Symplectic packing for simple Kähler manifolds, hyperkähler manifolds and tori

Misha Verbitsky

Skolkovo Institute of Science and Technology International Conference "Geometry, Topology and Integrability"

October 21, 2014.

Symplectic packing

DEFINITION: A symplectic ball is a ball of radius r in \mathbb{R}^{2n} , equipped with a standard symplectic structure $\omega = \sum dp_i \wedge dq_i$.

DEFINITION: Let M be a compact symplectic manifold of volume V. We say that M admits a full symplectic packing if for any disconnected union S of symplectic balls of total volume less than V, S admits a symplectic embedding to M.

Definition 1: Let M be a torus. A symplectic structure ω is called **standard** if there exists a flat torsion-free connection preserving ω .

DEFINITION: Let M be a hyperkähler manifold. A symplectic structure ω is called **standard** if ω is a Kähler form for some hyperkähler structure.

REMARK: Any known symplectic structure on a hyperkähler manifold or a torus is of this type. It was conjectured that non-standard symplectic structures don't exist.

THEOREM: (Entov-V.)

Let M be a compact even-dimensional torus, $\dim_{\mathbb{R}} M \geqslant 4$ or a hyperkähler manifold (such as a K3 surface), and ω a standard symplectic form. Then (M, ω) admits a full symplectic packing.

REMARK: In this talk, all tori are compact, even-dimensional, and satisfy $\dim_{\mathbb{R}} M \geqslant 4$.

Motivation: Gromov Capacity

DEFINITION: Let M be a symplectic manifold. Define **Gromov capacity** $\mu(M)$ as the supremum of radii r, for all symplectic embeddings from a symplectic balls B_r to M.

DEFINITION: Define symplectic volume of a symplectic manifold (M, ω) as $\int_M \omega^{\frac{1}{2} \dim M}$.

REMARK: Gromov capacity is obviously bounded by the symplectic volumes: a manifold of Gromov capacity r has volume $\geq Vol(B_r)$. However, there are manifolds of infinite volume with finite Gromov capacity.

THEOREM: (Gromov)

Consider a symplectic cylinder $C_r := \mathbb{R}^{2n-2} \times B_r$ with the product symplectic structure. Then the Gromov capacity of C_r is r.

REMARK: This result was used by Gromov to study symplectic packing in $\mathbb{C}P^2$. He proved that **there is no full symplectic packing**, and found precise bounds.

Ekeland-Hofer theorem

THEOREM: (Ekeland-Hofer)

Let M, N be symplectic manifolds, and $\varphi: M \longrightarrow N$ a diffeomorphism. Suppose that for all sufficiently small, convex open sets $U \subset M$, Gromov capacity satisfies $\mu(U) = \mu(\varphi(U))$. Then φ is a symplectomorphism.

REMARK: This can be used to define C^0 - (continuous) symplectomorphisms.

REMARK: Ekeland-Hofer theorem implies a theorem of Gromov-Eliashberg: symplectomorphism group is C^0 -closed in the group of diffeomorphisms.

Kähler manifolds

DEFINITION: A Riemannian metric g on an almost complex manifold M is called **Hermitian** if g(Ix,Iy)=g(x,y). In this case, $g(x,Iy)=g(Ix,I^2y)=-g(y,Ix)$, hence $\omega(x,y):=g(x,Iy)$ is skew-symmetric.

DEFINITION: The differential form $\omega \in \Lambda^{1,1}(M)$ is called the Hermitian form of (M,I,g).

THEOREM: Let (M, I, g) be an almost complex Hermitian manifold. Then the following conditions are equivalent.

- (i) The complex structure I is integrable, and the Hermitian form ω is closed.
- (ii) One has $\nabla(I)=0$, where ∇ is the Levi-Civita connection $\nabla: \operatorname{End}(TM) \longrightarrow \operatorname{End}(TM) \otimes \Lambda^1(M).$

DEFINITION: A complex Hermitian manifold M is called **Kähler** if either of these conditions hold. The cohomology class $[\omega] \in H^2(M)$ of a form ω is called **the Kähler class** of M. The set of all Kähler classes is called **the Kähler cone**.

