triple L, A\, H satisfies the relations for the s((2) Lie algebra:
[L,A] = H, [H,L] = 2L, [H,\] = 2A.

DEFINITION: L,A, H is called the Lefschetz s((2)-triple.

THEOREM: The sl(2)-action (L, A\, H) and the action of Weil operator com-
mute with Laplacian, hence preserve the harmonic forms on a Kahler
manifold.

COROLLARY: Any cohomology class can be represented as a sum of
closed (p, q)-forms, giving a decomposition H*(M) = Dp+tq=i HP1(M), with
HP:4(M) = H?P(M).
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Riemann-Hodge pairing

THEOREM: Let (M,w) be a Kahler n-manifold. Consider the following
pseudo-Hermitian form on HY(M):

B(a, B) 1= /Ma AB AW

Then B is sign-definite on a space Hg’q(M) of (p,q)-forms which have
weight k& with respect to Lefschetz SL(2)-action.

COROLLARY: Let G be a group of automorphisms of the algebra H*(M,R)
preserving the (p, g)-decomposition and fixing a Kahler class w. Then G is
compact.

Proof: Since G fixes w, G commutes with the Lefschetz SL(2)-action, hence
it fixes a sign-definite form on each space H;/(M). m
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Automorphisms of cohomology.

THEOREM: Let M be a simple hyperkahler manifold, and G C GL(H*(M)) a
group of automorphisms of its cohomology algebra preserving the Pontryagin
classes. Then G acts on HQ(M) preserving the BBF form. Moreover, the
map G — O(H?(M,R),q) is surjective on a connected component, and
has compact kernel.

Proof. Step 1: Fujiki formula v2™ = g(v,v)" implies that g preserves the
Bogomolov-Beauville-Fujiki up to a sign. The sign is fixed, if n is odd.

Step 2: For even n, the sign is also fixed. Indeed, G preserves pi1(M), and (as Fujiki has
shown) v 2 Ap1(M) = q(v,v)" t¢, for some ¢ € R. The constant c is positive, because the
degree of cy(B) is positive for any non-trivial stable bundle with ¢1(B) = 0.

Step 3: o(H2(M,R),q) acts on H*(M,R) by derivations preserving Pontryagin
classes (V., 1995). Therefore Lie(G) surjects to o(H2(M,R),q).

Step 4: The kernel K of the map G — G‘HQ(M r) IS compact, because it
commutes with the Hodge decomposition and Lefschetz si(2)-action, hence
preserves the Riemann-Hodge form. m
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Sullivan’s theorem

Theorem: (Sullivan) Let M be a compact, simply connected Kahler mani-
fold, dimg M > 3. Denote by g the group of automorphisms of an algebra
H*(M,Z) preserving the Pontryagin classes p,(M). Then the natural map
Diff(M)/ Diffp — Mg has finite kernel, and its image has finite index in
Mo.

Theorem: Let M be a simple hyperkahler manifold, and g as above. Then
() I‘O)HQ(MZ) is a finite index subgroup of O(H?2(M,Z),q).
(ii) The map Mg — O(H?2(M,Z),q) has finite kernel.

Proof: Follows from the computation of G = Aut(H*(M,R), pq,...,pn) done
earlier. Indeed, the kernel of I_O‘HQ(M7Z) IS a set of integer points of a com-
pact Lie group, hence finite. The image of g = Gy has finite index in
O(H?(M,Z),q), because the corresponding map of Lie groups is surjective. m
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Computation of the mapping class group

COROLLARY: The mapping class group I is mapped to O(H?(M,7Z),q)
with finite kernel and finite index.

Proof: By Sullivan, ' is mapped to [ with finite kernel and finite index, and
Mo — O(H?%(M,Z),q) has finite kernel and finite index, as shown above. =

THEOREM: (Kollar-Matsusaka, Huybrechts) There are only finitely many
connected components of Teich.

COROLLARY: Let 'y be the group of elements of mapping class group
preserving a connected component of Teichmuller space containing I € Teich.
Then [; has finite index in [.

