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Hyperkähler manifolds

DEFINITION: A hyperkähler structure on a manifold M is a Riemannian

structure g and a triple of complex structures I, J,K, satisfying quaternionic

relations I ◦ J = −J ◦ I = K, such that g is Kähler for I, J,K.

REMARK: A hyperkähler manifold has three symplectic forms

ωI := g(I·, ·), ωJ := g(J ·, ·), ωK := g(K·, ·).

REMARK: This is equivalent to ∇I = ∇J = ∇K = 0: the parallel translation

along the connection preserves I, J,K.

DEFINITION: Let M be a Riemannian manifold, x ∈ M a point. The

subgroup of GL(TxM) generated by parallel translations (along all paths) is

called the holonomy group of M .

REMARK: A hyperkähler manifold can be defined as a manifold which

has holonomy in Sp(n) (the group of all endomorphisms preserving I, J,K).
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Holomorphically symplectic manifolds

DEFINITION: A holomorphically symplectic manifold is a complex manifold

equipped with non-degenerate, holomorphic (2,0)-form.

REMARK: Hyperkähler manifolds are holomorphically symplectic. Indeed,

Ω := ωJ +
√
−1 ωK is a holomorphic symplectic form on (M, I).

THEOREM: (Calabi-Yau) A compact, Kähler, holomorphically symplectic

manifold admits a unique hyperkähler metric in any Kähler class.

DEFINITION: For the rest of this talk, a hyperkähler manifold is a com-

pact, Kähler, holomorphically symplectic manifold.

DEFINITION: A hyperkähler manifold M is called simple if π1(M) = 0,

H2,0(M) = C.

Bogomolov’s decomposition: Any hyperkähler manifold admits a finite cov-

ering which is a product of a torus and several simple hyperkähler manifolds.

Further on, all hyperkähler manifolds are assumed to be simple.
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The Bogomolov-Beauville-Fujiki form

THEOREM: (Fujiki). Let η ∈ H2(M), and dimM = 2n, where M is hy-

perkähler. Then
∫
M η2n = cq(η, η)n, for some primitive integer quadratic form

q on H2(M,Z), and c > 0 an integer number.

Definition: This form is called Bogomolov-Beauville-Fujiki form. It is

defined by the Fujiki’s relation uniquely, up to a sign. The sign is

determined from the following formula (Bogomolov, Beauville)

λq(η, η) =
∫
X
η ∧ η ∧Ωn−1 ∧Ωn−1−

−
n− 1

n

(∫
X
η ∧Ωn−1 ∧Ωn

)(∫
X
η ∧Ωn ∧Ωn−1

)
where Ω is the holomorphic symplectic form, and λ > 0.

Remark: q has signature (b2 − 3,3). It is negative definite on primitive

forms, and positive definite on 〈Ω,Ω, ω〉, where ω is a Kähler form.
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The Teichmüller space and the mapping class group

Definition: Let M be a compact complex manifold, and Diff0(M) a con-

nected component of its diffeomorphism group (the group of isotopies).

Denote by T̃eich the space of complex structures on M , and let Teich :=

T̃eich/Diff0(M). We call it the Teichmüller space.

Remark: Teich is a finite-dimensional complex space (Kodaira-Spencer-

Kuranishi), but often non-Hausdorff.

Definition: Let Diff+(M) be the group of oriented diffeomorphisms of M .

We call Γ := Diff+(M)/Diff0(M) the mapping class group. The coarse

moduli space of complex structures on M is a connected component of

Teich /Γ.

REMARK: For hyperkähler manifolds, we take for Teich the space of all

complex structures of hyperkähler type, that is, holomorphically sym-

plectic and Kähler. It is open in the usual Teichmüller space.
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The period map

Remark: For any J ∈ Teich, (M,J) is also a simple hyperkähler manifold,

hence H2,0(M,J) is one-dimensional.

Definition: Let P : Teich −→ PH2(M,C) map J to a line H2,0(M,J) ∈
PH2(M,C). The map P : Teich −→ PH2(M,C) is called the period map.

REMARK: P maps Teich into an open subset of a quadric, defined by

Per := {l ∈ PH2(M,C) | q(l, l) = 0, q(l, l) > 0.

It is called the period space of M .

REMARK: Per = SO(b2 − 3,3)/SO(2)× SO(b2 − 3,1)

THEOREM: (Bogomolov) Let M be a simple hyperkähler manifold, and

Teich its Teichmüller space. Then The period map P : Teich −→ Per is etale.

REMARK: Bogomolov’s theorem implies that Teich is smooth. It is non-

Hausdorff even in the simplest examples.
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Hausdorff reduction

REMARK: A non-Hausdorff manifold is a topological space locally diffeo-
morphic to Rn.

