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Motivation: dominating maps to hyperkähler manifolds

DEFINITION: A complex n-manifold M is dominated by Cn if there exists

a holomorphic map Cn −→M with non-zero Jacobian at some point.

THEOREM: (Buzzard, Lu)

Kummer K3 surfaces are dominated by C2.

REMARK: We know now that the hyperkähler manifolds admit many entire

curves.

QUESTION: Are all 2n-dimensional holomorphic symplectic manifolds

dominated by C2n?

REMARK: This is unknown even for a K3.

QUESTION: What is the largesr r such that a holomorphic symplectic ball

of radius r can be embedded to a given compact holomorphically symplectic

manifold of volume V ?

REMARK: This number is essentially deformational invariant, by ergodicity.
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Full symplectic packing

DEFINITION: A symplectic ball is a ball of radius r in R2n, equipped with

a standard symplectic structure ω =
∑
dpi ∧ dqi.

DEFINITION: Let M be a compact symplectic manifold of volume V . We

say that M admits a full symplectic packing if for any disconnected union

S of symplectic balls of total volume less than V , S admits a symplectic

embedding to M .

DEFINITION: A symplectic structure ω on a torus is called standard if there

exists a flat torsion-free connection preserving ω.

THEOREM: (Latschev, McDuff, Schlenk, 2011)

All 4-dimensional tori with standard symplecic structures admit full

symplectic packing.
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Main result

DEFINITION: Let M be a compact symplectic manifold of volume V . We
say that M admits a full symplectic packing if for any disconnected union
S of symplectic balls of total volume less than V , S admits a symplectic
embedding to M .

DEFINITION: A symplectic structure ω on a torus is called standard if there
exists a flat torsion-free connection preserving ω. A symplectic structure ω

on a hyperkähler manifold is called standard if ω is a Kähler form for some
hyperkähler structure.

REMARK: Any known symplectic structure on a hyperkähler manifold or a
torus is of this type. It was conjectured that non-standard symplectic
structures don’t exist.

THEOREM: (Entov-V.)
Let M be a compact even-dimensional torus, or a hyperkähler manifold (such
as a K3 surface), and ω a standard symplectic form. Then (M,ω) admits a
full symplectic packing.

REMARK: In this talk, all tori are compact, even-dimensional, and sat-
isfy dimRM > 4.
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Motivation: Gromov Capacity

DEFINITION: Let M be a symplectic manifold. Define Gromov capac-

ity µ(M) as the supremum of radii r, for all symplectic embeddings from a

symplectic balls Br to M .

DEFINITION: Define symplectic volume of a symplectic manifold (M,ω)

as
∫
M ω

1
2 dimRM .

REMARK: Gromov capacity is obviously bounded by the symplectic volumes:

a manifold of Gromov capacity r has volume ≥ Vol(Br). However, there are

manifolds of infinite volume with finite Gromov capacity.

THEOREM: (Gromov)

Consider a symplectic cylinder Cr := R2n−2×Br with the product symplectic

structure. Then the Gromov capacity of Cr is r.

REMARK: This result was used by Gromov to study symplectic packing in

CP2. He proved that there is no full symplectic packing, and found precise

bounds.
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Symplectic packing in CP2 (Gromov, McDuff, Polterovich, Biran)

THEOREM: Let vN be a supremum of number V such that a collection of
N equal symplectic balls of total volume V can be embedded to symplectic
CP2 of volume 1. Then

N 1 2 3 4 5 6 7 8 9 N > 9

νN 1 1
2

3
4 1 20

25
24
25

63
64

288
289 1 1

The first few numbers are due to Gromov, last to Biran, the rest are
McDuff-Polterovich.

REMARK: These numbers are related to Nagata conjecture, which is
still unsolved (Biran used Taubes’ work on Seiberg-Witten invariants to avoid
proving it).

CONJECTURE: Suppose p1, ..., pr are very general points in CP2 and that
m1, ...,mr are given positive integers. Then for any r > 9 any curve C in
P2 that passes through each of the points pi with multiplicity mi must
satisfy degC > 1√

r

∑r
i=1mi.

REMARK: Nagata conjecture was known already to Nagata when r is a full
square, and unknown for all other r, even when p1, ..., pr are generic.
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Ekeland-Hofer theorem

THEOREM: (Ekeland-Hofer)

Let M , N be symplectic manifolds, and ϕ : M −→N a diffeomorphism.

