Global Torelli theorem for hyperkähler manifolds

Misha Verbitsky

Oberwolfach,
August 30, 2010.
Hyperkähler manifolds

DEFINITION: A hyperkähler structure on a manifold M is a Riemannian structure g and a triple of complex structures I,J,K, satisfying quaternionic relations $I \circ J = -J \circ I = K$, such that g is Kähler for I,J,K.

REMARK: A hyperkähler manifold has three symplectic forms $\omega_I := g(I\cdot, \cdot)$, $\omega_J := g(J\cdot, \cdot)$, $\omega_K := g(K\cdot, \cdot)$.

REMARK: This is equivalent to $\nabla I = \nabla J = \nabla K = 0$: the parallel translation along the connection preserves I,J,K.

DEFINITION: Let M be a Riemannian manifold, $x \in M$ a point. The subgroup of $GL(T_xM)$ generated by parallel translations (along all paths) is called the holonomy group of M.

REMARK: A hyperkähler manifold can be defined as a manifold which has holonomy in $Sp(n)$ (the group of all endomorphisms preserving I,J,K).
Global Torelli Theorem

M. Verbitsky

Holomorphically symplectic manifolds

DEFINITION: A holomorphically symplectic manifold is a complex manifold equipped with non-degenerate, holomorphic $(2,0)$-form.

REMARK: Hyperkähler manifolds are holomorphically symplectic. Indeed, $\Omega := \omega_J + \sqrt{-1} \omega_K$ is a holomorphic symplectic form on (M, I).

THEOREM: (Calabi-Yau) A compact, Kähler, holomorphically symplectic manifold admits a unique hyperkähler metric in any Kähler class.

DEFINITION: For the rest of this talk, a hyperkähler manifold is a compact, Kähler, holomorphically symplectic manifold.

DEFINITION: A hyperkähler manifold M is called **simple** if $H^1(M) = 0$, $H^{2,0}(M) = \mathbb{C}$.

Bogomolov's decomposition: Any hyperkähler manifold admits a finite covering which is a product of a torus and several simple hyperkähler manifolds.

Remark: A simple hyperkähler manifold is always simply connected (Cheeger-Gromoll theorem).

Further on, all hyperkähler manifolds are assumed to be simple.
EXAMPLES.

EXAMPLE: An even-dimensional complex torus.

REMARK: Let M be a 2-dimensional complex manifold with holomorphic symplectic form outside of singularities, which are all of form $\mathbb{C}^2/\pm 1$. Then its resolution is also holomorphically symplectic. It is isomorphic to $T^*\mathbb{C}P^1$.

EXAMPLE: Take a 2-dimensional complex torus T, then all the singularities of $T/\pm 1$ are of this form. Its resolution $\tilde{T}/\pm 1$ is called a Kummer surface. It is holomorphically symplectic.

REMARK: Take a symmetric square $\text{Sym}^2 T$, with a natural action of T, and let $T^{[2]}$ be a blow-up of a singular divisor. Then $T^{[2]}$ is naturally isomorphic to the Kummer surface $\tilde{T}/\pm 1$.

DEFINITION: A K3 surface is a complex 2-manifold obtained as a deformation of a Kummer surface.

REMARK: A K3 surface is always hyperkähler. Any hyperkähler manifold of real dimension 4 is isomorphic to a torus or a K3 surface.
Hilbert schemes

DEFINITION: A Hilbert scheme $M^{[n]}$ of a complex surface M is a classifying space of all ideal sheaves $I \subset \mathcal{O}_M$ for which the quotient \mathcal{O}_M/I has dimension n over \mathbb{C}.

REMARK: A Hilbert scheme is obtained as a resolution of singularities of the symmetric power $\text{Sym}^n M$.

THEOREM: (Fujiki, Beauville) A Hilbert scheme of a hyperkähler surface is hyperkähler.

EXAMPLE: A Hilbert scheme of K3.