DEFINITION: Let M be a topological space. We say that x, y ∈M are non-
separable (denoted by x ∼ y) if for any open sets V 3 x, U 3 y, U ∩ V 6= ∅.

THEOREM: (D. Huybrechts) If I1, I2 ∈ Teich are non-separablee points, then
P (I1) = P (I2), and (M, I1) is birationally equivalent to (M, I2)

DEFINITION: Let M be a topological space for which M/ ∼ is Hausdorff.
Then M/ ∼ is called a Hausdorff reduction of M .

Problems:
1. ∼ is not always an equivalence relation.
2. Even if ∼ is equivalence, the M/ ∼ is not always Hausdorff.

REMARK: A quotient M/ ∼ is Hausdorff, if M −→M/ ∼ is open, and the
graph Γ∼ ∈M ×M is closed.

THEOREM: The Teichmüller space of a hyperkähler manifold admits a
Hausdorff reduction.
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Birational Teichmüller moduli space

DEFINITION: The space Teichb := Teich / ∼ is called the birational Te-

ichmüller space of M .

THEOREM: The period map Teichb
Per−→ Per is an isomorphism, for each

connected component of Teichb.

The proof is based on two results.

PROPOSITION: (The Covering Criterion) Let X
ϕ−→ Y be an etale

map of smooth manifolds. Suppose that each y ∈ Y has a neighbourhood

B 3 y diffeomorphic to a closed ball, such that for each connected component

B′ ⊂ ϕ−1(B), B′ projects to B surjectively. Then ϕ is a covering.

PROPOSITION: The period map satisfies the conditions of the Cov-

ering Criterion.
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Period space as a Grassmannian of positive 2-planes

PROPOSITION: The period space

Per := {l ∈ PH2(M,C) | q(l, l) = 0, q(l, l) > 0.

is identified with SO(b2−3,3)/SO(2)×SO(b2−3,1), which is a Grassmannian

of positive oriented 2-planes in H2(M,R).

Proof. Step 1: Given l ∈ PH2(M,C), the space generated by Im l,Re l is

2-dimensional, because q(l, l) = 0, q(l, l) implies that l ∩H2(M,R) = 0.

Step 2: This 2-dimensional plane is positive, because q(Re l,Re l) = q(l+

l, l + l) = 2q(l, l) > 0.

Step 3: Conversely, for any 2-dimensional positive plane V ∈ H2(M,R), the

quadric {l ∈ V ⊗R C | q(l, l) = 0} consists of two lines; a choice of a line

is determined by orientation.
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Period space and hyperkähler lines

DEFINITION: Let (M, I, J,K) be a hyperkähler manifold. A hyperkähler 3-

plane in H2(M,R) is a positive oriented 3-dimensional subspace W , generated

by ωI , ωJ , ωK.

REMARK: The set of oriented 2-dimensional planes in W is identified with

S2 = CP1. It is called the twistor family of a hyperkähler structure. A point

in the twistor family corresponds to a complex structure aI + bJ + cK ∈ H,

with a2 + b2 + c2 = 1. We call the corresponding CP1 ⊂ Teich the twistor

curves.

REMARK: Let I ∈ Teich be a complex structure, and K(I) its Kähler cone.

The set of twistor curves passing through I is parametrized by K(I), by

Calabi-Yau theorem. The corresponding 3-dimensional subspaces are

generated by Per(I) + ω, where ω ∈ K(I).
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Divisorial Zariski decomposition

DEFINITION: A class η ∈ H1,1(M) is called pseudoeffective if it can be
represented by a positive current, and nef if it lies in the closure of a Kaehler
cone.

DEFINITION: A modified nef cone (also “birational nef cone” and “mov-
able nef cone”) is a closure of a union of all nef cones for all bimeromorphic
models of a holomorphically symplectic manifold M .

THEOREM: (D. Huybrechts, S. Boucksom)
The modified nef cone is dual to the pseudoeffective cone under the
Bogomolov-Beauville-Fujiki pairing.

The divisorial Zariski decomposition theorem: (S. Boucksom)
Let M be a simple hyperkähler manifold. Then every pseudoeffective class
can be decomposed as a sum η = ν +

∑
i ai[Ei], where ν is modified nef, ai

positive numbers, and Ei exceptional divisors satisfying q(Ei, Ei) < 0.

COROLLARY: Let M be a hyperkaehler manifold with H1,1(M,Z) = 0.
Then every pseudoeffective class is modified nef.

Proof: Indeed, on such M there are no exceptional divisors.
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A Kähler cone for generic hyperkähler manifolds

COROLLARY: Let M be a hyperkaehler manifold with

NS(M) := H1,1(M,Z) = 0.

Then the modified nef cone is self-dual.

