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Hyperkähler manifolds

DEFINITION: A hyperkähler structure on a manifold M is a Riemannian
structure g and a triple of complex structures I, J,K, satisfying quaternionic
relations I ◦ J = −J ◦ I = K, such that g is Kähler for I, J,K.

REMARK: This is equivalent to ∇I = ∇J = ∇K = 0: the parallel transla-
tion along the connection preserves I, J,K.

REMARK: A hyperkähler manifold has three symplectic forms
ωI := g(I·, ·), ωJ := g(J ·, ·), ωK := g(K·, ·).

DEFINITION: A holomorphically symplectic manifold is a complex man-
ifold equipped with non-degenerate, holomorphic (2,0)-form.

REMARK: Hyperkähler manifolds are holomorphically symplectic. Indeed,
Ω := ωJ +

√
−1 ωK is a holomorphic symplectic form on (M, I).

THEOREM: (Calabi-Yau) A compact, Kähler, holomorphically symplectic
manifold admits a unique hyperkähler metric in any Kähler class.

DEFINITION: For an algebraic geometer a hyperkähler manifold is a
compact, Kähler, holomorphically symplectic manifold.
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Torelli theorem for hyperkähler manifolds (plan):

1. Teichmüller space and the mapping class group

2. Algebraic geometries on calibrated manifolds

3. Topology of hyperkähler manifolds

4. Explicit computation of the mapping class group

(up to finite index subgroups)

5. Explicit computation of the Teichmüller space

(up to the non-Hausdorff points)
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The Teichmüller space and the mapping class group

Definition: Let M be a compact complex manifold, and Diff0(M) a con-
nected component of its diffeomorphism group (the group of isotopies).
Denote by T̃eich the space of complex structures on M , and let Teich :=
T̃eich/Diff0(M). We call it the Teichmüller space.

Remark: Teich is a finite-dimensional complex space (Kodaira-Spencer-
Kuranishi-Douady), but often non-Hausdorff.

Definition: Let Diff+(M) be the group of oriented diffeomorphisms of M .
We call Γ := Diff+(M)/Diff0(M) the mapping class group. The coarse
moduli space of complex structures on M is a connected component of
Teich /Γ.

Remark: This terminology is standard for curves.

REMARK: To describe the moduli space, we shall compute Teich and Γ.

Remark: Even for a K3 surface, Teich /Γ is a very bad space (very much
non-Hausdorff).
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Calibrations

DEFINITION: Let W ⊂ V be a p-dimensional subspace in a Euclidean space,

and Vol(W ) the Riemannian volume form of W ⊂ V . For any p-form η ∈ ΛpV ,

comass comass(η) is the maximum of η|W
Vol(W ), for all p-dimensional subspaces

W ⊂ V .

DEFINITION: A calibration on a Riemannian manifold M is a closed p-

form with comass(η) 6 1 everywhere. A subspace W ⊂ V is called calibrated

if η|W
Vol(W ) = 1.

DEFINITION: A calibrated subvariety is a p-dimensional subvariety Z ⊂M
with singular subset of Hausdorff measure 0 and all tangent spaces TmZ at

smooth points calibrated.

EXAMPLE: On a Kähler manifold (M,ω), the form ωp

p! is a calibration,

and calibrated subvarieties are complex subvarieties.

REMARK: One can define other complex-analytic notions in terms of a

Kähler calibration, e.g. plurisubharmonic functions (Harvey-Lawson).
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Classification of holonomies.

THEOREM: (de Rham) A complete, simply connected Riemannian manifold
with non-irreducible holonomy splits as a Riemannian product.

THEOREM: (Berger, 1955) Let G be an irreducible holonomy group of a
Riemannian manifold which is not locally symmetric. Then G belongs to
the Berger’s list:

Berger’s list

Holonomy Geometry

SO(n) acting on Rn Riemannian manifolds

U(n) acting on R2n Kähler manifolds

SU(n) acting on R2n, n > 2 Calabi-Yau manifolds

Sp(n) acting on R4n hyperkähler manifolds

Sp(n)× Sp(1)/{±1} quaternionic-Kähler

acting on R4n, n > 1 manifolds

G2 acting on R7 G2-manifolds

Spin(7) acting on R8 Spin(7)-manifolds

ALL THE SPECIAL GEOMETRIES IN BERGER’S LIST ARE
DEFINED BY CALIBRATIONS!
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Calibrated algebraic geometry

SPECULATION: For many calibrated geometries, one can hypothesize the

“calibrated algebraic geometry” associated with this particular calibration.

The role of complex analysis is played by calibrated plurisubharmonic func-

tions, complex subvarieties are replaced by the calibrated subvarieties, holo-

morphic bundles – by calibrated instantons etc.

REMARK: This program brings hyperkähler algebraic geometry.