Kähler structure on a blow-up

DEFINITION: Let S be a total space of a line bundle $\mathcal{O}(-1)$ on $\mathbb{C}P^n$, identified with a space of pairs $(z \in \mathbb{C}P^n, t \in z)$, where t is a point on a line $z \subset \mathbb{C}^{n+1}$ representing z. The forgetful map $\pi: S \longrightarrow \mathbb{C}^{n+1}$ is called a blowup of \mathbb{C}^{n+1} in $\mathbf{0}$. Given an open ball $B \subset \mathbb{C}^{n+1}$, the map $\pi: \pi^{-1}(B) \longrightarrow B$ is called a blow-up of B in $\mathbf{0}$. To blow up a point in a complex manifold M, we remove a ball B around this point, and replace it with a blown-up ball \tilde{B} , gluing $B \setminus x \subset \tilde{B}$ with $B \setminus x \subset M$.

PROBLEM: Suppose that M is Kähler, and \tilde{M} is its blow-up. Find a Kähler metric on \tilde{M} and write it explicitly.

Answer: Symplectic blow-up!

REMARK: In this talk, I would drop all π and other constants from the equations.

Symplectic blow-up

CLAIM: Consider the standard S^1 -action on \mathbb{C}^n , and let $W \subset \mathbb{C}^n$ be an S^1 -invariant open subset. Consider the product $V := W \times \mathbb{C}$ with the standard symplectic structure and take the S^1 -action on \mathbb{C} opposite to the standard one. Then its moment map is w-t, where $w(x)=|x|^2$ is the length function on \mathbb{C} .

DEFINITION: Symplectic cut of W is $(W \times \mathbb{C})/\!\!/_c S^1$.

REMARK: Geometrically, the symplectic cut is obtained as follows. Take $c \in \mathbb{R}$, and let W_c : $\{w \in W \mid |w|^2 \leqslant c\}$. Then W_c is a manifold with boundary ∂W_c , which is a sphere $|w|^2 = c$. Then $(W \times \mathbb{C})/\!\!/_c S^1 = (W_c \times \mathbb{C})/\!\!/_c S^1$ is obtained from W_c by gluing each S^1 -orbit which lies on ∂W_c to a point. Combinatorially, $(W \times \mathbb{C})/\!\!/_c S^1$ is \mathbb{C}^n with 0 replaced with $\mathbb{C}P^{n-1}$.

DEFINITION: In these assumptions, symplectic blow-up of radius $\lambda = \sqrt{c}$ of W in 0 is $(W \times \mathbb{C})/\!\!/c S^1$. Symplectic blow-up of a symplectic manifold M is obtained by removing a symplectic ball W and gluing back a blown-up symplectic ball $(W \times \mathbb{C})/\!\!/c S^1$.

REMARK: The symplectic form ω_c on the blow-up $(W \times \mathbb{C})/\!\!/_c S^1$ depends on c as follows: $\int_l \omega_c = c$, where $l \subset E$ is a rational line on an exceptional divisor $E := \pi^{-1}(c)$.

McDuff and Polterovich: symplectic packing from symplectic blow-ups

DEFINITION: Let M be a symplectic manifold, $x_1, ..., x_n \in M$ distinct points, and $r_1, ..., r_n$ a set of positive numbers. We say that M admits symplectic packing with centers $x_1, ..., x_n$ and radii $r_1, ..., r_n$ if there exists a symplectic embedding from a disconnected union of symplectic balls of radii $r_1, ..., r_n$ to M mapping centers of balls to $x_1, ..., x_n$.

REMARK: The choice of x_i is irrelevant, because the group of symplectic authomorphisms acts on M infinitely transitively.

Theorem 1: (McDuff-Polterovich)

Let (M,ω) be a symplectic manifold, $x_1,...,x_n\in M$ distinct points, and $c_1,...,c_n$ a set of positive numbers. Let $\pi: \tilde{M} \longrightarrow M$ be a symplectic blow-up with centers in x_i , and $E_i \in H^2(\tilde{M},\mathbb{Z})$ the fundamental classes of its exceptional divisors. Then the following conditions are equivalent.

- (i) M admits a symplectic packing with radii $r_i = \sqrt{c_i}$
- (ii) For any $\varepsilon \in [0,1]$, there exists a form $\omega_{\varepsilon}(c_1,...,c_n)$ cohomologically equivalent to $\pi^*\omega \sum \varepsilon \pi c_i E_i$, symplectic for $\varepsilon > 0$, smoothly depending on ε , and satisfying $\omega_0(c_1,...,c_n) = \pi^*\omega$.

McDuff and Polterovich for Kähler manifolds

REMARK: In Kähler situation, the smooth dependence condition is trivial, because for any two Kähler forms ω, ω' , straight interval connecting ω to ω' consists of Kähler forms (indeed, the set of Kähler forms is convex). This brings the following corollary.

