Global Torelli theorem for hyperkähler manifolds

Misha Verbitsky

University of Hanover Oberseminar

April 14, 2011.

Hyperkähler manifolds

DEFINITION: A hyperkähler structure on a manifold M is a Riemannian structure g and a triple of complex structures I, J, K, satisfying quaternionic relations $I \circ J = -J \circ I = K$, such that g is Kähler for I, J, K.

REMARK: A hyperkähler manifold has three symplectic forms $\omega_I := g(I, \cdot), \ \omega_J := g(J, \cdot), \ \omega_K := g(K, \cdot).$

REMARK: This is equivalent to $\nabla I = \nabla J = \nabla K = 0$: the parallel translation along the connection preserves I, J, K.

DEFINITION: Let M be a Riemannian manifold, $x \in M$ a point. The subgroup of $GL(T_xM)$ generated by parallel translations (along all paths) is called **the holonomy group** of M.

REMARK: A hyperkähler manifold can be defined as a manifold which has holonomy in Sp(n) (the group of all endomorphisms preserving I, J, K).

Holomorphically symplectic manifolds

DEFINITION: A holomorphically symplectic manifold is a complex manifold equipped with non-degenerate, holomorphic (2,0)-form.

REMARK: Hyperkähler manifolds are holomorphically symplectic. Indeed, $\Omega := \omega_J + \sqrt{-1} \omega_K$ is a holomorphic symplectic form on (M, I).

THEOREM: (Calabi-Yau) A compact, Kähler, holomorphically symplectic manifold admits a unique hyperkähler metric in any Kähler class.

DEFINITION: For the rest of this talk, a hyperkähler manifold is a compact, Kähler, holomorphically symplectic manifold.

DEFINITION: A hyperkähler manifold M is called simple if $H^1(M) = 0$, $H^{2,0}(M) = \mathbb{C}$.

Bogomolov's decomposition: Any hyperkähler manifold admits a finite covering which is a product of a torus and several simple hyperkähler manifolds.

Remark: A simple hyperkähler manifold is always simply connected (Cheeger-Gromoll theorem).

Further on, all hyperkähler manifolds are assumed to be simple.

Deformations of holomorphically symplectic manifolds.

THEOREM: (Kodaira) A small deformation of a compact Kähler manifold is again Kähler.

COROLLARY: A small deformation of a holomorphically symplectic Kähler manifold *M* is again holomorphically symplectic.

Proof: A small deformation M' of M would satisfy $H^{2,0}(M') = H^{2,0}(M)$, however, a small deformation of a non-degenerate (2,0)-form remains non-degenerate.

COROLLARY: Small deformations of hyperkähler manifolds are hyperkähler.

REMARK: By **the moduli** of hyperkähler manifolds we shall understand the deformation space of complex manifolds admitting holomorphically symplectic and Kähler structure.

The Teichmüller space and the mapping class group

Definition: Let M be a compact complex manifold, and $\text{Diff}_0(M)$ a connected component of its diffeomorphism group (the group of isotopies). Denote by Teich the space of complex structures on M, and let Teich := Teich/Diff_0(M). We call it the Teichmüller space.

Remark: Teich is a finite-dimensional complex space (Kodaira), but often non-Hausdorff.

Definition: Let $\text{Diff}_+(M)$ be the group of oriented diffeomorphisms of M. We call $\Gamma := \text{Diff}_+(M)/\text{Diff}_0(M)$ the mapping class group. The coarse moduli space of complex structures on M is a connected component of Teich $/\Gamma$.

Remark: This terminology is **standard for curves.**

REMARK: For hyperkähler manifolds, it is convenient to take for Teich **the space of all complex structures of hyperkähler type**, that is, **holomorphically symplectic and Kähler**. It is open in the usual Teichmüller space.

REMARK: To describe the moduli space, we shall compute Teich and Γ .

The Bogomolov-Beauville-Fujiki form

THEOREM: (Fujiki). Let $\eta \in H^2(M)$, and dim M = 2n, where M is hyperkähler. Then $\int_M \eta^{2n} = cq(\eta, \eta)^n$, for some primitive integer quadratic form q on $H^2(M, \mathbb{Z})$, and c > 0 an integer number.