Suppose that for all sufficiently small, convex open sets U ⊂ M , Gromov

capacity satisfies µ(U) = µ(ϕ(U)). Then ϕ is a symplectomorphism.

REMARK: This can be used to define C0- (continuous) symplectomor-

phisms.

REMARK: Ekeland-Hofer theorem implies a theorem of Gromov-Eliashberg:

symplectomorphism group is C0-closed in the group of diffeomorphisms.
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McDuff and Polterovich for Kähler manifolds

DEFINITION: Let M be a symplectic manifold, x1, ..., xn ∈M distinct points,

and r1, ..., rn a set of positive numbers. We say that M admits symplectic

packing with centers x1, ..., xn and radii r1, ..., rn if there exists a symplectic

embedding from a disconnected union of symplectic balls of radii r1, ..., rn to

M mapping centers of balls to x1, ..., xn.

THEOREM: (McDuff, Polterovich, 1995)

Let (M,ω) be a Kähler manifold, M̃
ν−→ M its blow-up in x1, ..., xn, Ei the cor-

responding exceptional divisors, and [Ei] their fundamental classes. Assume

that the class ν∗ω −
∑
i ci[Ei] is Kähler, for some ci > 0. Then M admits a

symplectic packing with radii ri = π−1√ci.
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McDuff and Polterovich for tamed manifold

DEFINITION: An almost complex structure I on M is tamed by a sym-

plectic form ω ∈ Λ2M if ω(x, Ix) > 0 for any non-zero tangent vector x ∈ TM .

THEOREM: (McDuff-Polterovich, 1995) Let (M,ω) be a compact sym-

plectic manifold, M̃
ν−→ M its symplectic blow-up in x1, ..., xn, Ei the cor-

responding exceptional divisors, [Ei] their fundamental classes, and r1, . . . , rk
a collection of positive numbers. Assume there exists an almost complex

structure I of on M tamed by ω and a symplectic form ω̃ on M̃ taming the

pullback almost complex structure Ĩ so that [ω̃] = ν∗[ω]−π
∑k
i=1 r

2
i [Ei]. Then

(M,ω) admits a symplectic embedding of
k⊔
i=1

B2n(ri).
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Hyperkähler manifolds

DEFINITION: A hyperkähler structure on a manifold M is a Riemannian

structure g and a triple of complex structures I, J,K, satisfying quaternionic

relations I ◦ J = −J ◦ I = K, such that g is Kähler for I, J,K.

REMARK: This is equivalent to ∇I = ∇J = ∇K = 0: the parallel translation

along the connection preserves I, J,K.

COROLLARY: The group SU(2) of orthogonal quaternions acts on triples

(I, J,K) producing new hyperkähler structures.

DEFINITION: Let M be a Riemannian manifold, x ∈ M a point. The

subgroup of GL(TxM) generated by parallel translations (along all paths) is

called the holonomy group of M .

REMARK: A hyperkähler manifold can be defined as a manifold which

has holonomy in Sp(n) (the group of all endomorphisms preserving I, J,K).
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Calabi-Yau and Bogomolov decomposition theorem

REMARK: A hyperkähler manifold is holomorphically symplectic: ωJ +√
−1 ωK is a holomorphic symplectic form on (M, I).

THEOREM: (Calabi-Yau) A compact, Kähler, holomorphically symplectic

manifold admits a unique hyperkähler metric in any Kähler class.

CLAIM: A compact hyperkähler manifold M has maximal holonomy of

Levi-Civita connection Sp(n) if and only if π1(M) = 0, h2,0(M) = 1.

THEOREM: (Bogomolov decomposition)

Any compact hyperkähler manifold has a finite covering isometric to

a product of a torus and several maximal holonomy hyperkähler mani-

folds.
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Campana simple manifolds

DEFINITION: A complex manifold M , dimCM > 1, is called Campana
simple if the union U of all complex subvarieties Z ⊂M satisfying 0 < dimZ <
dimM has measure 0. A point which belongs to M\U is called generic.

REMARK: Campana simple manifolds are non-algebraic. Indeed, a man-
ifold which admits a globally defined meromorphic function f is a union of
zero divisors for the functions f −a, for all a ∈ C, and the zero divizor for f−1.
Hence Campana simple manifolds admit no globally defined meromor-
phic functions.

EXAMPLE: A general complex torus has no non-trivial complex sub-
varieties, hence it is Campana simple.

