Global Torelli theorem for hyperkähler manifolds

Misha Verbitsky

Cycles, Calibrations and Nonlinear Partial Differential Equations Celebrating Blaine Lawson's 70th Birthday Stony Brook University, October 22-28, 2012

Hyperkähler manifolds

DEFINITION: A hyperkähler structure on a manifold M is a Riemannian structure g and a triple of complex structures I, J, K, satisfying quaternionic relations $I \circ J = -J \circ I = K$, such that g is Kähler for I, J, K.

REMARK: This is equivalent to $\nabla I = \nabla J = \nabla K = 0$: the parallel translation along the connection preserves I, J, K.

REMARK: A hyperkähler manifold has three symplectic forms $\omega_I := g(I, \cdot), \ \omega_J := g(J, \cdot), \ \omega_K := g(K, \cdot).$

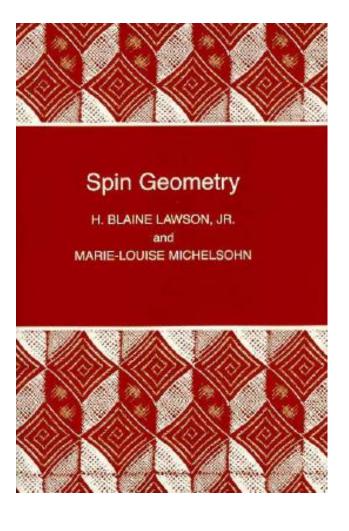
DEFINITION: A holomorphically symplectic manifold is a complex manifold equipped with non-degenerate, holomorphic (2,0)-form.

REMARK: Hyperkähler manifolds are holomorphically symplectic. Indeed, $\Omega := \omega_J + \sqrt{-1} \omega_K$ is a holomorphic symplectic form on (M, I).

THEOREM: (Calabi-Yau) A compact, Kähler, holomorphically symplectic manifold **admits a unique hyperkähler metric** in any Kähler class.

DEFINITION: For an algebraic geometer a hyperkähler manifold is a compact, Kähler, holomorphically symplectic manifold.

2



Torelli theorem for hyperkähler manifolds (plan):

- 1. Teichmüller space and the mapping class group
- 2. Algebraic geometries on calibrated manifolds
- 3. Topology of hyperkähler manifolds
- 4. Explicit computation of the mapping class group (up to finite index subgroups)
- 5. Explicit computation of the Teichmüller space (up to the non-Hausdorff points)

M. Verbitsky

The Teichmüller space and the mapping class group

Definition: Let M be a compact complex manifold, and $\text{Diff}_0(M)$ a connected component of its diffeomorphism group (the group of isotopies). Denote by Teich the space of complex structures on M, and let Teich := Teich/Diff_0(M). We call it the Teichmüller space.

Remark: Teich is a finite-dimensional complex space (Kodaira-Spencer-Kuranishi-Douady), but often non-Hausdorff.

Definition: Let $\text{Diff}_+(M)$ be the group of oriented diffeomorphisms of M. We call $\Gamma := \text{Diff}_+(M)/\text{Diff}_0(M)$ the mapping class group. The coarse moduli space of complex structures on M is a connected component of Teich $/\Gamma$.

Remark: This terminology is **standard for curves.**

REMARK: To describe the moduli space, we shall compute Teich and Γ .

Remark: Even for a K3 surface, Teich $/\Gamma$ is a **very bad space** (very much non-Hausdorff).

Calibrated geometries

by

REESE HARVEY and H. BLAINE LAWSON, JR. (1)

Rice University, Houston, TX, U.S.A. University of California, Berkeley, CA, U.S.A.

Table of Contents

I. INTRODUCTION	. 48
II. GRASSMANN GEOMETRIES	. 52
II.1. Geometries determined by a distinguished family of su	b-
manifolds	. 52
II.2. Local structure theorems	. 54
II.3. Grassmann geometries determined by a differential form	of
comass one	. 56
II.4. Calibrated geometries	. 59
II.5. The importance of the euclidean case—tangent cones	. 63
II.6. Differential systems and boundaries of φ -submanifolds	. 67
II.7. The mass and comass ball	. 73
Appendix II.A. Positive φ -currents	. 82
III. SPECIAL LAGRANGIAN GEOMETRY	. 85
III.1 The special Lagrangian inequality	. 86

Calibrations

DEFINITION: Let $W \subset V$ be a *p*-dimensional subspace in a Euclidean space, and Vol(*W*) the Riemannian volume form of $W \subset V$. For any *p*-form $\eta \in \Lambda^p V$, **comass** comass(η) is the maximum of $\frac{\eta|_W}{\text{Vol}(W)}$, for all *p*-dimensional subspaces $W \subset V$.