Definition: This form is called **Bogomolov-Beauville-Fujiki form**. **It is defined by the Fujiki's relation uniquely, up to a sign**. The sign is determined from the following formula (Bogomolov, Beauville)

$$\lambda q(\eta, \eta) = \int_X \eta \wedge \eta \wedge \Omega^{n-1} \wedge \overline{\Omega}^{n-1} - \frac{n-1}{n} \left(\int_X \eta \wedge \Omega^{n-1} \wedge \overline{\Omega}^n \right) \left(\int_X \eta \wedge \Omega^n \wedge \overline{\Omega}^{n-1} \right)$$

where Ω is the holomorphic symplectic form, and $\lambda > 0$.

Remark: *q* has signature $(b_2 - 3, 3)$. It is negative definite on primitive forms, and positive definite on $\langle \Omega, \overline{\Omega}, \omega \rangle$, where ω is a Kähler form.

Computation of the mapping class group

Theorem: (Sullivan) Let M be a compact, simply connected Kähler manifold, $\dim_{\mathbb{C}} M \ge 3$. Denote by Γ_0 the group of automorphisms of an algebra $H^*(M,\mathbb{Z})$ preserving the Pontryagin classes $p_i(M)$. Then **the natural map** $\operatorname{Diff}_+(M)/\operatorname{Diff}_0 \longrightarrow \Gamma_0$ has finite kernel, and its image has finite index in Γ_0 .

Theorem: Let M be a simple hyperkähler manifold, and Γ_0 as above. Then (i) $\Gamma_0|_{H^2(M,\mathbb{Z})}$ is a finite index subgroup of $O(H^2(M,\mathbb{Z}),q)$. (ii) The map $\Gamma_0 \longrightarrow O(H^2(M,\mathbb{Z}),q)$ has finite kernel.

Proof. Step 1: Fujiki formula $v^{2n} = q(v, v)^n$ implies that Γ_0 preserves the **Bogomolov-Beauville-Fujiki up to a sign.** The sign is fixed, if *n* is odd.

Step 2: For even *n*, the sign is also fixed. Indeed, Γ_0 preserves $p_1(M)$, and (as Fujiki has shown) $v^{2n-2} \wedge p_1(M) = q(v,v)^{n-1}c$, for some $c \in \mathbb{R}$. The constant *c* is positive, **because the degree of** $c_2(B)$ **is positive** for any Yang-Mills bundle with $c_1(B) = 0$.

Computation of the mapping class group (cont.)

Step 3: $\mathfrak{o}(H^2(M,\mathbb{Q}),q)$ acts on $H^*(M,\mathbb{Q})$ by automorphisms preserving Pontryagin classes (V., 1995). Therefore $\Gamma_0|_{H^2(M,\mathbb{Q})}$ is an arithmetic subgroup of $O(H^2(M,\mathbb{R}),q)$.

Step 4: The kernel *K* **of the map** $\Gamma_0 \longrightarrow \Gamma_0 |_{H^2(M,\mathbb{Q})}$ **is finite,** because it commutes with the Hodge decomposition and Lefschetz $\mathfrak{sl}(2)$ -action, hence preserves the Riemann-Hodge form, which is positive definite.

REMARK: The same argument as in Step 4 also proves that the group of automorphisms of $H^*(M,\mathbb{R})$ preserving p_1 is projected to $O(H^2(M,\mathbb{R}),q)$ with compact kernel.

REMARK: (Kollar-Matsusaka, Huybrechts) **There are only finitely many connected components** of Teich.

REMARK: The mapping class group acts on the set of connected components of Teich.

COROLLARY: Let Γ_I be the group of elements of mapping class group preserving a connected component of Teichmüller space containing $I \in$ Teich. **Then** Γ_I **is also arithmetic.** Indeed, **it has finite index in** Γ .

8

The period map

Remark: For any $J \in \text{Teich}$, (M, J) is also a simple hyperkähler manifold, hence $H^{2,0}(M, J)$ is one-dimensional.