REMARK: For any nef classes ν, ν′, one has q(ν, ν′) > 0. Therefore, the nef
cone is contained in its dual. Moreover, the nef cone Kn is contained in one
of two components K+ of a set {ν ∈ H1,1(M) | q(ν, ν) > 0}, and therefore,
the dual nef cone contains K+:

Kn ⊂ K+ ⊂ K∗n

REMARK: For NS(M) = 0, the modified nef cone Kmn is self-dual, but all
elements of Kmn satisfy q(ν, ν) > 0. This gives

Kmn ⊂ K+ ⊂ K∗mn = Kmn ⊂ K+.

We obtain

COROLLARY: Let M be a hyperkaehler manifold with NS(M) = 0. Then
the Kaehler cone is one of two components of the set

{ν ∈ H1,1(M) | q(ν, ν) > 0}.
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Generic hyperkähler lines

DEFINITION: Let S ⊂ Teich be a CP1 associated with a twistor family. It is

called generic if it passes through a point I ∈ Teich with NS(M, I) = 0.

REMARK: For a generic point I in such S, one has NS(M, I) = 0. This con-

dition is equivalent to l⊥∩H2(M,Z) = 0, where l ∈ Per is the corresponding

2-plane.

REMARK: A 3-plane W ⊂ H2(M,R) corresponds to a generic twistor family

if and only if its orthogonal complement W⊥ ⊂ H2(M,R) does not contain

rational vectors.

DEFINITION: A hyperkähler 3-plane W ⊂ H2(M,R) is called generic if

W⊥ ∩ H2(M,Z) = 0. The corresponding CP1 ⊂ Per in the period space is

called a GHK line.
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A lifting property for GHK lines

REMARK: Consider a 3-plane W = 〈ωI , ωJ , ωK〉 associated with a hyperkähler
structure, and let S be the set of oriented 2-planes in W . Denote by Sng the
set of x ∈ S satisfying x⊥ ∩ H2(M,Z) 6= 0. If W is generic, then Sng is
countable.

THEOREM: (A lifting property for GHK lines)
Let W ⊂ H2(M,R) be a generic 3-plane, and S ⊂ Per the corresponding GHK
line. Consider the period map P : Teich −→ Per. Then P−1(S) is a union
of a countable set mapped to Sng, and a disconnected set of rational
curves bijectively mapped to S.

Proof. Step 1: Let x /∈ Sng We are going to prove that for all I ∈ P−1(x), y
is contained in a connected component of P−1(S), bijectively mapped
to S.

Step 2: Notice that NS(I) = x⊥ ∩H2(M,Z) = 0. Therefore the Kähler cone
of (M, I) is one of two components of the set {ω ∈ P (I)⊥ | q(ω, ω) > 0}..

Step 3: For each positive 3-plane W ⊂ H2(M,R), W = 〈ωI , ωJ , ωK〉 for some
hyperkähler structure I, J,K. Then the twistor family associated with
I, J,K is mapped to S.
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The covering condition and the lifting property

We recall the covering criterion stated above.

PROPOSITION: (The Covering Criterion) Let X
ϕ−→ Y be an etale

map of smooth manifolds. Suppose that each y ∈ Y has a neighbourhood
B 3 y diffeomorphic to a closed ball, such that for each connected component
B′ ⊂ ϕ−1(B), B′ projects to B surjectively. Then ϕ is a covering.

THEOREM: (*) Let P : X −→ Per be an etale map which satisfies the
GHK lifting property. Then P satisfies the assumptions of the Covering
Criterion.

COROLLARY: This result implies that the period map Teichb
P−→ Per is

a diffeomoirphism.

To prove Theorem (*), we introduce the subtwistor metric on Teich.

DEFINITION: Let g0 be a Riemannian metric on Per, and g its lift to Teich.
Define the subtwistor metric d as the distance function d(x, y) given by
infimum of the length (in g) for all paths from x to y going through GHK
curves which intersect in points z ∈ Teich with NS(z) = 0.
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Subtwistor metric on the Teichmüller space

CLAIM: The subtwistor metric induces the standard topology on any

open subset W ⊂ Teichb.

Remark: Its proof follows from Gleason-Palais-Montgomery classification of

continuous groups.

THEOREM: Let Wo ∈ Per be an open, connected subset, with smooth

boundary, and W its closure. Consider a connected component W1 ⊂ Teichb
of Per−1(W ). Then Per : W1 −→W is surjective.

Proof. Step 1: Whenever x, y ∈ W are connected by segments of GHK

curves which lie in W , and x ∈W1, one has y ∈W1, by lifting property of GHK

curves. Therefore, it would suffice to prove that all W is connected by

segments of GHK curves which lie in W .

Step 2: This is the same as to say that W is connected in the topology

induced by subtwistor metric. By the previous claim, this is equivalent

to connectedness of W .
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