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Hyperkahler manifolds

DEFINITION: A hyperkahler structure on a manifold M is a Riemannian
structure g and a triple of complex structures I, J, K, satisfying quaternionic
relations T oJ = —J oI = K, such that g is Kahler for I, J, K.

REMARK: A hyperkahler manifold has three symplectic forms
Wy .= g(Ia)' W L= g(‘]a)’ WK -— g(Ka)

REMARK: This is equivalent to VI =VJ = VK = 0: the parallel translation
along the connection preserves I, J, K.

DEFINITION: Let M be a Riemannian manifold, € M a point. The
subgroup of GL(T,M) generated by parallel translations (along all paths) is
called the holonomy group of M.

REMARK: A hyperkahler manifold can be defined as a manifold which
has holonomy in Sp(n) (the group of all endomorphisms preserving I, J, K).
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Holomorphically symplectic manifolds

DEFINITION: A holomorphically symplectic manifold is a complex manifold
equipped with non-degenerate, holomorphic (2,0)-form.

REMARK: Hyperkahler manifolds are holomorphically symplectic. Indeed,
Q:=wj+ +v—1wg is a holomorphic symplectic form on (M, I).

THEOREM: (Calabi-Yau) A compact, Kahler, holomorphically symplectic
manifold admits a unique hyperkahler metric in any Kahler class.

DEFINITION: For the rest of this talk, a hyperkahler manifold is a com-
pact, Kahler, holomorphically symplectic manifold.

DEFINITION: A hyperkahler manifold M is called simple if Hl(M) = 0,
H29(M) =C.

Bogomolov’s decomposition: Any hyperkahler manifold admits a finite cov-
ering which is a product of a torus and several simple hyperkahler manifolds.

Remark: A simple hyperkahler manifold is always simply connected (Cheeger-
Gromoll theorem).

Further on, all hyperkahler manifolds are assumed to be simple.
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The Bogomolov-Beauville-Fujiki form

THEOREM: (Fujiki). Let n € H2(M), and dimM = 2n, where M is hy-
perkdhler. Then [,;7°" = cq(n,n)"™, for some primitive integer quadratic form
g on H2(M,Z), and ¢ > 0 an integer number.

Definition: This form is called Bogomolov-Beauville-Fujiki form. It is
defined by the Fujiki’s relation uniquely, up to a sign. The sign is
determined from the following formula (Bogomolov, Beauville)

Aa(n, 1) = /Xn AnpAQTTLAT L

_1 _ e
_n (/ n/\Q”_l/\Q”> (/ nAQPAQ" 1)
n X X

where €2 is the holomorphic symplectic form, and A\ > 0.

Remark: ¢ has signature (b, — 3,3). It is negative definite on primitive
forms, and positive definite on (Q2,Q,w), where w is a Kahler form.
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Automorphisms of cohomology.

THEOREM: Let M be a simple hyperkahler manifold, and G C GL(H*(M)) a
group of automorphisms of its cohomology algebra preserving the Pontryagin
classes. Then G acts on HQ(M) preserving the BBF form. Moreover, the
map G — O(H?(M,R), q) is surjective on a connected component, and
has compact kernel.

Proof. Step 1: Fujiki formula v2"™ = g(v,v)" implies that g preserves the
Bogomolov-Beauville-Fujiki up to a sign. The sign is fixed, if n is odd.

Step 2: For even n, the sign is also fixed. Indeed, G preserves p1 (M), and (as
Fujiki has shown) v2" =2 A p1 (M) = q(v,v)" ¢, for some ¢ € R. The constant
c is positive, because the degree of c>(B) is positive for any Yang-Mills
bundle with ¢1(B) = 0.

Step 3: o(H2(M,R), q) acts on H*(M,R) by derivations preserving Pontryagin
classes (V., 1995). Therefore Lie(G) surjects to o(H2(M,R), q).

Step 4: The kernel K of the map G — G|H2(M R) IS compact, because it
commutes with the Hodge decomposition and Lefschetz si(2)-action, hence
preserves the Riemann-Hodge form, which is positive definite. =
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Deformations of holomorphically symplectic manifolds.

THEOREM: (Kodaira) A small deformation of a compact Kahler man-
ifold is again Kahler.

COROLLARY: A small deformation of a holomorphically symplectic Kahler
manifold M is again holomorphically symplectic.

Proof: A small deformation M’ of M would satisfy H29(M'") = H2O(M),
however, a small deformation of a non-degenerate (2,0)-form remains non-
degenerate. m

COROLLARY: Small deformations of hyperkahler manifolds are hy-
perkahler.