Definition: Let P: Teich $\longrightarrow \mathbb{P}H^2(M,\mathbb{C})$ map J to a line $H^{2,0}(M,J) \in \mathbb{P}H^2(M,\mathbb{C})$. The map P: Teich $\longrightarrow \mathbb{P}H^2(M,\mathbb{C})$ is called **the period map**.

REMARK: *P* maps Teich into an open subset of a quadric, defined by

$$\mathbb{P}er := \{l \in \mathbb{P}H^2(M, \mathbb{C}) \mid q(l, l) = 0, q(l, \bar{l}) > 0.$$

It is called **the period space** of M.

REMARK:
$$\mathbb{P}er = SO(b_2 - 3, 3)/SO(2) \times SO(b_2 - 3, 1)$$

THEOREM: Let M be a simple hyperkähler manifold, and Teich its Teichmüller space. Then (i) (Bogomolov) **The period map** P: Teich $\longrightarrow \mathbb{P}er$ is etale.

(ii) (Huybrechts) It is **surjective**.

REMARK: Bogomolov's theorem implies that Teich is smooth. It is non-Hausdorff even in the simplest examples.

Hausdorff reduction

REMARK: A non-Hausdorff manifold is a topological space locally diffeomorphic to \mathbb{R}^n .

DEFINITION: Let *M* be a topological space. We say that $x, y \in M$ are **non-separable** (denoted by $x \sim y$) if for any open sets $V \ni x, U \ni y, U \cap V \neq \emptyset$.

THEOREM: (D. Huybrechts) If I_1 , $I_2 \in$ Teich are non-separablee points, then $P(I_1) = P(I_2)$, and (M, I_1) is birationally equivalent to (M, I_2)

DEFINITION: Let *M* be a topological space for which M/ \sim is Hausdorff. Then M/ \sim is called a Hausdorff reduction of *M*.

Problems:

- 1. \sim is not always an equivalence relation.
- 2. Even if \sim is equivalence, the M/\sim is not always Hausdorff.

REMARK: A quotient M/ \sim is Hausdorff, if $M \longrightarrow M/ \sim$ is open, and the graph $\Gamma_{\sim} \in M \times M$ is closed.

Weakly Hausdorff manifolds

DEFINITION: A point $x \in X$ is called **Hausdorff** if $x \not\sim y$ for any $y \neq x$.

DEFINITION: Let *M* be an *n*-dimensional real analytic manifold, not necessarily Hausdoff. Suppose that the set $Z \subset M$ of non-Hausdorff points is contained in a countable union of real analytic subvarieties of codim ≥ 2 . Suppose, moreover, that

(S) For every $x \in M$, there is a closed neighbourhood $B \subset M$ of x and a continuous surjective map $\Psi : B \longrightarrow \mathbb{R}^n$ to a closed ball in \mathbb{R}^n , inducing a homeomorphism on an open neighbourhood of x.

Then M is called a weakly Hausdorff manifold.

REMARK: The period map satisfies (S). Also, the non-Hausdorff points of Teich are contained in a countable union of divisors.

THEOREM: A weakly Hausdorff manifold X admits a Hausdorff reduction. In other words, the quotient X/\sim is a Hausdorff. Moreover, $X \longrightarrow X/\sim$ is locally a homeomorphism.

This theorem is proven using 1920-ies style point-set topology.

Global Torelli Theorem

M. Verbitsky

Kähler cone of a generic hyperkähler manifold

REMARK: Let M_1, M_2 be holomorphic symplectic manifolds, bimeromorphically equivalent. Then $H^2(M_1)$ is naturally isomorphic to $H^2(M_2)$, and this isomorphism is compatible with Bogomolov-Beauville-Fujiki form.

DEFINITION: A modified nef cone (also "birational nef cone" and "movable nef cone") is a closure of a union of all Kähler cones for all bimeromorphic models of a holomorphically symplectic manifold M.

THEOREM: (D. Huybrechts, S. Boucksom) **The modified nef cone is dual to the pseudoeffective cone** under the Bogomolov-Beauville-Fujiki pairing.

Corollary: Let M be a simple hyperkähler manifold such that all integer (1,1)-classes satisfy $q(\nu,\nu) \ge 0$. Then its Kähler cone is one of two components K_+ of a set $K := \{\nu \in H^{1,1}(M,\mathbb{R}) \mid q(\nu,\nu) > 0\}$.