EXAMPLE: Let T is a torus. Then it acts on its Hilbert scheme freely and properly by translations. For $n = 2$, the quotient $T^{[n]}/T$ is a Kummer K3-surface. For $n > 2$, it is called a generalized Kummer variety.

REMARK: There are 2 more “sporadic” examples of compact hyperkähler manifolds, constructed by K. O’Grady. All known simple compact hyperkaehler manifolds are: Hilbert schemes of K3, generalized Kummer, and two O’Grady’s manifolds.
Deformations of holomorphically symplectic manifolds.

REMARK: A Kähler $2n$-manifold (M, ω) with $c_1(M) = 0$ and a holomorphic 2-form Ω which satisfies $\int_M \Omega^n \wedge \overline{\Omega}^n \neq 0$ is holomorphically symplectic. Indeed, if Ω is degenerate at Z, Ω^n is a section of canonical class vanishing at $Z \subset M$. Then $c_1(M) = [Z]$, but $\langle [Z], \omega^{n-1} \rangle = \int_Z \omega^{n-1} > 0$.

COROLLARY: A small deformation of a holomorphically symplectic manifold is again holomorphically symplectic.

THEOREM: (Kodaira) A small deformation of a compact Kähler manifold is again Kähler.

COROLLARY: Small deformations of hyperkähler manifolds are hyperkähler.

REMARK: By the moduli of hyperkähler manifolds we shall understand the deformation space of complex manifolds admitting holomorphically symplectic and Kähler structure.
The Teichmüller space and the mapping class group

Definition: Let M be a compact complex manifold, and $\text{Diff}_0(M)$ a connected component of its diffeomorphism group (the group of isotopies). Denote by $\tilde{\text{Teich}}$ the space of complex structures on M, and let $\text{Teich} := \tilde{\text{Teich}}/\text{Diff}_0(M)$. We call it the **Teichmüller space**.

Remark: Teich is a finite-dimensional complex space (Kodaira), but often non-Hausdorff.

Definition: Let $\text{Diff}_+(M)$ be the group of oriented diffeomorphisms of M. We call $\Gamma := \text{Diff}_+(M)/\text{Diff}_0(M)$ the **mapping class group**. The coarse moduli space of complex structures on M is a connected component of Teich/Γ.

Remark: This terminology is standard for curves.

REMARK: For hyperkähler manifolds, it is convenient to take for Teich the space of all complex structures of hyperkähler type, that is, holomorphically symplectic and Kähler. It is open in the usual Teichmüller space.

REMARK: To describe the moduli space, we shall compute Teich and Γ.
The Bogomolov-Beauville-Fujiki form

THEOREM: (Fujiki). Let \(\eta \in H^2(M) \), and \(\dim M = 2n \), where \(M \) is hyperkähler. Then \(\int_M \eta^{2n} = cq(\eta, \eta)^n \), for some primitive integer quadratic form \(q \) on \(H^2(M, \mathbb{Z}) \), and \(c > 0 \) an integer number.

Definition: This form is called **Bogomolov-Beauville-Fujiki form**. It is defined by the Fujiki’s relation uniquely, up to a sign. The sign is determined from the following formula (Bogomolov, Beauville)

\[
\lambda q(\eta, \eta) = \int_X \eta \wedge \eta \wedge \Omega^{n-1} \wedge \overline{\Omega}^{n-1} - \frac{n-1}{n} \left(\int_X \eta \wedge \Omega^{n-1} \wedge \overline{\Omega}^{n} \right) \left(\int_X \eta \wedge \Omega^{n} \wedge \overline{\Omega}^{n-1} \right)
\]

where \(\Omega \) is the holomorphic symplectic form, and \(\lambda > 0 \).

