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Hyperkahler manifolds

DEFINITION: A hyperkaehler structure on a manifold M is a Riemannian
structure g and a triple of complex structures I, J, K, satisfying quaternionic
relations I oJ = —J ol = K, such that g is Kaehler for I, J, K.

REMARK: A hyperkahler manifold has three symplectic forms
Wy .= 9(17)’ W .= g(‘]7)’ WK = g(K7)

REMARK: A hyperkahler manifold holomorphically symplectic: Q2 := wj; +
v—1wg is non-degenerate, holomorphic, closed (2,0)-form on (M, I).

Calabi-Yau theorem gives a unique Ricci-flat Kahler metric on M, in any
Kahler class, if c1 (M) = 0. If M is also holomorphically symplectic, this metric
is hyperkahler. It follows from Bochner’s vanishing, Berger’s classification
of irreducible holonomy groups, and de Rham’'s decomposition theorem.

THEOREM: A compact, Kahler, holomorphically symplectic manifold ad-
mits a unique hyperkaehler metric in every Kaehler class.

REMARK: In the sequel, ‘“hyperkaehler manifold” is understood as
“compact, Kahler, holomorphically symplectic”.
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Simple Hyperkahler manifolds

Definition: A hyperkidhler manifold M is called simple if H1(M) = 0,
H29(M) =C.

REMARK: A hyperkaehler manifold is one with (global) holonomy in Sp(n).
It is simple if its local holonomy is Sp(n).

THEOREM: (Bogomolov’s decomposition): Any hyperkahler manifold
admits a finite covering, which is a product of a torus and several simple
hyperkahler manifolds.

Further on, all hyperkahler manifolds are assumed to be simple.
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The Bogomolov-Beauville-Fujiki form

THEOREM: (Fujiki). Let n € H2(M), and dimM = 2n, where M is hy-
perkdhler. Then [y, n°" = q(n,n)", for some integer quadratic form ¢ on
H2(M).

Definition: This form is called Bogomolov-Beauville-Fujiki form. It is
defined by this relation uniquely, up to a sign. The sign is determined
from the following formula (Bogomolov, Beauville)

cqg(n,m) = (n/2) /Xn/\n AQVIAQTI

—(1—n) (/XnAQ”_1A§”> (/XnAQ”A§"_1>

where 2 is the holomorphic symplectic form, and ¢ = C”'Q””,r:_le s AQPAQR" >0

Remark: ¢ has signature (b, — 3,3). It is negative definite on primitive
forms, and positive definite on (2, Q,w), where w is a Kahler form.
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The Teichmuller space and the mapping class group

Definition: Let M be a compact complex manifold, and Diffg(M) a con-
nected component of its diffeomorphism group (the group of isotopies).
Denote by Teich the space of complex structures on M, and let Teich =
Teich/ Diffg(M). We call it the Teichmuller space.

Remark: Teich is a finite-dimensional complex space (Kodaira), but often
non-Hausdorff.

Definition: Let Diff4 (M) be the group of oriented diffeomorphisms of M.
We call I := Diff . (M)/ Diffo(M) the mapping class group. The coarse
moduli space of complex structures on M is a connected component of
Teich /T".

Remark: This terminology is standard for curves.

REMARK: For hyperkaehler manifolds, it is convenient to take for Teich the
space of all complex structures of hyperkaehler type, that is, holomor-
phically symplectic and Kaehler. It is open in the usual Teichmuller space.
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The period map

Remark: For any J € Teich, (M, J) is also a simple hyperkahler manifold,
hence H29(M,J) is one-dimensional.

Definition: Let P : Teich — PH?(M,C) map J to a line H29(M,J) €
PH?2(M,C). The map P: Teich — PH?(M,C) is called the period map.

Remark: P maps Teich into an open subset of a quadric, defined by

Per := {l € PH?(M,C) | q(i,1) =0,q(l,1) > 0.
It is called the period space of M.

THEOREM: Let M be a simple hyperkaehler manifold, and Teich its Teich-
muller space. Then

(i) (Bogomolov) The period map P : Teich — Per is etale.

(ii) (Huybrechts) It is surjective.

Remark: Bogomolov's theorem implies that Teich is smooth.

THEOREM: (D. Huybrechts) If I, I» € Teich are non-separate points, then
P(I1) = P(I»), and (M, I7) is birationally equivalent to (M, I»)
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Hausdorff reduction

REMARK: A non-Hausdorff manifold is a topological space locally diffeo-
morphic to R".

DEFINITION: Let X be a topological space, and X £, Xp a continu-
ous surjection. The space X is called a Hausdorff reduction of X if any
continuous map X — X' to a Hausdorff space is factorized through o.