Proof: The pseudoeffective cone of M is contained in K_+ by divisorial Zariski decomposition. Therefore, the modified nef cone K_{MN} contains K_+ . This means that $K_{MN} = K_+$.

Birational Teichmüller moduli space

DEFINITION: The space Teich_b := Teich / \sim is called **the birational Te**ichmüller space of M.

THEOREM: The period map $\text{Teich}_b \xrightarrow{\text{Per}} \mathbb{P}$ er is an isomorphism, for each connected component of Teich_b .

Sketch of a proof: 0. Since $\mathbb{P}er = SO(b_2 - 3, 3)/SO(2) \times SO(b_2 - 3, 1)$ is simply connected, it will suffice to show that Per a covering.

1. It is etale (Bogomolov).

2. For each hyperkähler structure (I, J, K) on M, there is a whole S^2 of complex structures L = aI + bJ + cK on M, for $a^2 + b^2 + c^2 = 1$.

3. For any point $x \in \mathbb{P}$ er, let NS(x) be the corresponding lattice of integer (1,1)-classes in $H^2(M)$. Then the set $\mathcal{K} \subset H^{1,1}(M,\mathbb{R})$ of Kaehler classes can be determined explicitly when $\operatorname{rk} NS(x) = 0$:

$$\mathcal{K} := \{ \nu \in H^{1,1}(M, \mathbb{R}) \mid q(\nu, \nu) > 0 \}$$

4. Every Kaehler class gives a hyperkaehler structure, hence a line in Teich_b. Such a line is called **generic hyperkähler curve** (GHK curve) if it passes through a point $x \in \mathbb{P}$ er with rk NS(x) = 0.

Birational Teichmüller moduli space (cont'd)

5. For every such line C, $P^{-1}(C)$ is a disconnected union of rational curves bijectively mapped to C. Indeed, for each $\tilde{x} \in$ Teich mapping to x, the set of GHK lines passing through \tilde{x} is identified with \mathcal{K} , which is independent from the choice of $\tilde{x} \in \text{Per}^{-1}(x)$.

6. The whole Teichmüller space is covered by GHK curves.

7. Surjectivity on GHK curves leads to the following condition (see the next slide).

(*) Let Teich_b \xrightarrow{P} \mathbb{P} er be the period map. Then for each open subset $V \subset \mathbb{P}$ er with smooth boundary, and each connected component $W \subset P^{-1}(V)$, the restriction $W \xrightarrow{P} V$ is surjective.

8. The condition (*) always implies that P is a covering. It is, again, a (non-trivial) exercise in point-set topology.

9. The period space is simply connected, hence *P* is an isomorphism on each connected component.

Subtwistor metric on the Teichmüller space

DEFINITION: Let g be a Riemannian metric on Teich_b. Define the subtwistor metric d as the distance function d(x, y) given by infimum of the length (in g) for all paths from x to y going through GHK curves.

CLAIM: The subtwistor metric induces the standard topology on any open subset $W \subset \text{Teich}_b$.

Proof: The proof follows from Gleason-Palais-Montgomery classification of continuous groups.

THEOREM: Let $W \in \mathbb{P}$ er be an open, connected subset, and $W_1 \subset \text{Teich}_b$ a connected component of $\text{Per}^{-1}(W)$. Then $\text{Per} : W_1 \longrightarrow W$ is surjective homeomorphism.

Proof. Step 1: Whenever $x, y \in W$ are connected by segments of GHK curves which lie in W, and $x \in W_1$, one has $y \in W_1$, by lifting property of GHK curves. Therefore, it would suffice to prove that all W is connected by segments of GHK curves which lie in W.

Proof. Step 2: This is the same as to say that W is connected in the topology induced by subtwistor metric. By the previous claim, this is equivalent to connectedness of W.

Global Torelli theorem

DEFINITION: Let M be a hyperkaehler manifold, Teich_b its birational Teichmüller space, and Γ the mapping class group. The quotient Teich_b/ Γ is called **the birational moduli space** of M.