REMARK: By the moduli of hyperkahler manifolds we shall understand the
deformation space of complex manifolds admitting holomorphically symplectic
and Kahler structure.
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The Teichmuller space and the mapping class group

Definition: Let M be a compact complex manifold, and Diffg(M) a con-
nected component of its diffeomorphism group (the group of isotopies).
Denote by Teich the space of complex structures on M, and let Teich =
Teich/ Diffg(M). We call it the Teichmuller space.

Remark: Teich is a finite-dimensional complex space (Kodaira-Spencer-
Kuranishi), but often non-Hausdorff.

Definition: Let Diff4 (M) be the group of oriented diffeomorphisms of M.
We call I := Diff . (M)/ Diffo(M) the mapping class group. The coarse
moduli space of complex structures on M is a connected component of
Teich /T".

Remark: This terminology is standard for curves.
REMARK: For hyperkahler manifolds, it is convenient to take for Teich the
space of all complex structures of hyperkahler type, that is, holomor-

phically symplectic and Kahler. It is open in the usual Teichmuller space.

REMARK: To describe the moduli space, we shall compute Teich and I.
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Computation of the mapping class group

Theorem: (Sullivan) Let M be a compact, simply connected Kahler mani-
fold, dimgc M > 3. Denote by [ g the group of automorphisms of an algebra
H*(M,Z) preserving the Pontryagin classes p;,(M). Then the natural map
Diff  (M)/ Diffp — "o has finite kernel, and its image has finite index
in lp.

Theorem: Let M be a simple hyperkahler manifold, and g as above. Then
(i) I‘O)HQ(M 7) is a finite index subgroup of O(H?2(M,7),q).

(ii) The map My — O(H?2(M,Z),q) has finite kernel.

Proof: Follows from Sullivan and a computation of Aut(H*(M,R)) done
earlier. m

REMARK: (Kollar-Matsusaka, Huybrechts) There are only finitely many
connected components of Teich.

REMARK: The mapping class group acts on the set of connected compo-
nents of Teich.

COROLLARY:?: Let 'y be the group of elements of mapping class group
preserving a connected component of Teichmuller space containing I € Teich.
Then [ is also arithmetic. Indeed, it has finite index in [,
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The period map

Remark: For any J € Teich, (M, J) is also a simple hyperkahler manifold,
hence H29(M,J) is one-dimensional.

Definition: Let P : Teich — PH2(M,C) map J to a line H20(M,J) €
PH2(M,C). The map P: Teich — PH?(M,C) is called the period map.

REMARK: P maps Teich into an open subset of a quadric, defined by

Per := {l € PH?(M,C) | q(i,1) =0,q(l,1) > 0.
It is called the period space of M.

REMARK: Per = SO(by — 3,3)/50(2) x SO(by — 3,1)

THEOREM: Let M be a simple hyperkahler manifold, and Teich its Te-
ichmuller space. Then

(i) (Bogomolov) The period map P : Teich — Per is etale.

(ii) (Huybrechts) It is surjective.

REMARK: Bogomolov's theorem implies that Teich is smooth. It is non-
Hausdorff even in the simplest examples.
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Hausdorff reduction

REMARK: A non-Hausdorff manifold is a topological space locally diffeo-
morphic to R”.

DEFINITION: Let M be a topological space. We say that =,y € M are non-
separable (denoted by =z ~ y) if for any open sets Vo xz, U3y, UNV # 0.

THEOREM: (D. Huybrechts) If I;, I» € Teich are non-separablee points,
then P(I1) = P(I»), and (M, I71) is birationally equivalent to (M, I»)

DEFINITION: Let M be a topological space for which M/ ~ is Hausdorff.
Then M/ ~ is called a Hausdorff reduction of M.

Problems:
1. ~ iIs not always an equivalence relation.
2. Even if ~ is equivalence, the M/ ~ is not always Hausdorff.

REMARK: A quotient M/ ~ is Hausdorff, if M — M/ ~ is open, and the
graph '~ € M x M is closed.
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Weakly Hausdorff manifolds
DEFINITION: A point z € X is called Hausdorff if x 4 y for any y #= .

DEFINITION: Let M be an n-dimensional real analytic manifold, not nec-
essarily Hausdoff. Suppose that the set Z C M of non-Hausdorff points is
contained in a countable union of real analytic subvarieties of codim > 2.
Suppose, moreover, that

(S) For every x € M, there is a closed neighbourhood B C M of x and a
continuous surjective map W : B — R" to a closed ball in R", inducing a
homeomorphism on an open neighbourhood of =x.

Then M is called a weakly Hausdorff manifold.

REMARK: The period map satisfies (S). Also, the non-Hausdorff points
of Teich are contained in a countable union of divisors.

