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Campana simple manifolds

REMARK: Recall that an algebraic dimension a(M) of a compact complex
manifold M is the transcendence degree of the field of global meromorphic
functions on M . It is known to be bounded by dimM , When a(M) = dimM , M
is called Moishezon. Moishezon manifolds are bimeromorphically equivalent
to projective ones.

CLAIM: Kähler Moishezon manifolds are projective (Moishezon).

DEFINITION: Campana simple manifold is a manifold which is not a
union of its proper complex subvarieties.

REMARK: For Campana simple manifolds, algebraic dimension is 0.

EXAMPLE: General deformation of a complex torus of dimension > 2 has
no subvarieties.

EXAMPLE: General deformation of a Hilbert scheme of a K3 has no
subvarieties (V., 1997).

EXAMPLE: General deformation of a maximal holonomy hyperkähler
manifold is Campana simple (V., 1996).
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Threefolds without subvarieties

CONJECTURE: (Campana)

Any Campana simple threefold is bimeromorphic to a torus. Any Cam-

pana simple manifold is bimeromorphic to a torus or a hyperkähler orbifold.

Theorem 1: (Campana-Demailly-V.)

Let M be a compact Kähler 3-dimensional manifold. Assume that M has no

non-trivial closed complex subvarieties. Then M is a complex torus.
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Calabi-Yau manifolds

DEFINITION: A Calabi-Yau manifold is a compact Kaehler manifold with
topologically trivial canonical bundle.

THEOREM: (Calabi-Yau)
Let (M, I, g) be Calabi-Yau manifold. Then there exists a unique Ricci-flat
Kaehler metric in any given Kaehler class.

THEOREM: (Bogomolov’s decomposition) Let M be a compact, Ricci-
flat Kaehler manifold. Then there exists a finite covering M̃ of M which
is a product of Kaehler manifolds of the following form:

M̃ = T ×M1 × ...×Mi ×K1 × ...×Kj,
with all Mi, Ki simply connected, T a torus, and Hol(Ml) = Sp(nl), Hol(Kl) =
SU(ml)

COROLLARY: Any Campana simple Calabi-Yau manifold is either a torus
or a simple hyperkähler manifold.

REMARK: Theorem 1 follows immediately if we prove that the canon-
ical bundle Λ3,0(M) is trivial, because there are no hyperkähler manifolds in
dimension 3.
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Subvarieties in a torus

THEOREM: Let Z be a subvariety of a torus T . Then the canonical

bundle of Z is base point free and globally generated (that is, semiample).

Moreover, the corresponding map ϕ : Z −→ PH0(Z,KZ)∗ is a non-trivial

holomorphic map, unless Z is a subtorus of T .

Proof. Step 1: The bundle ΩdT , d = dimZ is globally generated, hence

restrictions of the sections of ΩdT to Z don’t have base points (common

zeros), and produce a holomorphic map to CPm.

Step 2: The map ϕ is non-trivial unless the KZ is a trivial bundle. In the

latter case, the rank of restriction map H0(ΩdT )−→H0(Z,KZ) is 1, that is,

all tangent spaces to Z are parallel in T , and Z is a torus.
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Albanese map for Campana simple manifolds

COROLLARY: Let M be a Campana simple manifold, such that H1(M) 6=
0. Then M is a torus.

Proof: Consider the Albanese map M −→H1,0(M)/H1(M,Z). It is non-

trivial; since M is not covered by proper subvarieties, M is embedded

to a torus T . Then M is a subtorus of T , because the holomorphic map

ϕ : M −→ PH0(M,KM)∗ has to be trivial.

REMARK: To prove that a Campana simple threefold M is a torus, it would

suffice ether to show that KM = OM or to show that H1(M,R) 6= 0.
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Brunella’s theorem

DEFINITION: A line bundle is called pseudoeffective if it admits a singular

metric with positive curvature current.

DEFINITION: A 1-dimensional holomorphic foliation on a complex man-

ifold is a coherent subsheaf F ⊂ TM of rank 1.

DEFINITION: A manifold M is called uniruled if it is a union of rational

curves Cz ⊂M .

DEFINITION: Let F be a coherent sheaf on a complex manifold, and F ∗∗

its double dual. Then F ∗∗ is called reflexization of F .

CLAIM: Reflexization of a rank one sheaf is always a line bundle.

THEOREM: (M. Brunella)

Let M be a compact Kähler manifold equipped with a 1-dimensional holo-

morphic foliation F ⊂ TM , and F := F∗∗ its reflexization. Then either F ∗ is

pseudoeffective, or M is uniruled.
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Brunella theorem for Campana simple threefolds

THEOREM: (Kodaira) Let M be a Kähler manifold, and [ω] ∈ H2(M,R) its

Kähler class. Suppose that ω is rational. Then M is projective.

COROLLARY: Let M be a non-projective compact Kähler manifold. Then

H2,0(M) 6= 0, in other words, M admits a holomorphic 2-form.