Corollary 1: Let (M,ω) be a Kähler manifold, $\tilde{M} \stackrel{\pi}{\longrightarrow} M$ its blow-up in $x_1,...,x_n$, E_i the corresponding exceptional divisors, and $[E_i]$ their fundamental classes. Assume that the class $\pi^*\omega - \sum_i c_i[E_i]$ is Kähler, for some $c_i > 0$. Then M admits a symplectic packing with radii $r_i = \sqrt{c_i}$.

Hyperkähler manifolds

DEFINITION: A hyperkähler structure on a manifold M is a Riemannian structure g and a triple of complex structures I, J, K, satisfying quaternionic relations $I \circ J = -J \circ I = K$, such that g is Kähler for I, J, K.

REMARK: This is equivalent to $\nabla I = \nabla J = \nabla K = 0$: the parallel translation along the connection preserves I, J, K.

COROLLARY: The group SU(2) of orthogonal quaternions acts on triples (I, J, K) producing new hyperkähler structures.

DEFINITION: Let M be a Riemannian manifold, $x \in M$ a point. The subgroup of $GL(T_xM)$ generated by parallel translations (along all paths) is called **the holonomy group** of M.

REMARK: A hyperkähler manifold can be defined as a manifold which has holonomy in Sp(n) (the group of all endomorphisms preserving I, J, K).

Calabi-Yau and Bogomolov decomposition theorem

REMARK: A hyperkähler manifold is holomorphically symplectic: $\omega_J + \sqrt{-1} \omega_K$ is a holomorphic symplectic form on (M, I).

THEOREM: (Calabi-Yau) A compact, Kähler, holomorphically symplectic manifold admits a unique hyperkähler metric in any Kähler class.

CLAIM: A compact hyperkähler manifold M has maximal holonomy of Levi-Civita connection Sp(n) if and only if $\pi_1(M) = 0$, $h^{2,0}(M) = 1$.

THEOREM: (Bogomolov decomposition)

Any compact hyperkähler manifold has a finite covering isometric to a product of a torus and several maximal holonomy hyperkähler manifolds.

EXAMPLES.

EXAMPLE: Even-dimensional complex torus $\mathbb{C}^{2n}/\mathbb{Z}^{4n} = \mathbb{H}^n/\mathbb{Z}^{4n}$

EXAMPLE: Take a 2-dimensional complex torus T, then $T/\pm 1$ is an orbifold with 16 double points. Its resolution $\widetilde{T/\pm 1}$ is called a Kummer surface. It is holomorphically symplectic.

DEFINITION: A K3-surface is a deformation of a Kummer surface.

THEOREM: Any complex compact surface with $c_1(M) = 1$ and $H^1(M) = 0$ is isomorphic to K3. Moreover, it is hyperkähler.

Hilbert schemes

DEFINITION: A Hilbert scheme $M^{[n]}$ of a complex surface M is a classifying space of all ideal sheaves $I \subset \mathcal{O}_M$ for which the quotient \mathcal{O}_M/I has dimension n over \mathbb{C} .

REMARK: A Hilbert scheme is obtained as a resolution of singularities of the symmetric power $\operatorname{Sym}^n M$.

THEOREM: (Fujiki, Beauville) A Hilbert scheme of a holomorphically symplectic manifold is hyperkähler.

EXAMPLE: A Hilbert scheme of K3.

EXAMPLE: Let T is a torus. Then it acts on its Hilbert scheme freely and properly by translations. For n=2, the quotient $T^{[n]}/T$ is a Kummer K3-surface. For n>2, it is called a generalized Kummer variety.

REMARK: There are 2 more "sporadic" examples of compact hyperkähler manifolds, constructed by K. O'Grady. All known compact hyperkaehler manifolds are finite quotients of the products of these 2 and the three series: tori, Hilbert schemes of K3, and generalized Kummer.

Campana simple manifolds

DEFINITION: A complex manifold M, $\dim_{\mathbb{C}} M > 1$, is called **Campana simple** if the union $\mathfrak U$ of all complex subvarieties $Z \subset M$ satisfying $0 < \dim Z < \dim M$ has measure 0. A point which belongs to $M \setminus \mathfrak U$ is called **generic**.