Remark: \(q \) has signature \((b_2 - 3, 3)\). It is negative definite on primitive forms, and positive definite on \(\langle \Omega, \overline{\Omega}, \omega \rangle \), where \(\omega \) is a Kähler form.
Computation of the mapping class group

Theorem: (Sullivan) Let \(M \) be a compact simply connected Kähler manifold, \(\dim_{\mathbb{C}} M \geq 3 \). Denote by \(\Gamma_0 \) the group of automorphisms of an algebra \(H^*(M, \mathbb{Z}) \) preserving the Pontryagin classes \(p_i(M) \). Then the natural map \(\text{Diff}_+(M)/\text{Diff}_0 \longrightarrow \Gamma_0 \) has finite kernel, and its image has finite index in \(\Gamma_0 \).

Theorem: Let \(M \) be a simple hyperkähler manifold, and \(\Gamma_0 \) as above. Then

(i) \(\Gamma_0 \rvert_{H^2(M, \mathbb{Z})} \) is a finite index subgroup of \(O(H^2(M, \mathbb{Z}), q) \).

(ii) The map \(\Gamma_0 \longrightarrow O(H^2(M, \mathbb{Z}), q) \) has finite kernel.

Proof. Step 1: Fujiki formula \(v^{2n} = q(v, v)^n \) implies that \(\Gamma_0 \) preserves the Bogomolov-Beauville-Fujiki up to a sign. The sign is also fixed, if \(n \) is odd.

Step 2: For even \(n \), the sign is also fixed. Indeed \(\Gamma_0 \) preserves \(p_1(M) \), and (as Fujiki has shown) \(v^{2n-2} \wedge p_1(M) = q(v, v)^{n-1}c \), for some \(c \in \mathbb{R} \). The constant \(c \) is positive, because the degree of \(c_2(B) \) is positive for any Yang-Mills bundle with \(c_1(B) = 0 \).
Computation of the mapping class group (cont.)

Step 3: $\sigma(H^2(M, \mathbb{Q}), q)$ acts on $H^*(M, \mathbb{Q})$ by automorphisms preserving Pontryagin classes (V., 1995). Therefore $\Gamma_0|_{H^2(M, \mathbb{Q})}$ is an arithmetic subgroup of $O(H^2(M, \mathbb{R}), q)$.

Step 4: The kernel K of the map $\Gamma_0 \rightarrow \Gamma_0|_{H^2(M, \mathbb{Q})}$ is finite, because it commutes with the Hodge decomposition and Lefschetz $sl(2)$-action, hence preserves the Riemann-Hodge form, which is positive definite. ■

REMARK: The same argument as in Step 4 also proves that the group of automorphisms of $H^*(M, \mathbb{R})$ preserving p_1 is projected to $O(H^2(M, \mathbb{R}), q)$ with compact kernel.

REMARK: (Kollar-Matsusaka, Huybrechts) There are only finitely many connected components of Teich.

REMARK: The mapping class group acts on the set of connected components of Teich.

COROLLARY: Let Γ_I be the group of elements of mapping class group preserving a connected component of Teichmüller space containing $I \in \text{Teich}$. Then Γ_I is also arithmetic. Indeed, it has finite index in Γ.

The period map

Remark: For any \(J \in \text{Teich} \), \((M, J)\) is also a simple hyperkähler manifold, hence \(H^{2,0}(M, J) \) is one-dimensional.

Definition: Let \(P : \text{Teich} \rightarrow \mathbb{P}H^2(M, \mathbb{C}) \) map \(J \) to a line \(H^{2,0}(M, J) \in \mathbb{P}H^2(M, \mathbb{C}) \). The map \(P : \text{Teich} \rightarrow \mathbb{P}H^2(M, \mathbb{C}) \) is called the period map.

REMARK: \(P \) maps Teich into an open subset of a quadric, defined by
\[
\text{Per} := \{ l \in \mathbb{P}H^2(M, \mathbb{C}) \mid q(l, l) = 0, q(l, \bar{l}) > 0 \}.
\]

It is called the period space of \(M \).