THEOREM: (Grantcharov-V.) Let (M, I, J,K, g) be a hyperkähler manifold,

ωI , ωJ , ωK the corresponding symplectic forms, and Θp :=
(ω2
I+ω2

J+ω2
K)p

cp
the

standard SU(2)-invariant 4p-form normalized by cp =
∑p
k=1

(p!)2

(k!)2(2k)!4p−k.

Then Θp is a calibration, and its faces are p-dimensional quaternionic

subspaces of TM.

REMARK: The Θp-calibrated subvarities are singular hyperkähler vari-

eties.

9



Global Torelli Theorem M. Verbitsky

Trianalytic subvarieties

DEFINITION: Trianalytic subvarieties are closed subsets which are com-

plex analytic with respect to I, J, K.

• Let L be a generic induced complex structure. Then all complex sub-

varieties of (M,L) are trianalytic.

• A normalization of a trianalytic subvariety is smooth and hyperkähler.

• A complex deformation of a trianalytic subvariety is again trianalytic, the

moduli space if its deformation is singular hyperkähler.
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Kähler cone

DEFINITION: A Kähler class of a Kähler manifold is the cohomology class

of it Kähler form. The Kähler cone is the set of all Kähler classes.

MOTIVATION: To study the moduli spaces, we need to understand the

Kähler cone of a hyperkähler manifold. This is done using the Demailly-

Paǔn theorem.

THEOREM: (Demailly-Paǔn) Let M be a compact Kähler manifold, and

K ⊂ H1,1(M,R) a subset consisting of all forms η such that
∫
Z η

p > 0 for any

p-dimensional complex subvariety Z ⊂ M . Then the Kähler cone of M is

one of the connected components of K.

COROLLARY: Let M be a hyperkähler manifold with H1,1(M,Z) = 0.

Then its Kähler cone is a quadratic cone defined by a certain quadratic

form.

REMARK: The original work in that direction (done by Huybrechts) used

the duality argument, pioneered by Sullivan and Harvey-Lawson.
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Simple hyperkähler manifolds

DEFINITION: A hyperkähler manifold M is called simple if π1(M) = 0,

H2,0(M) = C.

Bogomolov’s decomposition: Any hyperkähler manifold admits a finite cov-

ering which is a product of a torus and several simple hyperkähler manifolds.

Further on, all hyperkähler manifolds are assumed to be simple.

THEOREM: (V.) Let M be a simple hyperkähler manifold, b2 its second

Betti number. Then the group Spin(b2−3,3) acts on the algebra H∗(M,R)

by automorphisms preserving the Pontryagin classes. The correspond-

ing action on H2(M,R) is the standard one.

COROLLARY: A 2-form on H2(M,R) is preserved!

THEOREM: (V.) The homomorphism Aut(H∗(M,R))−→O(H2(M,R)) is

surjective, and its kernel is a compact Lie group.
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Bogomolov-Beauville-Fujiki form

THEOREM: (Fujiki). Let η ∈ H2(M), and dimM = 2n, where M is hy-

perkähler. Then
∫
M η2n = cq(η, η)n, for some primitive integer quadratic form

q on H2(M,Z), and c > 0 an integer number.

Definition: This form is called Bogomolov-Beauville-Fujiki form. It is

defined by the Fujiki’s relation uniquely, up to a sign. The sign is

determined from the following formula (Bogomolov, Beauville)

λq(η, η) =
∫
X
η ∧ η ∧Ωn−1 ∧Ωn−1−

−
n− 1

n

(∫
X
η ∧Ωn−1 ∧Ωn

)(∫
X
η ∧Ωn ∧Ωn−1

)
where Ω is the holomorphic symplectic form, and λ > 0.

Remark: q has signature (b2 − 3,3). It is negative definite on primitive

forms, and positive definite on 〈Ω,Ω, ω〉, where ω is a Kähler form.
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Computation of the mapping class group

Theorem: (Sullivan) Let M be a compact, simply connected Kähler mani-
fold, dimCM > 3. Denote by Γ0 the group of automorphisms of an algebra
H∗(M,Z) preserving the Pontryagin classes pi(M). Then the natural map
Diff+(M)/Diff0 −→ Γ0 has finite kernel, and its image has finite index
in Γ0.

Theorem: Let M be a simple hyperkähler manifold, and Γ0 as above. Then
(i) Γ0

∣∣∣H2(M,Z) is a finite index subgroup of O(H2(M,Z), q).

(ii) The map Γ0 −→O(H2(M,Z), q) has finite kernel.

Proof: Follows from Sullivan and a computation of Aut(H∗(M,R)) done
earlier.

DEFINITION: Two groups G,G′ are called commensurable if G projects
with finite kernel to a subgroup of finite index in G′.

DEFINITION: An arithmetic group is a group which is commensurable to
an algebraic Lie group over integers.