EXAMPLE: Let (M, I, J,K) be a hyperkähler manifold, and L = aI+bJ+cK,
a2 + b2 + c2 = 1 be a complex structure induced by quaternions. Then for all
such (a, b, c) outside of a countable set, all complex subvarieties Z ⊂ (M,L)
are hyperkähler, and (unless M a finite quotient of a product)

⋃
Z Z 6= M

(V., 1994, 1996). Therefore, (M,L) is Campana simple.

CONJECTURE: (Campana)
Let M be a Campana simple Kähler manifold. Then M is bimeromorphic
to a finite quotient of a hyperkähler orbifold or a torus.
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Demailly-Paun theorem

REMARK: Let M be a compact Kähler manifold. Recall that the coho-

mology space H2(M,C) is decomposed as H2(M,C) = H2,0(M)⊕H1,1(M)⊕
H0,2(M) with H1,1(M) identified with the space of I-invariant harmonic 2-

forms, and H2,0(M)⊕H0,2(M) the space of I-antiinvariant harmonic 2-forms.

This decomposition is called Hodge decomposition. The space H1,1(M) is

a complexification of a real space H1,1(M,R) = {ν ∈ H2(M,R) | I(ν) = ν}.

THEOREM: (Demailly-Pǎun, 2002)

Let M be a compact Kähler manifold, and K̂(M) ⊂ H1,1(M,R) a subset

consisting of all (1,1)-forms η which satisfy
∫
Z η

k > 0 for any k-dimensional

complex subvariety Z ⊂ M . Then the Kähler cone of M is one of the

connected components of K̂(M).
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Kähler cone for blow-ups of Campana simple manifolds

Theorem 2: Let M be a Campana simple compact Kähler manifold, and

x1, ..., xn distinct generic points of M . Consider the blow-up M̃ of M in

x1, ..., xn, let Ei be the corresponding blow-up divisors, and [Ei] ∈ H2(M,Z) its

fundamental classes. Decompose H1,1(M̃,R) as H1,1(M̃,R) = H1,1(M,R) ⊕⊕
R[Ei]. Assume that η0 is a Kähler class on M . Then for any η = η0+ci[Ei],

the following conditions are equivalent.

(i) η is Kähler on M̃ .

(ii) all ci are negative, and
∫
M ηdimCM > 0.

Proof of (ii) ⇒ (i). Step 1:

All proper complex subvarieties of M̃ are either contained in Ei, or do not

intersect Ei. The condition “η0 is Kähler on M” implies
∫
Z η

k > 0 for all

subvarieties not intersecting Ei. Since [Ei] restricted to Ei is −[ωEi], where

ωEi is the Fubini-Study form, ci < 0 implies that
∫
Z η

k > 0 for all subvarieties

which lie in Ei. Finally, the integral of η over M̃ is positive by the assumtion∫
M ηdimCM > 0. Therefore, the condition (ii) implies that η ∈ K̂(M̃).

14



Symplectic packing and hyperkähler geometry M. Verbitsky

Kähler cone for blow-ups of Campana simple manifolds (cont.)

Theorem 2: Let M be a Campana simple compact Kähler manifold, and
x1, ..., xn distinct generic points of M . Consider the blow-up M̃ of M in
x1, ..., xn, let Ei be the corresponding blow-up divisors, and [Ei] ∈ H2(M,Z) its
fundamental classes. Decompose H1,1(M̃,R) as H1,1(M̃,R) = H1,1(M,R) ⊕⊕

R[Ei]. Assume that η0 is a Kähler class on M . Then for any η = η0+ci[Ei],
the following conditions are equivalent.

(i) η is Kähler on M̃ .
(ii) all ci are negative, and

∫
M ηdimCM > 0.

Proof of (ii) ⇒ (i). Step 2:
The form η0 is Kähler on M , hence it lies on the boundary of the Kähler cone
of M̃ , and η0 can be obtained as a limit

η0 = lim
ε→0

η0 + εci[Ei]

of forms which lie in the same connected component of K̂(M̃). Therefore, η
belongs to the same connected component of K̂(M̃) as a Kähler form.
By Demailly-Pǎun, this implies that η is Kähler.

Proof of (i) ⇒ (ii).
The numerical conditions of (ii) mean that η ∈ K̂(M̃), hence they are satisfied
automatically, as follows from Step 1.
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Campana simple manifolds and symplectic packings

DEFINITION: Let M be a compact symplectic manifold of volume V . We

say that M admits a full symplectic packing if for any disconnected union

S of symplectic balls of total volume less than V , S admits a symplectic

embedding to M .