REMARK: [; is a group generated by monodromy of all Gauss-Manin local

systems for all deformations of (M, I). It is known as the monodromy group
of (M, I).
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The period map

Remark: For any J € Teich, (M, J) is also a simple hyperkdahler manifold,
hence H29(M, J) is one-dimensional.

Definition: Let P : Teich — PH2(M,C) map J to a line H20(M,J) ¢
PH2(M,C). The map P: Teich — PH?2(M,C) is called the period map.

REMARK: P maps Teich into an open subset of a quadric, defined by

Per := {l € PH?(M,C) | ¢(l,1) =0,q(l,1) > 0.
It is called the period space of M.

REMARK: Per = SO(bs — 3,3)/S0(2) x SO(by — 3,1)

THEOREM: Let M be a simple hyperkahler manifold, and Teich its Te-
ichmuller space. Then

(i) (Bogomolov) The period map P : Teich — Per is etale.

(ii) (Huybrechts) It is surjective.

REMARK: Bogomolov's theorem implies that Teich is smooth. It is usually

non-HausdorfF.
11



Global Torelli Theorem M. Verbitsky

Birational equivalence and non-separable points

DEFINITION: Let M be a topological space. We say that =,y € M are non-
separable (denoted by =z ~ y) if for any open sets V> z,U>y, UNV # 0.

THEOREM: (D. Huybrechts) If I7, I» € Teich are non-separable points, then
P(I1) = P(I»), and (M, I1) is birationally equivalent to (M, I>).

COROLLARY: The set of all non-separable points in Teich belongs to
a union of countably many divisors.

Proof. Step 1: Let z € H?(M,Z) be a cohomology class, and Teich, the
set of all I € Teich such that z € HL1(M,I). The relation z €¢ HL1(M, 1) is
equivalent to ¢(z,Q2) = 0, hence

Per(Teich,) c {{L e P(z) | q(,1) =0,q(,1) > 0.

This shows that Per(Teich;) is a divisor.

Step 2: If (M,I) is a holomorphic symplectic manifold with non-trivial
birational equivalence to M’, it contains a rational curve C. Therefore,
I € Teich,, where z = [C] is its homology class. =
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Hausdorff reduction

REMARK: A non-Hausdorff manifold is a topological space locally diffeo-
morphic to R™.

DEFINITION: Let M be a topological space for which M/ ~ is Hausdorff.
Then M/ ~ is called a Hausdorff reduction of M.

Problems:
1. ~ iIs not always an equivalence relation.
2. Even if ~ is equivalence, the M/ ~ is not always Hausdorff.

REMARK: A quotient M/ ~ is Hausdorff, if M — M/ ~ is open, and the
graph '~ € M x M is closed.

13
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Weakly Hausdorff manifolds
DEFINITION: A point z € X is called Hausdorff if z 4 y for any y #= .

DEFINITION: Let M be an n-dimensional real analytic manifold, not nec-
essarily Hausdoff. Suppose that the set Z C M of non-Hausdorff points is
contained in a countable union of real analytic subvarieties of codim > 2.
Suppose, moreover, that

(S) For every x € M, there is a closed neighbourhood B C M of x and a
continuous surjective map W : B — R"™ to a closed ball in R", inducing a
homeomorphism on an open neighbourhood of =x.

Then M is called a weakly Hausdorff manifold.

REMARK: The period map satisfies (S). Also, the non-Hausdorff points
of Teich are contained in a countable union of divisors.

THEOREM: A weakly Hausdorff manifold X admits a Hausdorff reduc-
tion. In other words, the quotient X/ ~ is a Hausdorff. Moreover, X — X/ ~
IS locally a homeomorphism.

This theorem is proven using 1920-ies style point-set topology.
14
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Birational Teichmuller moduli space

DEFINITION: The space Teich, := Teich / ~ is called the birational Te-
ichmuller space of M.

THEOREM: The period map Teichy Pel per is an iIsomorphism, for each

connected component of Teichy,.

The proof is based on two results.