REMARK: Campana simple manifolds are non-algebraic. Indeed, a manifold which admits a globally defined meromorphic function f is a union of zero divisors for the functions f-a, for all $a \in \mathbb{C}$, and the zero divizor for f^{-1} . Hence Campana simple manifolds admit no globally defined meromorphic functions.

EXAMPLE: A general complex torus has no non-trivial complex sub-varieties, hence it is Campana simple.

EXAMPLE: Let (M, I, J, K) be a hyperkähler manifold, and L = aI + bJ + cK, $a^2 + b^2 + c^2 = 1$ be a complex structure induced by quaternions. Then for all such (a, b, c) outside of a countable set, all complex subvarieties $Z \subset (M, L)$ are hyperkähler, and (unless M a finite quotient of a product) $\bigcup_Z Z \neq M$ (V., 1994, 1996). Therefore, (M, L) is Campana simple.

CONJECTURE: (Campana)

Let M be a Campana simple Kähler manifold. Then M is bimeromorphic to a finite quotient of a hyperkähler orbifold or a torus.

Demailly-Paun theorem

REMARK: Let M be a compact Kähler manifold. Recall that the cohomology space $H^2(M,\mathbb{C})$ is decomposed as $H^2(M,\mathbb{C})=H^{2,0}(M)\oplus H^{1,1}(M)\oplus H^{0,2}(M)$ with $H^{1,1}(M)$ identified with the space of I-invariant harmonic 2-forms, and $H^{2,0}(M)\oplus H^{0,2}(M)$ the space of I-antiinvariant harmonic 2-forms. This decomposition is called **Hodge decomposition**. The space $H^{1,1}(M)$ is a complexification of a real space $H^{1,1}(M,\mathbb{R})=\{\nu\in H^2(M,\mathbb{R})\mid I(\nu)=\nu\}$.

THEOREM: (Demailly-Păun, 2002)

Let M be a compact Kähler manifold, and $\widehat{K}(M) \subset H^{1,1}(M,\mathbb{R})$ a subset consisting of all (1,1)-forms η which satisfy $\int_Z \eta^k > 0$ for any k-dimensional complex subvariety $Z \subset M$. Then the Kähler cone of M is one of the connected components of $\widehat{K}(M)$.

Kähler cone for blow-ups of Campana simple manifolds

Theorem 2: Let M be a Campana simple compact Kähler manifold, and $x_1,...,x_n$ distinct generic points of M. Consider the blow-up \tilde{M} of M in $x_1,...,x_n$, let E_i be the corresponding blow-up divisors, and $[E_i] \in H^2(M,\mathbb{Z})$ its fundamental classes. Decompose $H^{1,1}(\tilde{M},\mathbb{R})$ as $H^{1,1}(\tilde{M},\mathbb{R}) = H^{1,1}(M,\mathbb{R}) \oplus \oplus \mathbb{R}[E_i]$. Assume that η_0 is a Kähler class on M. Then for any $\eta = \eta_0 + c_i[E_i]$, the following conditions are equivalent.

- (i) η is Kähler on \tilde{M} .
- (ii) all c_i are negative, and $\int_M \eta^{\dim_{\mathbb{C}} M} > 0$.

Proof of (ii) \Rightarrow (i). Step 1:

All proper complex subvarieties of \tilde{M} are either contained in E_i , or do not intersect E_i . The condition " η_0 is Kähler on M" implies $\int_Z \eta^k > 0$ for all subvarieties not intersecting E_i . Since $[E_i]$ restricted to E_i is $-[\omega_{E_i}]$, where ω_{E_i} is the Fubini-Study form, $c_i < 0$ implies that $\int_Z \eta^k > 0$ for all subvarieties which lie in E_i . Finally, the integral of η over \tilde{M} is positive by the assumtion $\int_M \eta^{\dim_{\mathbb{C}} M} > 0$. Therefore, the condition (ii) implies that $\eta \in \hat{K}(\tilde{M})$.

Kähler cone for blow-ups of Campana simple manifolds (cont.)

Theorem 2: Let M be a Campana simple compact Kähler manifold, and $x_1,...,x_n$ distinct generic points of M. Consider the blow-up \tilde{M} of M in $x_1,...,x_n$, let E_i be the corresponding blow-up divisors, and $[E_i] \in H^2(M,\mathbb{Z})$ its fundamental classes. Decompose $H^{1,1}(\tilde{M},\mathbb{R})$ as $H^{1,1}(\tilde{M},\mathbb{R}) = H^{1,1}(M,\mathbb{R}) \oplus \mathbb{R}[E_i]$. Assume that η_0 is a Kähler class on M. Then for any $\eta = \eta_0 + c_i[E_i]$, the following conditions are equivalent.