COROLLARY: The mapping class group of a hyperkähler manifold is an
arithmetic group.
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The period map

Remark: For any J ∈ Teich, (M,J) is also a simple hyperkähler manifold,

hence H2,0(M,J) is one-dimensional.

Definition: Let P : Teich −→ PH2(M,C) map J to a line H2,0(M,J) ∈
PH2(M,C). The map P : Teich −→ PH2(M,C) is called the period map.

REMARK: P maps Teich into an open subset of a quadric, defined by

Per := {l ∈ PH2(M,C) | q(l, l) = 0, q(l, l) > 0.

It is called the period space of M .

REMARK: Per = SO(b2 − 3,3)/SO(2)× SO(b2 − 3,1)

THEOREM: (Bogomolov) Let M be a simple hyperkähler manifold, and

Teich its Teichmüller space. Then The period map P : Teich −→ Per is

etale.

REMARK: Bogomolov’s theorem implies that Teich is smooth. It is non-

Hausdorff even in the simplest examples.
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Hausdorff reduction

REMARK: A non-Hausdorff manifold is a topological space locally diffeo-

morphic to Rn.

DEFINITION: Let M be a topological space. We say that x, y ∈M are non-

separable (denoted by x ∼ y) if for any open sets V 3 x, U 3 y, U ∩ V 6= ∅.

THEOREM: (D. Huybrechts) If I1, I2 ∈ Teich are non-separablee points,

then P (I1) = P (I2), and (M, I1) is birationally equivalent to (M, I2)

DEFINITION: Let M be a topological space for which M/ ∼ is Hausdorff.

Then M/ ∼ is called a Hausdorff reduction of M .

Problems:

1. ∼ is not always an equivalence relation.

2. Even if ∼ is equivalence, the M/ ∼ is not always Hausdorff.
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Weakly Hausdorff manifolds

DEFINITION: A point x ∈ X is called Hausdorff if x 6∼ y for any y 6= x.

DEFINITION: Let M be an n-dimensional real analytic manifold, not nec-
essarily Hausdoff. Suppose that the set Z ⊂M of non-Hausdorff points is
contained in a countable union of real analytic subvarieties of codim > 2.
Suppose, moreover, that

(S) For every x ∈ M , there is a closed neighbourhood B ⊂ M of x and a
continuous surjective map Ψ : B −→ Rn to a closed ball in Rn, inducing a
homeomorphism on an open neighbourhood of x.

Then M is called a weakly Hausdorff manifold.

REMARK: The period map satisfies (S). Also, the non-Hausdorff points
of Teich are contained in a countable union of divisors.

THEOREM: A weakly Hausdorff manifold X admits a Hausdorff reduc-
tion. In other words, the quotient X/ ∼ is a Hausdorff. Moreover, X −→X/ ∼
is locally a homeomorphism.

This theorem is proven using 1920-ies style point-set topology.
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Birational Teichmüller moduli space

DEFINITION: The space Teichb := Teich / ∼ is called the birational Te-
ichmüller space of M .

THEOREM: The period map Teichb
Per−→ Per is an isomorphism, for each

connected component of Teichb.

DEFINITION: Let M be a hyperkaehler manifold, Teichb its birational Te-
ichmüller space, and Γ the mapping class group. The quotient Teichb /Γ is
called the birational moduli space of M .

REMARK: The birational moduli space is obtained from the usual moduli
space by gluing some (but not all) non-separable points. It is still non-
Hausdorff.

THEOREM: Let (M, I) be a hyperkähler manifold, and W a connected
component of its birational moduli space. Then W is isomorphic to Per/ΓI,
where Per = SO(b2 − 3,3)/SO(2) × SO(b2 − 3,1) and ΓI is an arithmetic
group in O(H2(M,R), q).

A CAUTION: Usually “the global Torelli theorem” is understood as a the-
orem about Hodge structures. For K3 surfaces, the Hodge structure on
H2(M,Z) determines the complex structure. For dimCM > 2, it is false.
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The birational Hodge-theoretic Torelli theorem

DEFINITION: The birational Hodge-theoretic Torelli theorem is true

for M if ΓI (the stabilizer of a Torelli component in the mapping class group)

is isomorphic to O+(H2(M,Z), q).

REMARK: If a birational Hodge-theoretic Torelli theorem holds for M , then

any deformation of M is up to a bimeromorphic equivalence determined by

the Hodge structure on H2(M).

THEOREM: (Markman) The for M = K3[n], the group ΓI is a subgroup

of O+(H2(M,Z), q) generated by oriented reflections.

THEOREM: Let M = K3[n+1] with n a prime power. Then the (usual)

global Torelli theorem holds birationally: two deformations of a Hilbert

scheme with isomorphic Hodge structures are bimeromorphic. For

other n, it is false (Markman).
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