Kähler threefolds without subvarieties

Misha Verbitsky

Complex Geometry, Analysis and Foliations lundi 29 septembre 2014 à vendredi 3 octobre 2014 ICTP, Trieste

(joint work with F. Campana and J.-P. Demailly)

Misha Verbitsky

Campana simple manifolds

REMARK: Recall that an algebraic dimension a(M) of a compact complex manifold M is the transcendence degree of the field of global meromorphic functions on M. It is known to be bounded by dim M, When $a(M) = \dim M$, M is called **Moishezon**. Moishezon manifolds are bimeromorphically equivalent to projective ones.

CLAIM: Kähler Moishezon manifolds are projective (Moishezon).

DEFINITION: Campana simple manifold is a manifold which is not a union of its proper complex subvarieties.

REMARK: For Campana simple manifolds, **algebraic dimension is 0.**

EXAMPLE: General deformation of a complex torus of dimension ≥ 2 has no subvarieties.

EXAMPLE: General deformation of a Hilbert scheme of a K3 has no subvarieties (V., 1997).

EXAMPLE: General deformation of a maximal holonomy hyperkähler manifold is Campana simple (V., 1996).

2

Threefolds without subvarieties

CONJECTURE: (Campana)

Any Campana simple threefold is bimeromorphic to a torus. Any Campana simple manifold is bimeromorphic to a torus or a hyperkähler orbifold.

Theorem 1: (Campana-Demailly-V.)

Let M be a compact Kähler 3-dimensional manifold. Assume that M has no non-trivial closed complex subvarieties. Then M is a complex torus.

Calabi-Yau manifolds

DEFINITION: A Calabi-Yau manifold is a compact Kaehler manifold with topologically trivial canonical bundle.

THEOREM: (Calabi-Yau)

Let (M, I, g) be Calabi-Yau manifold. Then there exists a unique Ricci-flat Kaehler metric in any given Kaehler class.

THEOREM: (Bogomolov's decomposition) Let M be a compact, Ricciflat Kaehler manifold. Then there exists a finite covering \tilde{M} of M which is a product of Kaehler manifolds of the following form:

$$\tilde{M} = T \times M_1 \times \dots \times M_i \times K_1 \times \dots \times K_j,$$

with all M_i , K_i simply connected, T a torus, and $Hol(M_l) = Sp(n_l)$, $Hol(K_l) = SU(m_l)$

COROLLARY: Any Campana simple Calabi-Yau manifold is either a torus or a simple hyperkähler manifold.

REMARK: Theorem 1 follows immediately if we prove that the canonical bundle $\Lambda^{3,0}(M)$ is trivial, because there are no hyperkähler manifolds in dimension 3.

Subvarieties in a torus

THEOREM: Let Z be a subvariety of a torus T. Then **the canonical bundle of** Z **is base point free and globally generated** (that is, semiample). Moreover, the corresponding map $\varphi : Z \longrightarrow \mathbb{P}H^0(Z, K_Z)^*$ is a non-trivial holomorphic map, unless Z is a subtorus of T.

Proof. Step 1: The bundle $\Omega^d T$, $d = \dim Z$ is globally generated, hence restrictions of the sections of $\Omega^d T$ to Z don't have base points (common zeros), and produce a holomorphic map to $\mathbb{C}P^m$.

Step 2: The map φ is non-trivial unless the K_Z is a trivial bundle. In the latter case, the rank of restriction map $H^0(\Omega^d T) \longrightarrow H^0(Z, K_Z)$ is 1, that is, **all tangent spaces to** Z **are parallel in** T, and Z is a torus.

Albanese map for Campana simple manifolds

COROLLARY: Let *M* be a Campana simple manifold, such that $H^1(M) \neq 0$. Then *M* is a torus.

Proof: Consider the Albanese map $M \longrightarrow H^{1,0}(M)/H^1(M,\mathbb{Z})$. It is nontrivial; since M is not covered by proper subvarieties, M is embedded to a torus T. Then M is a subtorus of T, because the holomorphic map $\varphi: M \longrightarrow \mathbb{P}H^0(M, K_M)^*$ has to be trivial.