DEFINITION: Let M be a topological space. We say that =,y € M are non-
separable (denoted by x ~ y) if for any opensets Voz, U3y, UNV % 0.

CLAIM: A Hausdorff reduction, when it exists, is isomorphic to a quotient
M/ ~.

Problems:
1. ~ iIs not an equivalence relation.
2. Even if ~ is equivalence, the M/ ~ is not always Hausdorff.

REMARK: A quotient M/ ~ is Hausdorff, if M — M/ ~ is open, and the
graph I~ € M x M is closed.
.
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Global Torelli theorem

THEOREM: Let P : Teich — Per be a period map of a hyperkaehler
manifold. Then P is a Hausdorff reduction, for each connected component
of Teich. In particular, it is surjective and generically one-to-one on each
component.

A CAUTION: Usually *“the global Torelli theorem” is understood as a the-
orem about Hodge structures. For K3 surfaces, the Hodge structure on
H?(M,7) determines the complex structure (Tyurina, Shafarevich, Pyatetski-
Shapiro, Burns, Rappoport, Todorov, Siu, ...). This can be understood as
Isomorphism

Teich /T — Per/OT(H?(M,Z), q).

Here 'y is a subgroup of the mapping class group stabilizing a connected
component. For dimg M > 2, it is false.

Problems:
1. The moduli space Teich /T" is not Hausdorff (Debarre, 1984).
2. The covering Teich /[ ; — Per/OT(H?(M,7Z),q) is non-trivial, because
the map N; — OT(H?2(M,Z),q) is not surjective (Namikawa, 2002).
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The Hodge-theoretic Torelli theorem

REMARK: The group O(p,q) (p,q > 0) has 4 connected components, corresponding to
the orientations of positive p-dimensional and negative g-dimensional planes.

DEFINITION: A spin-orientation on a space with sighature p,q is a choice
of orientation of positive p-dimensional planes. The group preserving spin-
orientation is denoted by O1(p, q).

REMARK: For the H2(M), the spin orientation is determined by the
Kaehler and holomorphic symplectic forms.

REMARK: A birational Hodge-theoretic Torelli theorem is true if and only
if ; (the stabilizer of a Torelli component in the mapping class group) is
isomorphic to OT(H2(M,Z),q).

THEOREM: (Markman) The for M = K3[*t+1l the group Iy is a subgroup
of OT(H?(M,Z),q) generated by spin-oriented reflections.

THEOREM: Let M = K3["t1l with n a prime power. Then the (usual)
global Torelli theorem holds birationally: two deformations of a Hilbert
scheme with isomorphic Hodge structures are bimeromorphic. For
other n, it is false (Markman).
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Computation of the mapping class group

Theorem: (Sullivan) Let M be a compact simply connected (or nilpotent)
Kaehler manifold, dimg M > 3. Denote by ' the group of automorphisms
of an algebra H*(M,Z) preserving the Pontryagin classes p;(M). Then the
natural map Diff  (M)/Diffp — I' has finite kernel, and its image has
finite index in I.

Theorem: Let M be a simple hyperkaehler manifold, and ' as above. Then
(i) I“HQ(M Q) Is an arithmetic subgroup of O(H?(M,Q),q).

(ii) The map I — O(H?(M,Q), ¢) has finite kernel.

Proof. Step 1: Fujiki formula v2" = ¢(v,v)™ implies that " preserves the
Bogomolov-Beauville-Fujiki up to a sign.

Step 2: The sign is fixed, because I preserves pi(M), and (as Fujiki has
shown) v2"=2 A p1(M) = q(v,v)" 1l¢, for some ¢ € R. The constant ¢ is
positive, because the degree of c»(B) is positive for any Yang-Mills bundle
with ¢1(B) = 0.

Step 3: o(H2(M,Q), q) acts on H*(M,Q) by automorphisms preserving Pon-
tryagin classes (V., 1995). Therefore I‘|H2(MQ) iIs an arithmetic subgroup

of O(H?(M,R),q).
10



Global Torelli Theorem M. Verbitsky

Computation of the mapping class group (cont.)

Step 4: The kernel K of the map |‘—>|‘|H2(M@) IS finite, because it
commutes with the Hodge decomposition and Lefschetz sl(2)-action, hence
preserves the Riemann-Hodge form, which is positive definite. =

REMARK: The same argument also proves that the group of automor-
phisms of H*(M,R) preserving p; is projected to O(H?(M,R),q) with
compact kernel.

