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Campana simple manifolds

REMARK: Recall that an algebraic dimension a(M) of a compact complex
manifold M is the transcendence degree of the field of global meromorphic
functions on M. It is known to be bounded by dim M, When a(M) =dim M, M
is called Moishezon. Moishezon manifolds are bimeromorphically equivalent
to projective ones.

CLAIM: Kahler Moishezon manifolds are projective (Moishezon).

DEFINITION: Campana simple manifold is a manifold which is not a
union of its proper complex subvarieties.

REMARK: For Campana simple manifolds, algebraic dimension is O.

EXAMPLE: General deformation of a complex torus of dimension > 2 has
NO subvarieties.

EXAMPLE: General deformation of a Hilbert scheme of a K3 has no
subvarieties (V., 1997).

EXAMPLE: General deformation of a maximal holonomy hyperkahler
manifold is Campana simple (V., 1996).
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T hreefolds without subvarieties

CONJECTURE: (Campana)
Any Campana simple threefold is bimeromorphic to a torus. Any Cam-
pana simple manifold is bimeromorphic to a torus or a hyperkahler orbifold.

Theorem 1: (Campana-Demailly-V.)
Let M be a compact Kahler 3-dimensional manifold. Assume that M has no
non-trivial closed complex subvarieties. Then M is a complex torus.
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Calabi-Yau manifolds

DEFINITION: A Calabi-Yau manifold is a compact Kaehler manifold with
topologically trivial canonical bundle.

THEOREM: (Calabi-Yau)
Let (M, I,g) be Calabi-Yau manifold. Then there exists a unique Ricci-flat
Kaehler metric in any given Kaehler class.

THEOREM: (Bogomolov’'s decomposition) Let M be a compact, Ricci-
flat Kaehler manifold. Then there exists a finite covering M of M which
IS a product of Kaehler manifolds of the following form:

M=Tx M X ..xMxKyx..xKj

with all M;, K; simply connected, T a torus, and Hol(M;) = Sp(n;), Hol(K;) =
SU(my)

COROLLARY: Any Campana simple Calabi-Yau manifold is either a torus
or a simple hyperkahler manifold.

REMARK: Theorem 1 follows immediately if we prove that the canon-
ical bundle A39(M1) is trivial, because there are no hyperkdhler manifolds in
dimension 3.
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Subvarieties in a torus

THEOREM: Let Z be a subvariety of a torus 7. Then the canonical
bundle of Z is base point free and globally generated (that is, semiample).
Moreover, the corresponding map ¢ : Z — PHY(Z,K,)* is a non-trivial
holomorphic map, unless 7 is a subtorus of 7.

Proof. Step 1: The bundle QdT, d = dim Z is globally generated, hence
restrictions of the sections of Q9T to Z don’t have base points (common
zeros), and produce a holomorphic map to CP™,

Step 2: The map ¢ is non-trivial unless the K, is a trivial bundle. In the
latter case, the rank of restriction map HO(Q4T) — HO(Z,K,) is 1, that is,
all tangent spaces to Z are parallel in 7', and Z is a torus. m
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Albanese map for Campana simple manifolds

COROLLARY: Let M be a Campana simple manifold, such that H}(M) #
0. Then M is a torus.

Proof: Consider the Albanese map M — H1O9(M)/HY(M,Z). It is non-
trivial, since M is not covered by proper subvarieties, M is embedded
to a torus 7. Then M is a subtorus of 7T, because the holomorphic map
©: M —PHO(M, Ky)* has to be trivial. m

REMARK: To prove that a Campana simple threefold M is a torus, it would
suffice ether to show that K,; = O,; or to show that H1(M,R) # 0.
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Brunella’s theorem

DEFINITION: A line bundle is called pseudoeffective if it admits a singular
metric with positive curvature current.

DEFINITION: A 1-dimensional holomorphic foliation on a complex man-
ifold is a coherent subsheaf F C T'M of rank 1.

DEFINITION: A manifold M is called uniruled if it is a union of rational
curves C, C M.

DEFINITION: Let F be a coherent sheaf on a complex manifold, and F**
its double dual. Then F** is called reflexization of F.

CLAIM: Reflexization of a rank one sheaf is always a line bundle.

THEOREM: (M. Brunella)
Let M be a compact Kahler manifold equipped with a 1-dimensional holo-
morphic foliation F C T M, and F := F** its reflexization. Then either F* is
pseudoeffective, or M is uniruled.
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Brunella theorem for Campana simple threefolds

THEOREM: (Kodaira) Let M be a Kahler manifold, and [w] € H2(M,R) its
Kahler class. Suppose that w is rational. Then M is projective.

COROLLARY: Let M be a non-projective compact Kahler manifold. Then
H?2O9(M) # 0, in other words, M admits a holomorphic 2-form.