REMARK: To prove that a Campana simple threefold M is a torus, it would suffice ether to show that $K_M = \mathcal{O}_M$ or to show that $H^1(M, \mathbb{R}) \neq 0$.

Brunella's theorem

DEFINITION: A line bundle is called **pseudoeffective** if it admits a singular metric with positive curvature current.

DEFINITION: A 1-dimensional holomorphic foliation on a complex manifold is a coherent subsheaf $\mathcal{F} \subset TM$ of rank 1.

DEFINITION: A manifold M is called **uniruled** if it is a union of rational curves $C_z \subset M$.

DEFINITION: Let F be a coherent sheaf on a complex manifold, and F^{**} its double dual. Then F^{**} is called **reflexization** of F.

CLAIM: Reflexization of a rank one sheaf is always a line bundle.

THEOREM: (M. Brunella)

Let M be a compact Kähler manifold equipped with a 1-dimensional holomorphic foliation $\mathcal{F} \subset TM$, and $F := \mathcal{F}^{**}$ its reflexization. Then either F^* is pseudoeffective, or M is uniruled.

Brunella theorem for Campana simple threefolds

THEOREM: (Kodaira) Let M be a Kähler manifold, and $[\omega] \in H^2(M, \mathbb{R})$ its Kähler class. Suppose that ω is rational. Then M is projective.

COROLLARY: Let *M* be a non-projective compact Kähler manifold. Then $H^{2,0}(M) \neq 0$, in other words, *M* admits a holomorphic 2-form.

Proof: Assume that $H^{2,0}(M) = 0$. Then $H^{1,1}(M) = H^2(M)$. Since the Kähler cone is open in $H^{1,1}(M,\mathbb{R})$, it contains a rational point, hence M is projective.

THEOREM: Let M be a Campana simple 3-dimensional compact Kähler manifold. Then its canonical bundle K_M is pseudoeffective.

Proof: Consider a non-zero holomorphic 2-form $\Omega \in \Omega^2 M$, and let \mathcal{F} be the kernel of Ω . Since the rank of Ω is 2, one has $\operatorname{rk} \mathcal{F} = 1$. **Brunella's theorem implies that** F^* **is pseudoeffective,** because otherwise M is uniruled. However, the normal bundle TM/\mathcal{F} is equipped with a non-degenerate a 2-form Ω , hence its determinant vanishes. This gives $F^* = K_M$.

Big and nef currents

DEFINITION: Let M be a compact, n-dimensional complex manifold. A positive, closed (1,1)-current θ is called **nef** if it is a limit of positive, closed (1,1)-forms. If the cohomology class $[\theta]$ in addition satisfies $\int_M [\theta]^n > 0$, then θ is called **big**.

THEOREM: Let *L* be a holomorphic line bundle on a Kähler manifold with $c_1(L)$ represented by a big and nef class (such a bundle is called **big and nef**). Then the function $P(N) := \dim H^0(L^N)$ grows as a polynomial of degree dim *M*.

Proof: This result follows from the Demailly's holomorphic Morse inequalities.
■

REMARK: Such a rate of growth guarantees that M is Moishezon. Then, a Kähler manifold admitting a big and nef class is projective.

COROLLARY: Therefore, a Campana simple threefold has no big and nef bundles.

Lelong numbers and Lelong sets

DEFINITION: Let T be a positive (p, p)-current on an n-dimensional manifold M, $z \in M$ a point, and d_z distance to z. Consider the current $dd^c \log d_z$. In a neighbourhood of z it is positive, and one can take the product $T \wedge (dd^c \log d_z)^{n-p}$. Its mass at z is called **the Lelong number of** T **at** z, denoted by $\nu_z(T)$. It measures how singular T is at Z.

DEFINITION: Let c > 0 be a number. Lelong set F_c of T is the set of z such that $\nu_z(T) \ge c$.

THEOREM: (Siu) Lelong sets are complex analytic subvarieties of *M*.

THEOREM: (Nadel) Let *h* be a singular metric on a line bundle *L*. Consider the sheaf L_{L^2} of L^2 -integrable holomorphic sections of *L*. Then L_{L^2} is a coherent subsheaf of *L*.

DEFINITION: The multiplier ideal of h is an ideal I_h such that $I_h \otimes L = L_{L^2}$.