Proof: Assume that H2,0(M) = 0. Then H1,1(M) = H2(M). Since the

Kähler cone is open in H1,1(M,R), it contains a rational point, hence M is

projective.

THEOREM: Let M be a Campana simple 3-dimensional compact Kähler

manifold. Then its canonical bundle KM is pseudoeffective.

Proof: Consider a non-zero holomorphic 2-form Ω ∈ Ω2M , and let F be the

kernel of Ω. Since the rank of Ω is 2, one has rkF = 1. Brunella’s theorem

implies that F ∗ is pseudoeffective, because otherwise M is uniruled. How-

ever, the normal bundle TM/F is equipped with a non-degenerate a 2-form

Ω, hence its determinant vanishes. This gives F ∗ = KM .
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Big and nef currents

DEFINITION: Let M be a compact, n-dimensional complex manifold. A

positive, closed (1,1)-current θ is called nef if it is a limit of positive, closed

(1,1)-forms. If the cohomology class [θ] in addition satisfies
∫
M [θ]n > 0, then

θ is called big.

THEOREM: Let L be a holomorphic line bundle on a Kähler manifold with

c1(L) represented by a big and nef class (such a bundle is called big and

nef). Then the function P (N) := dimH0(LN) grows as a polynomial of

degree dimM.

Proof: This result follows from the Demailly’s holomorphic Morse inequalities.

REMARK: Such a rate of growth guarantees that M is Moishezon. Then,

a Kähler manifold admitting a big and nef class is projective.

COROLLARY: Therefore, a Campana simple threefold has no big and

nef bundles.
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Lelong numbers and Lelong sets

DEFINITION: Let T be a positive (p, p)-current on an n-dimensional mani-

fold M , z ∈ M a point, and dz distance to z. Consider the current ddc log dz.

In a neighbourhood of z it is positive, and one can take the product T ∧
(ddc log dz)n−p. Its mass at z is called the Lelong number of T at z, de-

noted by νz(T ). It measures how singular T is at Z.

DEFINITION: Let c > 0 be a number. Lelong set Fc of T is the set of z

such that νz(T ) > c.

THEOREM: (Siu) Lelong sets are complex analytic subvarieties of M.

THEOREM: (Nadel) Let h be a singular metric on a line bundle L. Consider

the sheaf LL2 of L2-integrable holomorphic sections of L. Then LL2 is a

coherent subsheaf of L.

DEFINITION: The multiplier ideal of h is an ideal Ih such that Ih⊗L = LL2.

THEOREM: (Nadel) Support of a multiplier ideal of a bundle L is a

Lelong set of its curvature current.
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Demailly’s regularization of currents

THEOREM: Any positive, closed (1,1)-current T on a Kähler manifold
(M,ω) can be approximated by a sequence Tk of closed, real (1,1)-currents
in the same cohomology class satisfying the following:

(A) Tk + δkω > 0, where {δk} −→ 0.
(B) Tk are smooth outside of a complex analytic subset Zk ⊂ M , with

Z1 ⊂ Z2 ⊂ ...
(C) Let T0 be a smooth form cohomologous to T . Then Tk = T0 + ddcψk,

where ψk is a non-increasing sequence of almost plurisubharmonic functions
converging to an almost plurisubharmonic ψ, which satisfies ddcψ + T0 = T .

(D) Locally around Zk, the functions ψk have logarithmic poles:

ψk = λk log
∑
|gk,l|2 + τk,

where gk,l are holomorphic functions vanishing on Zk,and τk is smooth.
(E) The Lelong numbers ν(Tk, x) of Tk are non-decreasing in k for any

x ∈M and converge to ν(T, x).

REMARK: In layman’s terms, any positive, closed (1,1)-current can be
approximated by a sequence of positive currents with logarithmic sin-
gularities and their Lelong sets would also converge.

COROLLARY: In particular, any current with empty Lelong sets is nef.

11



Threefolds without subvarieties Misha Verbitsky

Currents with isolated singularities

THEOREM: Let θ be a positive (1,1)-current on a complex n-manifold, with

all Lelong sets of dimension 0. Then θ is nef. If, in addition, its Lelong

sets are non-empty, then θ is also big.

Proof. Step 1: The nef condition follows directly from approximation.

Indeed, θ is locally approximated by a sum of a smooth form θk and a ddc-

exact current ddcψk with isolated logarithmic singularities which locally look

like ddc log |x0− x|. Then θk + max(ψk,−Ck) is non-singular and approximates

θ, for an appropriate sequence Ck −→∞.

Step 2: The top product (ddc log |x0 − x|)n is a positive volume form, giving∫
M θn > 0.
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Positive currents on 3-manifolds without subvarieties

COROLLARY: Let M be a Kähler manifold without non-trivial subvarieties.

Then any positive, closed (1,1)-current θ on M with integer cohomol-

ogy class has empty Lelong sets.