Theorem 3: Let (M, I, ω0) be a Kähler, compact, Campana simple manifold.

Then M admits a full symplectic packing.

Proof. Step 1: Let x1, ..., xn distinct generic points of M . Consider the

blow-up M̃ of M in x1, ..., xn, let Ei be the corresponding blow-up divisors,

and [Ei] ∈ H2(M,Z) their fundamental classes. As follows from McDuff-

Polterovich, existence of full symplectic packing on M is implied by existence

of a Kähler form ω(c1, ..., cn) on M̃ with cohomology class [ω(c1, ..., cn)] =

[ω0]−
∑
ci[Ei] for all (c1, ..., cn) satisfying

∫
M̃([ω0]−

∑
ci[Ei])

n > 0

Step 2: Such a form exists by Theorem 2.
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Symplectic packing on hyperkähler manifolds and compact tori with
irrational symplectic form

DEFINITION: A symplectic form is called irrational if its cohomology class
is irrational, that is, lies in H2(M,R)\R ·H2(M,Q).

THEOREM: Let M be a hyperkähler manifold or a compact torus, ω an
irrational, standard symplectic form, and T the set of complex structures for
which ω is Kähler. Then the set T0 ⊂ T of Campana simple complex
structures is dense in T and has full measure in the corresponding
moduli space.

Proof: The Hodge loci of hyperkähler manifolds admitting a non-hyperkähler
subvariety have positive codimension, and deformations of hyperkähler suba-
rieties never cover M .

COROLLARY: Let M be a hyperkähler manifold or a compact torus, equipped
with a standard, irrational symplectic form ω. Then M admits full sym-
plectic packing.

Proof: By definition of a standard symplectic form, there exists a complex
structure I such that ω is Kähler. Deforming I in T , we obtain a Campana
simple complex structure for which ω is Kähler. Then (M,ω) admits full
symplectic packing by Theorem 3.
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Symplectic cone and Kähler cone

DEFINITION: An almost complex structure I tames a symplectic structure
ω if ω1,1

I is a Hermitian form on (M, I).

PROPOSITION: Let (M, I, ω) be an almost complex tamed symplectic man-
ifold, and η ∈ Λ2,0+0,2(M,R) a closed real (2,0) + (0,2)-form. Then ω+ η is
also a symplectic form. Moreover, the complex structure I is tamed by
ω + η.

Proof. Step 1: Since I(η) = −η for each (2,0) + (0,2)-form η, one has
ω(x, Ix) = ω1,1(x, Ix) > 0 for each non-zero x.

Step 2: Since η1,1 = 0, one has ω + η(x, Ix) = ω1,1(x, Ix) > 0 for each
non-zero x. Therefore, ω + η is non-degenerate.

DEFINITION: A symplectic class of a manifold M is a cohomology class
of a symplectic form on M . Symplectic cone of a symplectic manifold M
is a set Symp(M) ⊂ H2(M,R) of all symplectic classes. Taming cone of
(M, I) is a cone of symplectic classes of all symplectic form taming an almost
complex structure I.

Corollary 1: Let M be a Kähler manifold, and Kah(M) its Kähler cone.
Then the taming cone of M contains Kah(M) +H2,0+0,2(M,R).
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Symplectic cone for blown-up tori and hyperkähler manifolds

Theorem 4: Let (M, I, ωI) be a compact Kähler manifold obtained as a

limit of Campana simple manifolds. Then (M,ωI) admits full symplectic

packing.

Proof. Step 1: Let B be an open neighbourhood of I in the moduli space of

complex structures on M , and B
ϕ−→ H2(M,R) a map putting J to (ωI)

1,1
J .

By Kodaira stability theorem, ϕ(J) is a Kähler class for J sufficiently close to

I. Therefore, there exists a Campana simple complex structure J such

that ωJ := (ωI)
1,1
J is Kähler, arbitrarily close to I in B.

Step 2: By Theorem 3, ηJ := ωJ+
∑
ci[Ei] is a Kähler class on a blow-up of

(M,J), with blow-up points generic. Indeed, the condition
∫
M η

dimCM
J > 0

remains true for J sufficiently close to I.