THEOREM: (Nadel) **Support of a multiplier ideal of a bundle** *L* is a **Lelong set of its curvature current**.

Demailly's regularization of currents

THEOREM: Any positive, closed (1,1)-current T on a Kähler manifold (M, ω) can be approximated by a sequence T_k of closed, real (1,1)-currents in the same cohomology class satisfying the following:

(A) $T_k + \delta_k \omega \ge 0$, where $\{\delta_k\} \longrightarrow 0$.

(B) T_k are smooth outside of a complex analytic subset $Z_k \subset M$, with $Z_1 \subset Z_2 \subset ...$

(C) Let T_0 be a smooth form cohomologous to T. Then $T_k = T_0 + dd^c \psi_k$, where ψ_k is a non-increasing sequence of almost plurisubharmonic functions converging to an almost plurisubharmonic ψ , which satisfies $dd^c \psi + T_0 = T$.

(D) Locally around Z_k , the functions ψ_k have logarithmic poles:

$$\psi_k = \lambda_k \log \sum |g_{k,l}|^2 + \tau_k,$$

where $g_{k,l}$ are holomorphic functions vanishing on Z_k , and τ_k is smooth.

(E) The Lelong numbers $\nu(T_k, x)$ of T_k are non-decreasing in k for any $x \in M$ and converge to $\nu(T, x)$.

REMARK: In layman's terms, any positive, closed (1,1)-current can be approximated by a sequence of positive currents with logarithmic singularities and their Lelong sets would also converge.

COROLLARY: In particular, **any current with empty Lelong sets is nef.**

Currents with isolated singularities

THEOREM: Let θ be a positive (1,1)-current on a complex *n*-manifold, with all Lelong sets of dimension 0. Then θ is nef. If, in addition, its Lelong sets are non-empty, then θ is also big.

Proof. Step 1: The nef condition follows directly from approximation. Indeed, θ is locally approximated by a sum of a smooth form θ_k and a dd^c -exact current $dd^c\psi_k$ with isolated logarithmic singularities which locally look like $dd^c \log |x_0 - x|$. Then $\theta_k + \max(\psi_k, -C_k)$ is non-singular and approximates θ , for an appropriate sequence $C_k \longrightarrow \infty$.

Step 2: The top product $(dd^c \log |x_0 - x|)^n$ is a positive volume form, giving $\int_M \theta^n > 0$.

Positive currents on 3-manifolds without subvarieties

COROLLARY: Let M be a Kähler manifold without non-trivial subvarieties. Then any positive, closed (1,1)-current θ on M with integer cohomology class has empty Lelong sets.

Proof: As shown above, θ is nef, has isolated Lelong sets, and is big unless they are empty. Then a holomorphic line bundle L with $c_1(L) = [\theta]$ is big and nef, making M projective.

COROLLARY: Let M be a 3-dimensional compact Kähler manifold which has no non-trivial compact complex subvarieties. Then the canonical bundle K_M is nef, not big, and admits a singular metric with all Lelong sets empty.

Proof: By Brunella's theorem, K_M admits a singular metric with positive curvature current θ . Then θ is nef and has empty Lelong sets as shown above.

Demailly-Peternell-Schneider vanishing theorem

The following theorem was rediscovered several times during 1990-ies (Enoki, Takegoshi, Morougane). Its most general form (which we use) is due to Demailly, Peternell and Schneider.

THEOREM: Let (M, I, ω) be a compact Kähler manifold, $\dim_{\mathbb{C}} M = n$, K its canonical bundle, and L a holomorphic line bundle on M equipped with a singular Hermitian metric h. Assume that the curvature Θ of L is a positive current on M, and denote by $\mathcal{I}(h)$ the corresponding multiplier ideal. Then **the wedge multiplication operator** $\eta \longrightarrow \omega^i \wedge \eta$ **induces a surjective map**

$$H^0(\Omega^{n-i}M\otimes L\otimes \mathcal{I}(h)) \stackrel{\omega^i\wedge \cdot}{\longrightarrow} H^i(K\otimes L\otimes \mathcal{I}(h)).$$

Here ω is considered as an element in $H^1(\Omega^1 M)$, and multiplication by ω maps $H^k(\Omega^{n-l}M \otimes F)$ to $H^{k+1}(\Omega^{n-l+1}M \otimes F)$.