REMARK: \(\text{Per} = SO(b_2 - 3, 3)/SO(2) \times SO(b_2 - 3, 1) \)

THEOREM: Let \(M \) be a simple hyperkähler manifold, and Teich its Teichmüller space. Then

(i) (Bogomolov) **The period map** \(P : \text{Teich} \rightarrow \text{Per} \) is etale.

(ii) (Huybrechts) It is surjective.

REMARK: Bogomolov’s theorem implies that Teich is smooth. It is non-Hausdorff even in the simplest examples.
Hausdorff reduction

REMARK: A non-Hausdorff manifold is a topological space locally diffeomorphic to \mathbb{R}^n.

DEFINITION: Let M be a topological space. We say that $x, y \in M$ are non-separable (denoted by $x \sim y$) if for any open sets $V \ni x, U \ni y$, $U \cap V \neq \emptyset$.

THEOREM: (D. Huybrechts) If $I_1, I_2 \in \text{Teich}$ are non-separable points, then $P(I_1) = P(I_2)$, and (M, I_1) is birationally equivalent to (M, I_2)

DEFINITION: Let M be a topological space for which M/\sim is Hausdorff. Then M/\sim is called a **Hausdorff reduction** of M.

Problems:
1. \sim is not an equivalence relation.
2. Even if \sim is equivalence, the M/\sim is not always Hausdorff.

REMARK: A quotient M/\sim is Hausdorff, if $M \rightarrow M/\sim$ is open, and the graph $\Gamma_{\sim} \in M \times M$ is closed.
Weakly Hausdorff manifolds

DEFINITION: A point \(x \in X \) is called **Hausdorff** if \(x \not\sim y \) for any \(y \neq x \).

DEFINITION: Let \(M \) be an \(n \)-dimensional real analytic manifold, not necessarily Hausdorff. Suppose that the set \(Z \subset M \) of non-Hausdorff points is contained in a countable union of real analytic subvarieties of codim \(\geq 2 \). Suppose, moreover, that

(S) For every \(x \in M \), there is a closed neighbourhood \(B \subset M \) of \(x \) and a continuous surjective map \(\Psi : B \to \mathbb{R}^n \) to a closed ball in \(\mathbb{R}^n \), inducing a **homeomorphism** on an open neighbourhood of \(x \).

Then \(M \) is called a **weakly Hausdorff manifold**.

REMARK: The period map satisfies \((S)\). Also, the non-Hausdorff points of Teich are contained in a countable union of divisors.

THEOREM: A weakly Hausdorff manifold \(X \) admits a Hausdorff reduction. In other words, the quotient \(X/\sim \) is a Hausdorff. Moreover, \(X \to X/\sim \) is locally a homeomorphism.
Birational Teichmüller moduli space

DEFINITION: The space \(\text{Teich}_b := \text{Teich} / \sim \) is called the birational Teichmüller space of \(M \).

THEOREM: The period map \(\text{Teich}_b \xrightarrow{P} \text{Per} \) is an isomorphism, for each connected component of \(\text{Teich}_b \).

Idea of a proof:

0. Since \(\text{Per} = SO(b_2 - 3, 3) / SO(2) \times SO(b_2 - 3, 1) \) is simply connected, it will suffice to show it's a covering.

1. **It is étale** (Bogomolov).

2. For each hyperkähler structure \((I, J, K) \) on \(M \), there is a whole \(S^2 \) of complex structures \(L = aI + bJ + cK \) on \(M \), for \(a^2 + b^2 + c^2 = 1 \).

3. On every such line, \(P \) is surjective.
Birational Teichmüller moduli space (cont’d)

4. For any point \(x \in \text{Per} \), let \(NS(x) \) be the corresponding lattice of integer \((1,1)\)-classes in \(H^2(M) \). Then the set of Kaehler classes can be determined explicitly when \(\text{rk} \ NS(x) = 0 \). Every Kaehler class gives a hyperkaehler structure, hence a line in \(\text{Teich}_b \). Such a line is called generic hyperkähler curve (GHK curve).