Step 3: Now, ωI − ωJ is by definition a (2,0) + (0,2)-cohomology class on

(M,J). Therefore, η = ωI +
∑
ci[Ei] is obtained from a Kähler form ηJ by

adding a (2,0)+(0,2)-form on (M,J). This implies that η belongs to taming

cone, and Theorem 4 follows from the taming version of McDuff-Polterovich.
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Further directions

1. We explored symplectic packing by symplectic balls. What about a packing
by other subsets K ⊂ R2n?

1A. Define a packing number ν(K,M) of (K,ω) to M as a supremum of all ε for
which (K, εω) admits a symplectic embedding to M . This function is obviously
semicontinuous on K and M . When K is a union of symplectic balls, and M

a hyperkähler manifold or a torus, ν(K,M) = Vol(M)
Vol(K) . Using ergodicity, it is

possible to show that ν(K,M)
Vol(M) is constant for irrational symplectic structures

on such M . Is it equal to 1? If so, we have “full packing by K”.

2. Replacing blow-ups by orbifold blow-ups and balls by symplectic ellipsoids
with rational axis length, our argument would give full packing by ellipsoids.

3. Let Symp be the infinite-dimensional Frechet manifold of all symplectic
forms on M , and Diff the diffeomorphism group. The full packing phenomena
seems to be related to ergodicity of Diff-action on Symp: the packing defines
a semi-continuous, Diff-invariant function on Symp, which should be a pos-
teriori constant on the set of all symplectic structures with dense Diff-orbits.
One could study other semi-continuous quantities in relation to Diff-action
and ergodicity.
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APPENDIX: WON’T BE SHOWN

unless demanded
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Complex manifolds

DEFINITION: Let M be a smooth manifold. An almost complex structure

is an operator I : TM −→ TM which satisfies I2 = − IdTM .

The eigenvalues of this operator are ±
√
−1 . The corresponding eigenvalue

decomposition is denoted TM = T0,1M ⊕ T1,0(M).

DEFINITION: An almost complex structure is integrable if ∀X,Y ∈ T1,0M ,

one has [X,Y ] ∈ T1,0M . In this case I is called a complex structure op-

erator. A manifold with an integrable almost complex structure is called a

complex manifold.

THEOREM: (Newlander-Nirenberg)

This definition is equivalent to the usual one.
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Kähler manifolds

DEFINITION: A Riemannian metric g on an almost complex manifold M is
called Hermitian if g(Ix, Iy) = g(x, y). In this case, g(x, Iy) = g(Ix, I2y) =
−g(y, Ix), hence ω(x, y) := g(x, Iy) is skew-symmetric.

DEFINITION: The differential form ω ∈ Λ1,1(M) is called the Hermitian

form of (M, I, g).

THEOREM: Let (M, I, g) be an almost complex Hermitian manifold. Then

the following conditions are equivalent.

(i) The complex structure I is integrable, and the Hermitian form ω is closed.

(ii) One has ∇(I) = 0, where ∇ is the Levi-Civita connection

∇ : End(TM)−→ End(TM)⊗ Λ1(M).

DEFINITION: A complex Hermitian manifold M is called Kähler if either
of these conditions hold. The cohomology class [ω] ∈ H2(M) of a form ω

is called the Kähler class of M . The set of all Kähler classes is called the

Kähler cone.
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Kähler structure on a blow-up

DEFINITION: Let S be a total space of a line bundle O(−1) on CPn,

identified with a space of pairs (z ∈ CPn, t ∈ z), where t is a point on a line

z ⊂ Cn+1 representing z. The forgetful map π : S −→ Cn+1 is called a blow-

up of Cn+1 in 0. Given an open ball B ⊂ Cn+1, the map π : π−1(B)−→B is

called a blow-up of B in 0. To blow up a point in a complex manifold M ,

we remove a ball B around this point, and replace it with a blown-up ball B̃,

gluing B\x ⊂ B̃ with B\x ⊂M .

PROBLEM: Suppose that M is Kähler, and M̃ is its blow-up. Find a Kähler

metric on M̃ and write it explicitly.

Answer: Symplectic blow-up!

REMARK: In this talk, I would often drop all π and other constants from

the equations.
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Symplectic quotient

DEFINITION: Let ρ be an S1-action on a symplectic manifold (M,ω) pre-
serving the symplectic structure, and ~v its unit tangent vector. Cartan’s
formula gives 0 = Lie~v ω = d(ωy~v), hence ωy~v is a closed 1-form. Hamilto-
nian, or moment map of ρ is an S1-invariant function µ such that dµ = ωy~v,
and symplectic quotient M//cS1 is µ−1(c)/Sn.