- (i) η is Kähler on \tilde{M} .
- (ii) all c_i are negative, and $\int_M \eta^{\dim_{\mathbb{C}} M} > 0$.

Proof of (ii) \Rightarrow (i). Step 2:

The form η_0 is Kähler on M, hence it lies on the boundary of the Kähler cone of \tilde{M} , and η_0 can be obtained as a limit

$$\eta_0 = \lim_{\varepsilon \to 0} \eta_0 + \varepsilon c_i [E_i]$$

of forms which lie in the same connected component of $\widehat{K}(\widetilde{M})$. Therefore, η belongs to the same connected component of $\widehat{K}(\widetilde{M})$ as a Kähler form. By Demailly-Păun, this implies that η is Kähler.

Proof of (i) \Rightarrow (ii).

The numerical conditions of (ii) mean that $\eta \in \widehat{K}(\widetilde{M})$, hence they are satisfied automatically, as follows from Step 1. \blacksquare

Campana simple manifolds and symplectic packings

DEFINITION: Let M be a compact symplectic manifold of volume V. We say that M admits a full symplectic packing if for any disconnected union S of symplectic balls of total volume less than V, S admits a symplectic embedding to M.

Theorem 3: Let (M, I, ω_0) be a Kähler, compact, Campana simple manifold. Then M admits a full symplectic packing.

Proof. Step 1: Let $x_1,...,x_n$ distinct generic points of M. Consider the blow-up \tilde{M} of M in $x_1,...,x_n$, let E_i be the corresponding blow-up divisors, and $[E_i] \in H^2(M,\mathbb{Z})$ their fundamental classes. As follows from McDuff-Polterovich, existence of full symplectic packing on M is implied by existence of a Kähler form $\omega(c_1,...,c_n)$ on \tilde{M} with cohomology class $[\omega(c_1,...,c_n)] = [\omega_0] - \sum c_i[E_i]$ for all $(c_1,...,c_n)$ satisfying $\int_{\tilde{M}} ([\omega_0] - \sum c_i[E_i])^n > 0$

Step 2: Such a form exists by Theorem 2. ■

Symplectic packing on hyperkähler manifolds and compact tori with irrational symplectic form

DEFINITION: A symplectic form is called **irrational** if its cohomology class is irrational, that is, lies in $H^2(M,\mathbb{R})\backslash H^2(M,\mathbb{Q})$.

THEOREM: Let M be a hyperkähler manifold or a compact torus, ω an irrational, standard symplectic form, and $\mathcal T$ the set of complex structures for which ω is Kähler. Then the set $\mathcal T_0 \subset \mathcal T$ of Campana simple complex structures is dense in $\mathcal T$ and has full measure in the corresponding moduli space.

Proof: The proof is based on Hodge theory and Chevalley theorem on tensor invariants of algebraic groups. ■

COROLLARY: Let M be a hyperkähler manifold or a compact torus, equipped with a standard, irrational symplectic form ω . Then M admits full symplectic packing.

Proof: By definition of a standard symplectic form, there exists a complex structure I such that ω is Kähler. Deforming I in \mathcal{T} , we obtain a Campana simple complex structure for which ω is Kähler. Then (M,ω) admits full symplectic packing by Theorem 3. \blacksquare

Symplectic cone and Kähler cone

DEFINITION: An almost complex structure I tames a symplectic structure ω if $\omega_I^{1,1}$ is a Hermitian form on (M,I).

PROPOSITION: Let (M, I, ω) be an almost complex tamed symplectic manifold, and $\eta \in \Lambda^{2,0+0,2}(M,\mathbb{R})$ a closed real (2,0)+(0,2)-form. Then $\omega + \eta$ is also a symplectic form.

Proof. Step 1: Since $I(\eta) = -\eta$ for each (2,0) + (0,2)-form η , one has $\omega(x,Ix) = \omega^{1,1}(x,Ix) > 0$ for each non-zero x.

Step 2: Since $\eta^{1,1}=0$, one has $\omega+\eta(x,Ix)=\omega^{1,1}(x,Ix)>0$ for each non-zero x. Therefore, $\omega+\eta$ is non-degenerate.