DEFINITION: A calibration on a Riemannian manifold M is a closed p-form with comass $(\eta) \leq 1$ everywhere. A subspace $W \subset V$ is called calibrated if $\frac{\eta|_W}{Vol(W)} = 1$.

DEFINITION: A calibrated subvariety is a *p*-dimensional subvariety $Z \subset M$ with singular subset of Hausdorff measure 0 and all tangent spaces T_mZ at smooth points calibrated.

EXAMPLE: On a Kähler manifold (M, ω) , the form $\frac{\omega^p}{p!}$ is a calibration, and calibrated subvarieties are complex subvarieties.

REMARK: One can define other complex-analytic notions in terms of a Kähler calibration, e.g. plurisubharmonic functions (Harvey-Lawson).

Classification of holonomies.

THEOREM: (de Rham) A complete, simply connected Riemannian manifold with non-irreducible holonomy **splits as a Riemannian product**.

THEOREM: (Berger, 1955) Let G be an irreducible holonomy group of a Riemannian manifold which is not locally symmetric. Then G belongs to the Berger's list:

Berger's list		
Holonomy	Geometry	
$SO(n)$ acting on \mathbb{R}^n	Riemannian manifolds	
$U(n)$ acting on \mathbb{R}^{2n}	Kähler manifolds	
$SU(n)$ acting on \mathbb{R}^{2n} , $n>2$	Calabi-Yau manifolds	
$Sp(n)$ acting on \mathbb{R}^{4n}	hyperkähler manifolds	
$Sp(n) \times Sp(1)/\{\pm 1\}$	quaternionic-Kähler	
acting on \mathbb{R}^{4n} , $n>1$	manifolds	
G_2 acting on \mathbb{R}^7	G ₂ -manifolds	
Spin(7) acting on \mathbb{R}^8	Spin(7)-manifolds	

ALL THE SPECIAL GEOMETRIES IN BERGER'S LIST ARE DEFINED BY CALIBRATIONS!

Calibrated algebraic geometry

SPECULATION: For many calibrated geometries, one can hypothesize the **"calibrated algebraic geometry"** associated with this particular calibration. The role of complex analysis is played by calibrated plurisubharmonic functions, complex subvarieties are replaced by the calibrated subvarieties, holomorphic bundles – by calibrated instantons etc.

REMARK: This program brings hyperkähler algebraic geometry.

THEOREM: (Grantcharov-V.) Let (M, I, J, K, g) be a hyperkähler manifold, $\omega_I, \omega_J, \omega_K$ the corresponding symplectic forms, and $\Theta_p := \frac{(\omega_I^2 + \omega_J^2 + \omega_K^2)^p}{c_p}$ the standard SU(2)-invariant 4*p*-form normalized by $c_p = \sum_{k=1}^p \frac{(p!)^2}{(k!)^2} (2k)! 4^{p-k}$. **Then** Θ_p is a calibration, and its faces are *p*-dimensional quaternionic subspaces of *TM*.

REMARK: The Θ_p -calibrated subvarities are singular hyperkähler varieties.

Trianalytic subvarieties

DEFINITION: Trianalytic subvarieties are closed subsets which are complex analytic with respect to I, J, K.

- Let *L* be a generic induced complex structure. Then all complex subvarieties of (*M*, *L*) are trianalytic.
- A normalization of a trianalytic subvariety is smooth and hyperkähler.
- A complex deformation of a trianalytic subvariety is again trianalytic, the moduli space if its deformation is singular hyperkähler.

Kähler cone

DEFINITION: A Kähler class of a Kähler manifold is the cohomology class of it Kähler form. The **Kähler cone** is the set of all Kähler classes.

MOTIVATION: To study the moduli spaces, we need to understand the Kähler cone of a hyperkähler manifold. **This is done using the Demailly-Paŭn theorem.**

THEOREM: (Demailly-Paŭn) Let M be a compact Kähler manifold, and $K \subset H^{1,1}(M,\mathbb{R})$ a subset consisting of all forms η such that $\int_Z \eta^p > 0$ for any p-dimensional complex subvariety $Z \subset M$. Then the Kähler cone of M is one of the connected components of K.

COROLLARY: Let *M* be a hyperkähler manifold with $H^{1,1}(M,\mathbb{Z}) = 0$. Then its Kähler cone is a quadratic cone defined by a certain quadratic form.