PROPOSITION: (The Covering Criterion) Let X -2 Y be an etale
map of smooth manifolds. Suppose that each y € Y has a neighbourhood
B > y diffeomorphic to a closed ball, such that for each connected component

B' ¢ o~1(B), B’ projects to B surjectively. Then ¢ is a covering.

PROPOSITION: The period map satisfies the conditions of the Cov-
ering Criterion.
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Global Torelli theorem

DEFINITION: Let M be a hyperkaehler manifold, Teich, its birational Te-
ichmiller space, and ' the mapping class group. The quotient Teichy /T is
called the birational moduli space of M.

REMARK: The birational moduli space is obtained from the usual moduli
space by gluing some (but not all) non-separable points. It is still non-
HausdorfF.

THEOREM: Let (M,I) be a hyperkahler manifold, and W a connected
component of its birational moduli space. Then W is isomorphic to Per/I",
where Per = SO(by — 3,3)/S0(2) x SO(bo — 3,1) and I; is an arithmetic
subgroup in O(H?(M,R),q).

A CAUTION: Usually “the global Torelli theorem” is understood as a the-
orem about Hodge structures. For K3 surfaces, the Hodge structure on
H?(M,7) determines the complex structure. For dim¢ M > 2, it is false.
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T he marked moduli space

DEFINITION: Let ' be the mapping class group, and K C [ the kernel of
the natural map T — GL(H?(M,Z)). It is finite, as we have shown. The
quotient Teich /K is called the marked moduli space.

THEOREM: The natural map Teich — Teich /K is a homeomorphism
on each connected component.

Proof. Step 1:

Let I € Teich be a fixed point of a subgroup K; C K. By Bogomolov’'s
theorem, Ty Teich is naturally identified with HIl’l(M). Since the action of K
on HQ(M) is trivial, any a € Ky acts trivially on Ty Teich. Therefore, K; acts
as identity on a connected component of Teich containing /.

Step 2: From Step 1, obtain that the quotient map Teich Y, Teich /K
IS a finite covering, hence it induces a finite covering of the corre-
sponding Hausdorff reductions. However, W induces an isomorphism on
each connected component of Teich,, because each component of Teich
IS isomorphic to Per. m
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The Hodge-theoretic Torelli theorem

REMARK: The group O(p,q) (p,g > 0) has 4 connected components,
corresponding to the orientations of positive p-dimensional and negative g-
dimensional planes.

DEFINITION: Let M be a hyperkaehler manifold. One says that the
Hodge-theoretic Torelli theorem holds for M if

Teich /T ; —s Per/OT(H?%(M, Z), q),

where O1(H?2(M,7),q) is a subgroup of O(H?(M,Z),q) preserving orientation
on positive 3-planes. Equivalently, it is true if M is uniquely determined
by its Hodge structure.

REMARK: The Hodge-theoretic Torelli theorem is true for K3 surfaces.
It is false for all other known examples of hyperkaehler manifolds.

Problems:

1. The moduli space Teich /I is not Hausdorff (Debarre, 1984). Indeed,
bimeromorphically equivalent hyperkahler manifolds have isomorphic Hodge
structures.

2. The covering Teich, /[ ; — Per/OT(H?2(M,Z),q) is non-trivial, because
the map My — OT(H?2(M,Z),q) is not surjective (Namikawa, 2002).
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T he birational Hodge-theoretic Torelli theorem

DEFINITION: The birational Hodge-theoretic Torelli theorem is true
for M if ; (the stabilizer of a Torelli component in the mapping class group)
is isomorphic to O (H?2(M,Z),q).

REMARK: If a birational Hodge-theoretic Torelli theorem holds for M, then
any deformation of M is up to a bimeromorphic equivalence determined by
the Hodge structure on H2(M).

THEOREM: (Markman) The for M = K3[”], the group Iy is a subgroup
of Ot (H?2(M,Z),q) generated by oriented reflections.

THEOREM: Let M = K31l with n a prime power. Then the (usual)
global Torelli theorem holds birationally: two deformations of a Hilbert
scheme with isomorphic Hodge structures are bimeromorphic. For
other n, it is false (Markman).
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