DEFINITION: A symplectic class of a manifold M is a cohomology class of a symplectic form on M. Symplectic cone of a symplectic manifold M is a set $\text{Symp}(M) \subset H^2(M,\mathbb{R})$ of all symplectic classes.

Corollary 1: Let M be a Kähler manifold, and Kah(M) its Kähler cone. Then the symplectic cone of M contains $Kah(M) + H^{2,0+0,2}(M,\mathbb{R})$.

Symplectic cone for blown-up tori and hyperkähler manifolds

Theorem 4: Let $\tilde{M} \longrightarrow M$ be a blow-up of hyperkähler manifold or a torus in generic points, $\operatorname{Kah}_S(\tilde{M}) := \operatorname{Kah}(\tilde{M}) + H^{2,0+0,2}(\tilde{M},\mathbb{R})$, and $KS(\tilde{M})$ the union of $\operatorname{Kah}_S(\tilde{M})$ for all Kähler deformations of the complex structure on M. Then $KS(\tilde{M})$ contains the set of all $\eta \in H^{1,1}(\tilde{M},\mathbb{R}) = H^{1,1}(M,\mathbb{R}) \oplus \oplus \mathbb{R}[E_i]$, satisfying $\eta = \omega_I + c_i[E_i]$ such that ω_I is a Kähler class on M, all c_i are negative, and $\int_M \eta^{\dim_\mathbb{C} M} > 0$.

Proof. Step 1: Let B be an open neighbourhood of I in the moduli space of complex structures on M, and $B \xrightarrow{\varphi} H^2(M,\mathbb{R})$ a map putting J to $(\omega_I)_J^{1,1}$. By Kodaira stability theorem, $\varphi(J)$ is a Kähler class for J sufficiently close to I. Therefore, there exists a Campana simple complex structure J such that $\omega_J := (\omega_I)_I^{1,1}$ is Kähler, arbitrarily close to I in B.

Step 2: By Theorem 1, $\eta_J := \omega_J + c_i[E_i]$ is a Kähler class on a blow-up of (M,J), with blow-up points generic. Indeed, the condition $\int_M \eta_J^{\dim_{\mathbb{C}} M} > 0$ remains true for J sufficiently close to I.

Step 3: Now, $\omega_I - \omega_J$ is by definition a (2,0) + (0,2)-cohomology class on (M,J). Therefore, η is obtained from a Kähler form η_J by adding a (2,0) + (0,2)-form.

Further directions

- 1. We explored symplectic packing by symplectic balls. What about a packing by other subsets of \mathbb{R}^{2n} ?
- 1A. Define a packing number $\nu(K,M)$ of (K,ω) to M as a supremum of all ε for which $(K,\varepsilon\omega)$ admits a symplectic embedding to M. This function is obviously semicontinuous on K and M. When K is a union of symplectic balls, and M a hyperkähler manifold or a torus, $\nu(K,M) = \frac{\operatorname{Vol}(M)}{\operatorname{Vol}(K)}$. Using ergodicity, it is possible to show that $\frac{\nu(K,M)}{\operatorname{Vol}(M)}$ is constant for irrational symplectic structures on such M. Is it equal to 1? If so, we have "full packing by K".
- 2. Replacing blow-ups by orbifold blow-ups and balls by symplectic ellipsoids with rational axis length, same argument would give full packing by ellipsoids.

Further directions (cont.)

- 3. Let Symp be the infinite-dimensional Frechet manifold of all symplectic forms on M, and let Diff be the diffeomorphism group. The full packing phenomena seems to be related to ergodicity of Diff-action on Symp: the packing defines a semi-continuous, Diff-invariant function on Symp, which should be a posteriori constant on the set of all symplectic structures with dense Diff-orbits. One could study other semi-continuous quantities in relation to Diff-action and ergodicity.
- 4. Let Diff_0 be the group of isotopies (connected component of Diff). The symplectic Teichmüller space $\mathsf{Teich}_s := \mathsf{Symp} / \mathsf{Diff}_0$ is locally diffeomorphic to $H^2(M,\mathbb{R})$ by Moser's theorem. The arguments similar to given above would show that standard connected components of Teich_s are embedded to $H^2(M,\mathbb{R})$ (for hyperkähler manifolds), and the image is a defined by a single quadratic inequality. For a torus $M = \mathbb{R}^{2n}/\mathbb{Z}^{2n}$, the standard component of Teich_s is a covering of the manifold $\{\omega \in \Lambda^2\mathbb{R}^{2n} \mid \omega^n \neq 0\}$. Is this covering trivial?