REMARK: The original work in that direction (done by Huybrechts) **used the duality argument, pioneered by Sullivan and Harvey-Lawson.**

M. Verbitsky

Invent. math. 74, 169-198 (1983)

Inventiones mathematicae © Springer-Verlag 1983

An intrinsic characterization of Kähler manifolds

Reese Harvey* and H. Blaine Lawson, Jr.*

Department of Mathematics, Rice University, Post Office Box 1892, Houston, TX 77251, USA Department of Mathematics, S.U.N.Y., Stony Brook, NY 11794, USA

Table of contents

ş	1.	Introduction	69
ş	2.	$d_{1,1}$ has closed range	72
ş	3.	Positive currents of bidimension 1,1	74
ş	4.	Kähler manifolds	75
ş	5.	Some general problems	76
ş	6.	Non-singular families of curves	77
ş	7.	Elliptic surfaces	80

Simple hyperkähler manifolds

DEFINITION: A hyperkähler manifold M is called simple if $\pi_1(M) = 0$, $H^{2,0}(M) = \mathbb{C}$.

Bogomolov's decomposition: Any hyperkähler manifold admits a finite covering which is a product of a torus and several simple hyperkähler manifolds.

Further on, all hyperkähler manifolds are assumed to be simple.

THEOREM: (V.) Let M be a simple hyperkähler manifold, b_2 its second Betti number. Then the group $\text{Spin}(b_2-3,3)$ acts on the algebra $H^*(M,\mathbb{R})$ by automorphisms preserving the Pontryagin classes. The corresponding action on $H^2(M,\mathbb{R})$ is the standard one.

COROLLARY: A 2-form on $H^2(M, \mathbb{R})$ is preserved!

THEOREM: (V.) The homomorphism $Aut(H^*(M,\mathbb{R})) \longrightarrow O(H^2(M,\mathbb{R}))$ is surjective, and its kernel is a compact Lie group.

Bogomolov-Beauville-Fujiki form

THEOREM: (Fujiki). Let $\eta \in H^2(M)$, and dim M = 2n, where M is hyperkähler. Then $\int_M \eta^{2n} = cq(\eta, \eta)^n$, for some primitive integer quadratic form q on $H^2(M, \mathbb{Z})$, and c > 0 an integer number.

Definition: This form is called **Bogomolov-Beauville-Fujiki form**. **It is defined by the Fujiki's relation uniquely, up to a sign**. The sign is determined from the following formula (Bogomolov, Beauville)

$$\lambda q(\eta, \eta) = \int_X \eta \wedge \eta \wedge \Omega^{n-1} \wedge \overline{\Omega}^{n-1} - \frac{n-1}{n} \left(\int_X \eta \wedge \Omega^{n-1} \wedge \overline{\Omega}^n \right) \left(\int_X \eta \wedge \Omega^n \wedge \overline{\Omega}^{n-1} \right)$$

where Ω is the holomorphic symplectic form, and $\lambda > 0$.

Remark: *q* has signature $(b_2 - 3, 3)$. It is negative definite on primitive forms, and positive definite on $\langle \Omega, \overline{\Omega}, \omega \rangle$, where ω is a Kähler form.

Computation of the mapping class group

Theorem: (Sullivan) Let M be a compact, simply connected Kähler manifold, $\dim_{\mathbb{C}} M \ge 3$. Denote by Γ_0 the group of automorphisms of an algebra $H^*(M,\mathbb{Z})$ preserving the Pontryagin classes $p_i(M)$. Then **the natural map** $\operatorname{Diff}_+(M)/\operatorname{Diff}_0 \longrightarrow \Gamma_0$ has finite kernel, and its image has finite index in Γ_0 .

Theorem: Let M be a simple hyperkähler manifold, and Γ_0 as above. Then (i) $\Gamma_0|_{H^2(M,\mathbb{Z})}$ is a finite index subgroup of $O(H^2(M,\mathbb{Z}),q)$. (ii) The map $\Gamma_0 \longrightarrow O(H^2(M,\mathbb{Z}),q)$ has finite kernel.

Proof: Follows from Sullivan and a computation of $Aut(H^*(M, \mathbb{R}))$ done earlier.

DEFINITION: Two groups G, G' are called **commensurable** if G projects with finite kernel to a subgroup of finite index in G'.

DEFINITION: An **arithmetic group** is a group which is commensurable to an algebraic Lie group over integers.

COROLLARY: The mapping class group of a hyperkähler manifold is an arithmetic group.

The period map

Remark: For any $J \in \text{Teich}$, (M, J) is also a simple hyperkähler manifold, hence $H^{2,0}(M, J)$ is one-dimensional.

Definition: Let P : Teich $\longrightarrow \mathbb{P}H^2(M, \mathbb{C})$ map J to a line $H^{2,0}(M, J) \in \mathbb{P}H^2(M, \mathbb{C})$. The map P : Teich $\longrightarrow \mathbb{P}H^2(M, \mathbb{C})$ is called **the period map**.

REMARK: *P* maps Teich into an open subset of a quadric, defined by

$$\mathbb{P}er := \{l \in \mathbb{P}H^2(M, \mathbb{C}) \mid q(l, l) = 0, q(l, \bar{l}) > 0.$$

It is called **the period space** of M.