Proof: As shown above, θ is nef, has isolated Lelong sets, and is big unless

they are empty. Then a holomorphic line bundle L with c1(L) = [θ] is big and

nef, making M projective.

COROLLARY: Let M be a 3-dimensional compact Kähler manifold which

has no non-trivial compact complex subvarieties. Then the canonical bun-

dle KM is nef, not big, and admits a singular metric with all Lelong

sets empty.

Proof: By Brunella’s theorem, KM admits a singular metric with positive

curvature current θ. Then θ is nef and has empty Lelong sets as shown

above.
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Demailly-Peternell-Schneider vanishing theorem

The following theorem was rediscovered several times during 1990-ies (Enoki,

Takegoshi, Morougane). Its most general form (which we use) is due to

Demailly, Peternell and Schneider.

THEOREM: Let (M, I, ω) be a compact Kähler manifold, dimCM = n, K

its canonical bundle, and L a holomorphic line bundle on M equipped with a

singular Hermitian metric h. Assume that the curvature Θ of L is a positive

current on M , and denote by I(h) the corresponding multiplier ideal. Then

the wedge multiplication operator η −→ ωi ∧ η induces a surjective map

H0(Ωn−iM ⊗ L⊗ I(h))
ωi∧·−→ Hi(K ⊗ L⊗ I(h)).

Here ω is considered as an element in H1(Ω1M), and multiplication by ω maps

Hk(Ωn−lM ⊗ F ) to Hk+1(Ωn−l+1M ⊗ F ).
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Demailly-Peternell-Schneider for threefolds without subvarieties

Demailly-Peternell-Schneider, applied to 3-manifolds without subvarieties, gives

the following vanishing result.

COROLLARY: Let M be a 3-dimensional compact Kähler manifold which

has no non-trivial compact complex subvarieties, and K its canonical bundle.

Then the multiplication map

H0(Ωn−iM ⊗Km)
ωi∧·−→ Hi(Km+1)

is surjective for any m > 0.

Proof: The bundle Km is pseudoeffective, and all its Lelong numbers vanish.

Then the multiplier ideals for Km are trivial.
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Bounds on Euler characteristic

CLAIM: Let M be a complex manifold without divisors, and B a holomorphic

bundle on M . Then dimH0(B) 6 rkB.

Proof: Otherwise there would be a non-constant linear relation between sec-

tions; being non-constant, it must vanish on a divisor.

PROPOSITION: Let M be a 3-dimensional compact Kähler manifold which

has no non-trivial compact complex subvarieties, K its canonical bundle, and

A(m) := χ(Km) the holomorphic Euler characteristic of the pluricanonical

bundle. Then |A(m)| 6 4 for any m > 1.

Proof: From Demailly-Peternell-Schneider it follows that

− dimH0(Ω1M ⊗Km−1)− dimH0(Ω3M ⊗Km−1) 6

6 χ(Km) 6 dimH0(Ω0M ⊗Km−1) + dimH0(Ω2M ⊗Km−1).

The corresponding bundles have rk 6 4. By the above statement, their spaces

of sections are no more than 4-dimensional.
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Riemann-Roch-Hirzebruch and its applications

THEOREM: (Riemann-Roch-Hirzebruch)

Let χ(M,E) :=
∑dimCM
i=0 (−1)i dimCH

i(M,E) be a holomorphic Euler charac-

teristic of E. Then for any complex threefold M, one has

χ(M,Kd
M) = d+3d3+2d3

12 c1(KM)3 + (1−12d)
24 c1(M)c2(M).

COROLLARY: Let M be a 3-dimensional compact Kähler manifold which

has no non-trivial compact complex subvarieties, KM its canonical bundle,

and A(m) := χ(M,Km
M). Then A(m) = const.

Proof: A(m) is a polynomial by Riemann-Roch-Hirzebruch theorem, but it’s

bounded, as shown above, hence constant.

COROLLARY: Let M be a 3-dimensional compact Kähler manifold with-

out non-trivial compact complex subvarieties. Then c1(KM)3 = 0, and

c1(M)c2(M) = 0.

Proof: c1(KM)3 = 0, because KM is nef and not big. Then Riemann-

Roch-Hirzebruch formula gives A(m) := (1−12m)
24 c1(M)c2(M). Since A(m) is

bounded, this implies c1(M)c2(M) = 0, giving A(m) = 0.
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Proof of Theorem 1

The main result (Theorem 1) follows if we prove that M is Calabi-Yau or

H1(M,R) 6= 0.

COROLLARY: Let M be a 3-dimensional compact Kähler manifold which

has no non-trivial compact complex subvarieties. Then KM is trivial.

Proof: From Riemann-Roch-Hirzebruch, we obtain χ(O) = 1 − h1(O) +

h2(O) − h0(KM) = 0. Since M admits a holomorphic 2-form, h2(O) > 1,

which gives h0(KM) > 1. However, a section of KM cannot vanish, be-

cause M has no divisors. This implies that KM is trivial.
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