5. The whole Teichmüller space is covered by GHK curves.

6. Surjectivity on GHK curves leads to the following condition.

(*) Let \(\text{Teich}_b \xrightarrow{P} \text{Per} \) be the period map. Then for each open subset \(V \subset \text{Per} \) with smooth boundary, and each connected component \(W \subset P^{-1}(V) \), the restriction \(W \xrightarrow{P} V \) is surjective.

6. The condition (*) always implies that \(P \) is a covering.

7. The period space is simply connected, hence \(P \) is an isomorphism on each connected component.
Global Torelli theorem

DEFINITION: Let M be a hyperkaehler manifold, Teich_b its birational Teichmüller space, and Γ the mapping class group. The quotient Teich_b/Γ is called the **birational moduli space** of M.

REMARK: The birational moduli space is obtained from the usual moduli space by gluing some (but not all) non-separable points. It is still non-Hausdorff.

THEOREM: Let (M, I) be a hyperkähler manifold, and W a connected component of its birational moduli space. Then W is isomorphic to $\mathbb{P}er/\Gamma_I$, where $\mathbb{P}er = SO(b_2 - 3, 3)/SO(2) \times SO(b_2 - 3, 1)$ and Γ_I is an arithmetic group in $O(H^2(M, \mathbb{R}), q)$.

A CAUTION: Usually “the global Torelli theorem” is understood as a theorem about Hodge structures. For K3 surfaces, **the Hodge structure on $H^2(M, \mathbb{Z})$ determines the complex structure**. For $\dim_{\mathbb{C}} M > 2$, it is false.
The Hodge-theoretic Torelli theorem

REMARK: The group $O(p,q)$ ($p,q > 0$) has **4 connected components**, corresponding to the orientations of positive p-dimensional and negative q-dimensional planes.

DEFINITION: Let M be a hyperkähler manifold. One says that the **Hodge-theoretic Torelli theorem holds for** M if

$$\text{Teich} / \Gamma_I \longrightarrow \mathbb{P}er / O^+(H^2(M,\mathbb{Z}),q),$$

where $O^+(H^2(M,\mathbb{Z}),q)$ is a subgroup of $O(H^2(M,\mathbb{Z}),q)$ preserving orientation on positive 3-planes. Equivalently, **it is true if** M **is uniquely determined by its Hodge structure.**

REMARK: The Hodge-theoretic Torelli theorem **is true for K3 surfaces.** **It is false** for all other known examples of hyperkähler manifolds.

Problems:
1. The moduli space Teich / Γ **is not Hausdorff** (Debarre, 1984). Indeed, bimeromorphically equivalent hyperkähler manifolds have isomorphic Hodge structures.
2. **The covering** $\text{Teich}_b / \Gamma_I \longrightarrow \mathbb{P}er / O^+(H^2(M,\mathbb{Z}),q)$ **is non-trivial**, because the map $\Gamma_I \longrightarrow O^+(H^2(M,\mathbb{Z}),q)$ is not surjective (Namikawa, 2002).
The birational Hodge-theoretic Torelli theorem

DEFINITION: The birational Hodge-theoretic Torelli theorem is true for M if Γ_I (the stabilizer of a Torelli component in the mapping class group) is isomorphic to $O^+(H^2(M,\mathbb{Z}),q)$.

REMARK: If a birational Hodge-theoretic Torelli theorem holds for M, then any deformation of M is up to a bimeromorphic equivalence determined by the Hodge structure on $H^2(M)$.

THEOREM: (Markman) The for $M = \text{K3}^n$, the group Γ_I is a subgroup of $O^+(H^2(M,\mathbb{Z}),q)$ generated by oriented reflections.

THEOREM: Let $M = \text{K3}^{n+1}$ with n a prime power. Then the (usual) global Torelli theorem holds birationally: two deformations of a Hilbert scheme with isomorphic Hodge structures are bimeromorphic. For other n, it is false (Markman).