REMARK: In these assumptions, restriction of the symplectic form ω to
µ−1(c) vanishes on ~v, hence it is obtained as a pullback of a closed 2-
form ω// on M//cS1.

THEOREM: The form ω// is a symplectic form on M//cS1. In other words,
the symplectic quotient is a symplectic manifold.

REMARK: If, in addition, M is equipped with a Kähler structure (I, ω), and
S1-action preserves the complex structure, the symplectic quotient M//cS1

inherits the Kähler structure. In this case it is called a Kähler quotient.
Whenever the S1-action can be integrated to holomorphic C∗-action, the
Kähler quotient is identified with an open subset of its orbit space.

REMARK: The moment map is defined by dµ = ωy~v uniquely up to a
constant. However, the symplectic quotient M//cS1 = µ−1(c)/Sn depends
heavily on the choice of c ∈ R.
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Symplectic blow-up

CLAIM: Consider the standard S1-action on Cn, and let W ⊂ Cn be an S1-
invariant open subset. Consider the product V := W × C with the standard
symplectic structure and take the S1-action on C opposite to the standard
one. Then its moment map is w − t, where w(x) = |x|2 is the length
function on W and r(t) = |t|2 the length function on C.

DEFINITION: Symplectic cut of W is (W × C)//cS1.

REMARK: Geometrically, the symplectic cut is obtained as follows. Take
c ∈ R, and let Wc := {w ∈ W | |w|2 6 c}. Then Wc is a manifold with
boundary ∂Wc, which is a sphere |w|2 = c. Then (W ×C)//cS1 = (Wc×C)//cS1

is obtained from Wc by gluing each S1-orbit which lies on ∂Wc to a point.
Combinatorially, (W × C)//cS1 is Cn with 0 replaced with CPn−1.

DEFINITION: In these assumptions, symplectic blow-up of radius λ =
√
c

of W in 0 is (W × C)//cS1. Symplectic blow-up of a symplectic manifold
M is obtained by removing a symplectic ball W and gluing back a blown-up
symplectic ball (W × C)//cS1.

REMARK: The symplectic form ωc on the blow-up (W ×C)//cS1 depends
on c as follows:

∫
l ωc = c, where l ⊂ E is a rational line on an exceptional

divisor E := π−1(c).
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McDuff and Polterovich: symplectic packing from symplectic blow-ups

DEFINITION: Let M be a symplectic manifold, x1, ..., xn ∈M distinct points,
and r1, ..., rn a set of positive numbers. We say that M admits symplectic
packing with centers x1, ..., xn and radii r1, ..., rn if there exists a symplectic
embedding from a disconnected union of symplectic balls of radii r1, ..., rn to
M mapping centers of balls to x1, ..., xn.

REMARK: The choice of xi is irrelevant, because the group of symplectic
authomorphisms acts on M infinitely transitively.

Theorem 1: (McDuff-Polterovich)
Let (M,ω) be a symplectic manifold, x1, ..., xn ∈M distinct points, and c1, ..., cn
a set of positive numbers. Let π : M̃ −→M be a symplectic blow-up with
centers in xi, and Ei ∈ H2(M̃,Z) the fundamental classes of its exceptional
divisors. Then the following conditions are equivalent.

(i) M admits a symplectic packing with radii ri = π−1√ci

(ii) For any ε ∈ [0,1], there exists a form ωε(c1, ..., cn) cohomologically
equivalent to π∗ω −

∑
επciEi, symplectic for ε > 0, smoothly depending on

ε, and satisfying ω0(c1, ..., cn) = π∗ω.
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McDuff and Polterovich for Kähler manifolds

REMARK: In Kähler situation, the smooth dependence condition is

trivial, because for any two Kähler forms ω, ω′, straight interval connecting ω

to ω′ consists of Kähler forms (indeed, the set of Kähler forms is convex).

This brings the following corollary.

Corollary 1: Let (M,ω) be a Kähler manifold, M̃
π−→ M its blow-up in

x1, ..., xn, Ei the corresponding exceptional divisors, and [Ei] their fundamental

classes. Assume that the class π∗ω−
∑
i ci[Ei] is Kähler, for some ci > 0. Then

M admits a symplectic packing with radii ri = π−1√ci.
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