REMARK: The birational moduli space is obtained from the usual moduli space by gluing some (but not all) non-separable points. It is still non-Hausdorff.

THEOREM: Let (M, I) be a hyperkähler manifold, and W a connected component of its birational moduli space. Then W is isomorphic to $\mathbb{P}er/\Gamma_I$, where $\mathbb{P}er = SO(b_2 - 3, 3)/SO(2) \times SO(b_2 - 3, 1)$ and Γ_I is an arithmetic group in $O(H^2(M, \mathbb{R}), q)$.

A CAUTION: Usually "the global Torelli theorem" is understood as a theorem about Hodge structures. For K3 surfaces, the Hodge structure on $H^2(M,\mathbb{Z})$ determines the complex structure. For dim_C M > 2, it is false.

The marked moduli space

DEFINITION: Let Γ be the mapping class group, and $K \subset \Gamma$ the kernel of the natural map $\Gamma \longrightarrow GL(H^2(M,\mathbb{Z}))$. It is finite, as we have shown. The quotient Teich /K is called the marked moduli space.

THEOREM: The natural map Teich \rightarrow Teich /K is a homeomorphism on each connected component.

Proof. Step 1:

Let $I \in$ Teich be a fixed point of a subgroup $K_I \subset K$. By Bogomolov's theorem, T_I Teich is naturally identified with $H_I^{1,1}(M)$. Since the action of K on $H^2(M)$ is trivial, any $\alpha \in K_I$ acts trivially on T_I Teich. Therefore, K_I acts as identity on a connected component of Teich containing I.

Step 2: From Step 1, obtain that **the quotient map** Teich $\xrightarrow{\Psi}$ Teich /K is a finite covering, hence it induces a finite covering of the corresponding Hausdorff reductions. However, Ψ induces an isomorphism on each connected component of Teich_b, because each component of Teich_b = $(\text{Teich}_b)/K$ is isomorphic to Per.

The Hodge-theoretic Torelli theorem

REMARK: The group O(p,q) (p,q > 0) has 4 connected components, corresponding to the orientations of positive *p*-dimensional and negative *q*-dimensional planes.

DEFINITION: Let M be a hyperkaehler manifold. One says that the Hodge-theoretic Torelli theorem holds for M if

Teich $/\Gamma_I \longrightarrow \mathbb{P}er/O^+(H^2(M,\mathbb{Z}),q),$

where $O^+(H^2(M,\mathbb{Z}),q)$ is a subgroup of $O(H^2(M,\mathbb{Z}),q)$ preserving orientation on positive 3-planes. Equivalently, it is true if M is uniquely determined by its Hodge structure.

REMARK: The Hodge-theoretic Torelli theorem is true for K3 surfaces. It is false for all other known examples of hyperkaehler manifolds.

Problems:

1. The moduli space Teich / Γ is not Hausdorff (Debarre, 1984). Indeed, bimeromorphically equivalent hyperkähler manifolds have isomorphic Hodge structures.

2. The covering $\operatorname{Teich}_b/\Gamma_I \longrightarrow \operatorname{Per}/O^+(H^2(M,\mathbb{Z}),q)$ is non-trivial, because the map $\Gamma_I \longrightarrow O^+(H^2(M,\mathbb{Z}),q)$ is not surjective (Namikawa, 2002).

The birational Hodge-theoretic Torelli theorem

DEFINITION: The birational Hodge-theoretic Torelli theorem is true for M if Γ_I (the stabilizer of a Torelli component in the mapping class group) is isomorphic to $O^+(H^2(M,\mathbb{Z}),q)$.

REMARK: If a birational Hodge-theoretic Torelli theorem holds for M, then any deformation of M is up to a bimeromorphic equivalence **determined by the Hodge structure on** $H^2(M)$.

THEOREM: (Markman) The for $M = K3^{[n]}$, the group Γ_I is a subgroup of $O^+(H^2(M,\mathbb{Z}),q)$ generated by oriented reflections.

THEOREM: Let $M = K3^{[n+1]}$ with n a prime power. Then the (usual) global Torelli theorem holds birationally: two deformations of a Hilbert scheme with isomorphic Hodge structures are bimeromorphic. For other n, it is false (Markman).