Proof: Assume that H29(M) = 0. Then HLI(M) = H?(M). Since the
Kahler cone is open in HL1(M,R), it contains a rational point, hence M is
projective. m

THEOREM: Let M be a Campana simple 3-dimensional compact Kahler
manifold. Then its canonical bundle K,; is pseudoeffective.

Proof: Consider a non-zero holomorphic 2-form Q € Q2M, and let F be the
kernel of €2. Since the rank of €2 is 2, one has rk F/ = 1. Brunella’'s theorem
implies that F* is pseudoeffective, because otherwise M is uniruled. How-
ever, the normal bundle TM/F is equipped with a non-degenerate a 2-form
€2, hence its determinant vanishes. This gives F* = K;. m

3



T hreefolds without subvarieties Misha Verbitsky

Big and nef currents

DEFINITION: Let M be a compact, n-dimensional complex manifold. A
positive, closed (1,1)-current 6 is called nef if it is a limit of positive, closed
(1,1)-forms. If the cohomology class [#] in addition satisfies [,,[0]" > 0, then
0 is called big.

THEOREM: Let L be a holomorphic line bundle on a Kahler manifold with
c1(L) represented by a big and nef class (such a bundle is called big and
nef). Then the function P(N) := dim H°(LY) grows as a polynomial of
degree dim M.

Proof: This result follows from the Demailly’s holomorphic Morse inequalities.
u

REMARK: Such a rate of growth guarantees that M is Moishezon. Then,
a Kahler manifold admitting a big and nef class is projective.

COROLLARY: Therefore, a Campana simple threefold has no big and
nef bundles.
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Lelong numbers and Lelong sets

DEFINITION: Let T be a positive (p,p)-current on an n-dimensional mani-
fold M, z € M a point, and d, distance to z. Consider the current dd¢logd..
In a neighbourhood of z it is positive, and one can take the product T A
(dd€logd,)™P. Its mass at z is called the Lelong number of T at z, de-
noted by v,(T). It measures how singular T is at Z.

DEFINITION: Let ¢ > 0 be a number. Lelong set F. of T is the set of z
such that v, (T) > c.

THEOREM: (Siu) Lelong sets are complex analytic subvarieties of M.

THEOREM: (Nadel) Let h be a singular metric on a line bundle L. Consider
the sheaf L;> of L2—integrable holomorphic sections of L. Then L;> is a
coherent subsheaf of L.

DEFINITION: The multiplier ideal of h is an ideal I, such that I,® L = L;>.
THEOREM: (Nadel) Support of a multiplier ideal of a bundle L is a

Lelong set of its curvature current.
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Demailly’s regularization of currents

THEOREM: Any positive, closed (1,1)-current T on a Kahler manifold
(M,w) can be approximated by a sequence T} of closed, real (1,1)-currents
in the same cohomology class satisfying the following:

(A) T, + 6w > 0, where {§,} — O.

(B) T} are smooth outside of a complex analytic subset Z,, C M, with
Z1 C Zo C ...

(C) Let Ty be a smooth form cohomologous to T'. Then Ty, = Ty + dd“yy,
where v, is a non-increasing sequence of almost plurisubharmonic functions
converging to an almost plurisubharmonic v, which satisfies dd“y + 1o = T'.

(D) Locally around Z, the functions v, have logarithmic poles:

Y = Aplog > |91-c,z|2 + Tk,

where g ; are holomorphic functions vanishing on Z;,and 7 is smooth.
(E) The Lelong numbers v(Ty,x) of T) are non-decreasing in k for any
x € M and converge to v(T,x).

REMARK: In layman’s terms, any positive, closed (1,1)-current can be
approximated by a sequence of positive currents with logarithmic sin-
gularities and their Lelong sets would also converge.

COROLLARY: In particular, any current with empty Lelong sets is nef.
11
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Currents with isolated singularities

THEOREM: Let 0 be a positive (1,1)-current on a complex n-manifold, with
all Lelong sets of dimension 0. Then 6 is nef. If, in addition, its Lelong
sets are non-empty, then 60 is also big.

Proof. Step 1: The nef condition follows directly from approximation.
Indeed, 0 is locally approximated by a sum of a smooth form 6, and a dd°-
exact current dd“y; with isolated logarithmic singularities which locally look
like dd€log |xg — x|. Then 6, 4+ max(yy, —C}) is non-singular and approximates
6, for an appropriate sequence Cj — 0.

Step 2: The top product (dd®log|xg — x|)™ is a positive volume form, giving
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Positive currents on 3-manifolds without subvarieties

COROLLARY: Let M be a Kahler manifold without non-trivial subvarieties.
Then any positive, closed (1,1)-current 6 on M with integer cohomol-
ogy class has empty Lelong sets.