REMARK: (Kollar-Matsusaka, Huybrechts) There are only finitely many
connected components of Teich.

COROLLARY: The group 'y of elements of mapping class group preserving
a Torelli component is also arithmetic.

THEOREM: Let M be a hyperkaehler manifold, and W its birational moduli
space. Then W is isomorphic to Per/I";, where Per = SO(b—3,3)/5S0(2) x
SO(b> — 3,1) and I; is an arithmetic group in O(H?2(M,R),q)
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Weakly Hausdorff manifolds
DEFINITION: A point z € X is called Hausdorff if x 4 y for any y #= .

DEFINITION: Let M be an n-dimensional real analytic manifold, not nec-
essarily Hausdoff. Suppose that the set Z C M of non-Hausdorff points is
contained in a countable union of real analytic subvarieties of codim > 2.
Suppose, moreover, that

(S) For every x € M, there is a closed neighbourhood B C M of = and a
continuous surjective map W : B — R"™ to a closed ball in R", inducing a
homeomorphism on an open neighbourhood of x.

Then M is called a weakly Hausdorff manifold.

REMARK: The period map satisfies (S). Also, the non-Hausdorff points
of Teich are contained in the countable union of divisors.

THEOREM: A weakly Hausdorff manifold X admits a Hausdorff reduc-
tion. In other words, the quotient X/ ~ is a Hausdorff. Moreover, X — X/ ~
IS locally a homeomorphism.
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Birational Teichmuller moduli space

DEFINITION: The space Teich, := Teich / ~ is called the birational Te-
ichmuller space of M.

THEOREM: The period map Teichy 2, Per 1S an isomorphism.
Idea of a proof:

0. Since Per = SO(by — 3,3)/S0(2) x SO(by — 3,1) is simply connected, it
will suffice to show it’s a covering.

1. It is etale (Bogomolov).

2. For each hyperkaehler structure (I,J,K) on M, there is a whole S?2 of
complex structures L = al 4+ bJ + cK on M, for a? + b2 4+ 2 =

3. On every such line, P is surjective.
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Birational Teichmuller moduli space (cont’d)

4. For any point x € Per, let NS(x) be the corresponding lattice of integer
(1,1)-classes in H2(M). Then the set of hyperkaehler structures can be
determined explicitly from Boucksom’s divisorial Zariski decomposition.

5. The whole Teichmuller space is covered by such curves, hence
Teichy P, Per satisfies the following condition:

(*) For each closed subset V C Per with smooth boundary, and each con-
nected component W c P~1(V), the restriction W P vis surjective.

6. This condition (*) always implies that P is a covering.
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Divisorial Zariski decomposition

DEFINITION: A class n € HL1 (M) is called pseudoeffective if it can be
represented by a positive current, and nef if it lies in the closure of a Kaehler
cone.

DEFINITION: A modified nef cone (also “birational nef cone” and “mov-
able nef cone”) is a closure of a union of all nef cones for all bimeromorphic
models of a holomorphically symplectic manifold M.

THEOREM: (D. Huybrechts, S. Boucksom)
T he modified nef cone is dual to the pseudoeffective cone under the
Bogomolov-Beauville-Fujiki pairing.

The divisorial Zariski decomposition theorem: (S. Boucksom)

Let M be a simple hyperkahler manifold. Then every pseudoeffective class
can be decomposed as a sum n =v + > ;a;[E;], where v is modified nef, q;
positive numbers, and E; exceptional divisors satisfying ¢q(FE;, E;) < 0.

COROLLARY: Let M be a hyperkaehler manifold with HL1(M,7Z) = 0.
Then every pseudoeffective class is modified nef.

Proof: Indeed, on such M there are no exceptional divisors. =
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A Kahler cone for generic hyperkahler manifolds

COROLLARY: Let M be a hyperkaehler manifold with HL1(M,Z) = 0.
Then the modified nef cone is self-dual.

REMARK: For any nef classes v,v’, one has q(v,v") > 0. Therefore, the nef
cone is contained in its dual. Moreover, the nef cone K, is contained in one
of two components KT of a set {v € HLI(M) | ¢q(v,v) > 0}, and therefore,
the dual nef cone contains K7:

Kn,C KT CK}

REMARK: For HL1(M,7Z) = 0, the modified nef cone K is self-dual, but
all elements of Ky, satisfy q(v,v) > 0. This gives

Kmn C KT C K, = Kmn CKT.
We obtain

COROLLARY: Let M be a hyperkaehler manifold with HL1(M,7Z) = 0.
Then the Kaehler cone is one of two components of the set {v €
HYY(M) | q(v,v) >0}, m
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