REMARK:
$$\mathbb{P}er = SO(b_2 - 3, 3)/SO(2) \times SO(b_2 - 3, 1)$$

THEOREM: (Bogomolov) Let M be a simple hyperkähler manifold, and Teich its Teichmüller space. Then **The period map** P: Teich $\longrightarrow \mathbb{P}er$ is etale.

REMARK: Bogomolov's theorem implies that Teich is smooth. It is non-Hausdorff even in the simplest examples.

Hausdorff reduction

REMARK: A non-Hausdorff manifold is a topological space locally diffeomorphic to \mathbb{R}^n .

DEFINITION: Let *M* be a topological space. We say that $x, y \in M$ are **non-separable** (denoted by $x \sim y$) if for any open sets $V \ni x, U \ni y, U \cap V \neq \emptyset$.

THEOREM: (D. Huybrechts) If I_1 , $I_2 \in$ Teich are non-separablee points, then $P(I_1) = P(I_2)$, and (M, I_1) is birationally equivalent to (M, I_2)

DEFINITION: Let M be a topological space for which M/ \sim is Hausdorff. Then M/ \sim is called a Hausdorff reduction of M.

Problems:

- 1. \sim is not always an equivalence relation.
- 2. Even if \sim is equivalence, the M/\sim is not always Hausdorff.

Weakly Hausdorff manifolds

DEFINITION: A point $x \in X$ is called **Hausdorff** if $x \not\sim y$ for any $y \neq x$.

DEFINITION: Let *M* be an *n*-dimensional real analytic manifold, not necessarily Hausdoff. Suppose that the set $Z \subset M$ of non-Hausdorff points is contained in a countable union of real analytic subvarieties of codim ≥ 2 . Suppose, moreover, that

(S) For every $x \in M$, there is a closed neighbourhood $B \subset M$ of x and a continuous surjective map $\Psi : B \longrightarrow \mathbb{R}^n$ to a closed ball in \mathbb{R}^n , inducing a homeomorphism on an open neighbourhood of x.

Then M is called a weakly Hausdorff manifold.

REMARK: The period map satisfies (S). Also, the non-Hausdorff points of Teich are contained in a countable union of divisors.

THEOREM: A weakly Hausdorff manifold X admits a Hausdorff reduction. In other words, the quotient X/\sim is a Hausdorff. Moreover, $X \longrightarrow X/\sim$ is locally a homeomorphism.

This theorem is proven using 1920-ies style point-set topology.

Birational Teichmüller moduli space

DEFINITION: The space Teich_b := Teich / \sim is called **the birational Te**ichmüller space of M.

THEOREM: The period map $\text{Teich}_b \xrightarrow{\text{Per}} \mathbb{P}$ er is an isomorphism, for each connected component of Teich_b .

DEFINITION: Let M be a hyperkaehler manifold, Teich_b its birational Teichmüller space, and Γ the mapping class group. The quotient Teich_b/ Γ is called **the birational moduli space** of M.

REMARK: The birational moduli space is obtained from the usual moduli space by gluing some (but not all) non-separable points. It is still non-Hausdorff.

THEOREM: Let (M, I) be a hyperkähler manifold, and W a connected component of its birational moduli space. Then W is isomorphic to $\mathbb{P}er/\Gamma_I$, where $\mathbb{P}er = SO(b_2 - 3, 3)/SO(2) \times SO(b_2 - 3, 1)$ and Γ_I is an arithmetic group in $O(H^2(M, \mathbb{R}), q)$.

A CAUTION: Usually "the global Torelli theorem" is understood as a theorem about Hodge structures. For K3 surfaces, the Hodge structure on $H^2(M,\mathbb{Z})$ determines the complex structure. For dim_C M > 2, it is false.

The birational Hodge-theoretic Torelli theorem

DEFINITION: The birational Hodge-theoretic Torelli theorem is true for M if Γ_I (the stabilizer of a Torelli component in the mapping class group) is isomorphic to $O^+(H^2(M,\mathbb{Z}),q)$.

REMARK: If a birational Hodge-theoretic Torelli theorem holds for M, then any deformation of M is up to a bimeromorphic equivalence **determined by the Hodge structure on** $H^2(M)$.

THEOREM: (Markman) The for $M = K3^{[n]}$, the group Γ_I is a subgroup of $O^+(H^2(M,\mathbb{Z}),q)$ generated by oriented reflections.

THEOREM: Let $M = K3^{[n+1]}$ with n a prime power. Then the (usual) global Torelli theorem holds birationally: two deformations of a Hilbert scheme with isomorphic Hodge structures are bimeromorphic. For other n, it is false (Markman).