Proof: As shown above, 6 is nef, has isolated Lelong sets, and is big unless
they are empty. Then a holomorphic line bundle L with ¢1(L) = [0] is big and
nef, making M projective. =

COROLLARY: Let M be a 3-dimensional compact Kahler manifold which
has no non-trivial compact complex subvarieties. Then the canonical bun-
dle K,; is nef, not big, and admits a singular metric with all Lelong
sets empty.

Proof: By Brunella’s theorem, K,; admits a singular metric with positive

curvature current 6. Then 0 is nef and has empty Lelong sets as shown
above. m
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Demailly-Peternell-Schneider vanishing theorem

The following theorem was rediscovered several times during 1990-ies (Enoki,
Takegoshi, Morougane). Its most general form (which we use) is due to
Demailly, Peternell and Schneider.

THEOREM: Let (M,I,w) be a compact Kahler manifold, dimgM = n, K
its canonical bundle, and L a holomorphic line bundle on M equipped with a
singular Hermitian metric h. Assume that the curvature © of L is a positive
current on M, and denote by Z(h) the corresponding multiplier ideal. Then
the wedge multiplication operator » — w' A n induces a surjective map

HO(Q"'M @ L@ Z(h)) WA HY(K @ L @ Z(h)).

Here w is considered as an element in H1(Q1M), and multiplication by w maps
HE(Q M @ F) to HFHL(Qn—+1lp @ F). m
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Demailly-Peternell-Schneider for threefolds without subvarieties

Demailly-Peternell-Schneider, applied to 3-manifolds without subvarieties, gives
the following vanishing result.

COROLLARY: Let M be a 3-dimensional compact Kahler manifold which
has no non-trivial compact complex subvarieties, and K its canonical bundle.
T hen the multiplication map

HO(Q" M @ K™) YN gi(gmT1y

IS surjective for any m > 0.

Proof: The bundle K™ is pseudoeffective, and all its Lelong numbers vanish.
Then the multiplier ideals for K™ are trivial. m
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Bounds on Euler characteristic

CLAIM: Let M be a complex manifold without divisors, and B a holomorphic
bundle on M. Then dim H°(B) < rk B.

Proof: Otherwise there would be a non-constant linear relation between sec-
tions; being non-constant, it must vanish on a divisor. m

PROPOSITION: Let M be a 3-dimensional compact Kahler manifold which
has no non-trivial compact complex subvarieties, K its canonical bundle, and
A(m) = x(K™) the holomorphic Euler characteristic of the pluricanonical
bundle. Then |A(m)| <4 for any m > 1.

Proof: From Demailly-Peternell-Schneider it follows that

—dimHY(Q'M @ K™ 1) —dim HY(Q3M @ K™ 1) <
< x(K™) <dim HY(Q°M @ K™ 1) + dim HY(Q?M @ K™~ 1).

The corresponding bundles have rk < 4. By the above statement, their spaces
of sections are no more than 4-dimensional. =
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Riemann-Roch-Hirzebruch and its applications

THEOREM: (Riemann-Roch-Hirzebruch)
Let x(M,E) = Zd'm@M( 1)*dimg H*(M, E) be a holomorphic Euler charac-
teristic of E. Then for any complex threefold M, one has

(M, K§p) = TF3H2E ) (153)3 + A52D ¢ (Mo (M) m

COROLLARY: Let M be a 3-dimensional compact Kahler manifold which
has no non-trivial compact complex subvarieties, Kj; its canonical bundle,
and A(m) := x(M, KY}). Then A(m) = const.

Proof: A(m) is a polynomial by Riemann-Roch-Hirzebruch theorem, but it's
bounded, as shown above, hence constant. =

COROLLARY: Let M be a 3-dimensional compact Kahler manifold with-
out non-trivial compact complex subvarieties. Then c¢1(K,;)3 = 0, and
c1(M)ca(M) = 0.

Proof: c¢1(K;)3 = 0, because Kj; is nef and not big. Then Riemann-
Roch-Hirzebruch formula gives A(m) := (1_212m)c1(M)c2(M). Since A(m) is
bounded, this implies ¢1 (M )co(M) = 0, giving A(m) =0. =
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Proof of Theorem 1

The main result (Theorem 1) follows if we prove that M is Calabi-Yau or
H(M,R) # 0.

COROLLARY: Let M be a 3-dimensional compact Kahler manifold which
has no non-trivial compact complex subvarieties. Then K, is trivial.

Proof: From Riemann-Roch-Hirzebruch, we obtain x(0O) = 1 — hl(0) +
h2(0) — h9(Kj;) = 0. Since M admits a holomorphic 2-form, h2(0) > 1,
which gives h9(K;;) > 1. However, a section of K;; cannot vanish, be-
cause M has no divisors. This implies that K, is trivial. =
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