THEOREM: A weakly Hausdorff manifold X admits a Hausdorff reduc-
tion. In other words, the quotient X/ ~ is a Hausdorff. Moreover, X — X/ ~
IS locally a homeomorphism.

This theorem is proven using 1920-ies style point-set topology.
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Birational Teichmuller moduli space

DEFINITION: The space Teich, := Teich / ~ is called the birational Te-
ichmuller space of M.

THEOREM: The period map Teich, ~ Per is an isomorphism, for each
connected component of Teichy,.

The proof is based on two results.

PROPOSITION: (The Covering Criterion) Let X -2 Y be an etale
map of smooth manifolds. Suppose that each y € Y has a neighbourhood
B > y diffeomorphic to a closed ball, such that for each connected component

B' ¢ o~1(B), B’ projects to B surjectively. Then ¢ is a covering.

PROPOSITION: The period map satisfies the conditions of the Cov-
ering Criterion.
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Global Torelli theorem

DEFINITION: Let M be a hyperkaehler manifold, Teich, its birational Te-
ichmiuller space, and I' the mapping class group. The quotient Teichy /T is
called the birational moduli space of M.

REMARK: The birational moduli space is obtained from the usual moduli
space by gluing some (but not all) non-separable points. It is still non-
HausdorfF.

THEOREM: Let (M,I) be a hyperkahler manifold, and W a connected
component of its birational moduli space. Then W is isomorphic to Per/I",
where Per = SO(by — 3,3)/50(2) x SO(bp, — 3,1) and I; is an arithmetic
group in O(H?(M,R),q).

A CAUTION: Usually *“the global Torelli theorem” is understood as a the-
orem about Hodge structures. For K3 surfaces, the Hodge structure on
H?(M,7Z) determines the complex structure. For dim¢ M > 2, it is false.
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T he marked moduli space

DEFINITION: Let ' be the mapping class group, and K C [ the kernel of
the natural map T — GL(H?(M,Z)). It is finite, as we have shown. The
quotient Teich /K is called the marked moduli space.

THEOREM: The natural map Teich — Teich /K is a homeomorphism
on each connected component.

Proof. Step 1:

Let I € Teich be a fixed point of a subgroup K; C K. By Bogomolov’'s
theorem, Ty Teich is naturally identified with HIl’l(M). Since the action of K
on H2(M) is trivial, any a € K acts trivially on T} Teich. Therefore, K; acts
as identity on a connected component of Teich containing /.

Step 2: From Step 1, obtain that the quotient map Teich Y. Teich /K
IS a finite covering, hence it induces a finite covering of the cor-
responding Hausdorff reductions. However, W induces an isomorphism
on each connected component of Teich,, because each component of
Teichy = (Teichy)/K is isomorphic to Per. =
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The Hodge-theoretic Torelli theorem

REMARK: The group O(p,q) (p,g > 0) has 4 connected components,
corresponding to the orientations of positive p-dimensional and negative g-
dimensional planes.

DEFINITION: Let M be a hyperkaehler manifold. One says that the
Hodge-theoretic Torelli theorem holds for M if

Teich /T — Per/OT (H?(M,Z), q),

where OT(H?(M,7),q) is a subgroup of O(H?(M,Z),q) preserving orientation
on positive 3-planes. Equivalently, it is true if M is uniquely determined
by its Hodge structure.

REMARK: The Hodge-theoretic Torelli theorem is true for K3 surfaces.
It is false for all other known examples of hyperkaehler manifolds.

Problems:

1. The moduli space Teich /I is not Hausdorff (Debarre, 1984). Indeed,
bimeromorphically equivalent hyperkahler manifolds have isomorphic Hodge
structures.

2. The covering Teichy /T ; — Per/OT(H?(M,7),q) is non-trivial, because
the map M; — OT(H?2(M,Z),q) is not surjective (Namikawa, 2002).
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T he birational Hodge-theoretic Torelli theorem

DEFINITION: The birational Hodge-theoretic Torelli theorem is true
for M if ; (the stabilizer of a Torelli component in the mapping class group)
is isomorphic to OT(H?2(M,Z),q).

REMARK: If a birational Hodge-theoretic Torelli theorem holds for M, then
any deformation of M is up to a bimeromorphic equivalence determined by
the Hodge structure on H2(M).

THEOREM: (Markman) The for M = K3[”], the group Iy is a subgroup
of Ot (H?2(M,Z),q) generated by oriented reflections.

THEOREM: Let M = K31l with n a prime power. Then the (usual)
global Torelli theorem holds birationally: two deformations of a Hilbert
scheme with isomorphic Hodge structures are bimeromorphic. For
other n, it is false (Markman).
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