Demailly-Peternell-Schneider for threefolds without subvarieties

Demailly-Peternell-Schneider, applied to 3-manifolds without subvarieties, gives the following vanishing result.

COROLLARY: Let M be a 3-dimensional compact Kähler manifold which has no non-trivial compact complex subvarieties, and K its canonical bundle. **Then the multiplication map**

$$H^{0}(\Omega^{n-i}M\otimes K^{m}) \xrightarrow{\omega^{i}\wedge \cdot} H^{i}(K^{m+1})$$

is surjective for any $m \ge 0$.

Proof: The bundle K^m is pseudoeffective, and all its Lelong numbers vanish. Then the multiplier ideals for K^m are trivial.

Bounds on Euler characteristic

CLAIM: Let *M* be a complex manifold without divisors, and *B* a holomorphic bundle on *M*. Then dim $H^0(B) \leq \operatorname{rk} B$.

Proof: Otherwise there would be a non-constant linear relation between sections; being non-constant, it must vanish on a divisor. ■

PROPOSITION: Let M be a 3-dimensional compact Kähler manifold which has no non-trivial compact complex subvarieties, K its canonical bundle, and $A(m) := \chi(K^m)$ the holomorphic Euler characteristic of the pluricanonical bundle. Then $|A(m)| \leq 4$ for any $m \geq 1$.

Proof: From Demailly-Peternell-Schneider it follows that

$$-\dim H^0(\Omega^1 M \otimes K^{m-1}) - \dim H^0(\Omega^3 M \otimes K^{m-1}) \leq \\ \leq \chi(K^m) \leq \dim H^0(\Omega^0 M \otimes K^{m-1}) + \dim H^0(\Omega^2 M \otimes K^{m-1}).$$

The corresponding bundles have $rk \leq 4$. By the above statement, their spaces of sections are no more than 4-dimensional.

Riemann-Roch-Hirzebruch and its applications

THEOREM: (Riemann-Roch-Hirzebruch) Let $\chi(M, E) := \sum_{i=0}^{\dim_{\mathbb{C}} M} (-1)^i \dim_{\mathbb{C}} H^i(M, E)$ be a holomorphic Euler characteristic of E. Then for any complex threefold M, one has $\chi(M, K_M^d) = \frac{d+3d^3+2d^3}{12}c_1(K_M)^3 + \frac{(1-12d)}{24}c_1(M)c_2(M)$.

COROLLARY: Let M be a 3-dimensional compact Kähler manifold which has no non-trivial compact complex subvarieties, K_M its canonical bundle, and $A(m) := \chi(M, K_M^m)$. Then A(m) = const.

Proof: A(m) is a polynomial by Riemann-Roch-Hirzebruch theorem, but it's bounded, as shown above, hence constant.

COROLLARY: Let *M* be a 3-dimensional compact Kähler manifold without non-trivial compact complex subvarieties. Then $c_1(K_M)^3 = 0$, and $c_1(M)c_2(M) = 0$.

Proof: $c_1(K_M)^3 = 0$, because K_M is nef and not big. Then Riemann-Roch-Hirzebruch formula gives $A(m) := \frac{(1-12m)}{24}c_1(M)c_2(M)$. Since A(m) is bounded, this implies $c_1(M)c_2(M) = 0$, giving A(m) = 0.

Proof of Theorem 1

The main result (Theorem 1) follows if we prove that M is Calabi-Yau or $H^1(M, \mathbb{R}) \neq 0$.

COROLLARY: Let M be a 3-dimensional compact Kähler manifold which has no non-trivial compact complex subvarieties. Then K_M is trivial.

Proof: From Riemann-Roch-Hirzebruch, we obtain $\chi(O) = 1 - h^1(O) + h^2(O) - h^0(K_M) = 0$. Since M admits a holomorphic 2-form, $h^2(O) \ge 1$, which gives $h^0(K_M) \ge 1$. However, a section of K_M cannot vanish, because M has no divisors. This implies that K_M is trivial.