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Hyperkähler manifolds

DEFINITION: A hyperkaehler structure on a manifold M is a Riemannian
structure g and a triple of complex structures I, J, K, satisfying quaternionic
relations I ◦ J = −J ◦ I = K, such that g is Kaehler for I, J, K.

REMARK: A hyperkähler manifold has three symplectic forms
ωI := g(I·, ·), ωJ := g(J ·, ·), ωK := g(K·, ·).

REMARK: A hyperkähler manifold holomorphically symplectic: Ω := ωJ +√
−1 ωK is non-degenerate, holomorphic, closed (2,0)-form on (M, I).

Calabi-Yau theorem gives a unique Ricci-flat Kähler metric on M , in any
Kähler class, if c1(M) = 0. If M is also holomorphically symplectic, this metric
is hyperkähler. It follows from Bochner’s vanishing, Berger’s classification
of irreducible holonomy groups, and de Rham’s decomposition theorem.

THEOREM: A compact, Kähler, holomorphically symplectic manifold ad-
mits a unique hyperkaehler metric in every Kaehler class.

REMARK: In the sequel, “hyperkaehler manifold” is understood as
“compact, Kähler, holomorphically symplectic”.
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Simple Hyperkähler manifolds

Definition: A hyperkähler manifold M is called simple if H1(M) = 0,

H2,0(M) = C.

REMARK: A hyperkaehler manifold is one with (global) holonomy in Sp(n).

It is simple if its local holonomy is Sp(n).

THEOREM: (Bogomolov’s decomposition): Any hyperkähler manifold

admits a finite covering, which is a product of a torus and several simple

hyperkähler manifolds.

Further on, all hyperkähler manifolds are assumed to be simple.
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The Bogomolov-Beauville-Fujiki form

THEOREM: (Fujiki). Let η ∈ H2(M), and dimM = 2n, where M is hy-

perkähler. Then
∫
M η2n = q(η, η)n, for some integer quadratic form q on

H2(M).

Definition: This form is called Bogomolov-Beauville-Fujiki form. It is

defined by this relation uniquely, up to a sign. The sign is determined

from the following formula (Bogomolov, Beauville)

cq(η, η) = (n/2)
∫
X

η ∧ η ∧Ωn−1 ∧Ωn−1−

− (1− n)
(∫

X
η ∧Ωn−1 ∧Ωn

) (∫
X

η ∧Ωn ∧Ωn−1
)

where Ω is the holomorphic symplectic form, and c = Cn−1
2n−2λ

∫
M ∧Ωn∧Ωn

> 0

.

Remark: q has signature (b2 − 3,3). It is negative definite on primitive

forms, and positive definite on 〈Ω,Ω, ω〉, where ω is a Kähler form.
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The Teichmuller space and the mapping class group

Definition: Let M be a compact complex manifold, and Diff0(M) a con-

nected component of its diffeomorphism group (the group of isotopies).

Denote by T̃eich the space of complex structures on M , and let Teich :=

T̃eich/Diff0(M). We call it the Teichmuller space.

Remark: Teich is a finite-dimensional complex space (Kodaira), but often

non-Hausdorff.

Definition: Let Diff+(M) be the group of oriented diffeomorphisms of M .

We call Γ := Diff+(M)/Diff0(M) the mapping class group. The coarse

moduli space of complex structures on M is a connected component of

Teich /Γ.

Remark: This terminology is standard for curves.

REMARK: For hyperkaehler manifolds, it is convenient to take for Teich the

space of all complex structures of hyperkaehler type, that is, holomor-

phically symplectic and Kaehler. It is open in the usual Teichmüller space.
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The period map

Remark: For any J ∈ Teich, (M, J) is also a simple hyperkähler manifold,
hence H2,0(M, J) is one-dimensional.

Definition: Let P : Teich −→ PH2(M, C) map J to a line H2,0(M, J) ∈
PH2(M, C). The map P : Teich −→ PH2(M, C) is called the period map.

Remark: P maps Teich into an open subset of a quadric, defined by

Per := {l ∈ PH2(M, C) | q(l, l) = 0, q(l, l) > 0.

It is called the period space of M .

THEOREM: Let M be a simple hyperkaehler manifold, and Teich its Teich-
muller space. Then
(i) (Bogomolov) The period map P : Teich −→ Per is etale.

(ii) (Huybrechts) It is surjective.

Remark: Bogomolov’s theorem implies that Teich is smooth.

THEOREM: (D. Huybrechts) If I1, I2 ∈ Teich are non-separate points, then
P (I1) = P (I2), and (M, I1) is birationally equivalent to (M, I2)
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Hausdorff reduction

REMARK: A non-Hausdorff manifold is a topological space locally diffeo-

morphic to Rn.

DEFINITION: Let X be a topological space, and X
ϕ−→ X0 a continu-

ous surjection. The space X0 is called a Hausdorff reduction of X if any

continuous map X −→X ′ to a Hausdorff space is factorized through ϕ.

DEFINITION: Let M be a topological space. We say that x, y ∈ M are non-

separable (denoted by x ∼ y) if for any open sets V 3 x, U 3 y, U ∩ V 6= ∅.

CLAIM: A Hausdorff reduction, when it exists, is isomorphic to a quotient

M/ ∼.

Problems:

1. ∼ is not an equivalence relation.

2. Even if ∼ is equivalence, the M/ ∼ is not always Hausdorff.

REMARK: A quotient M/ ∼ is Hausdorff, if M −→M/ ∼ is open, and the

graph Γ∼ ∈ M ×M is closed.
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Global Torelli theorem

THEOREM: Let P : Teich −→ Per be a period map of a hyperkaehler

manifold. Then P is a Hausdorff reduction, for each connected component

of Teich. In particular, it is surjective and generically one-to-one on each

component.

A CAUTION: Usually “the global Torelli theorem” is understood as a the-

orem about Hodge structures. For K3 surfaces, the Hodge structure on

H2(M, Z) determines the complex structure (Tyurina, Shafarevich, Pyatetski-

Shapiro, Burns, Rappoport, Todorov, Siu, ...). This can be understood as

isomorphism

Teich /ΓI −→ Per/O+(H2(M, Z), q).

Here ΓI is a subgroup of the mapping class group stabilizing a connected

component. For dimC M > 2, it is false.

Problems:

1. The moduli space Teich /Γ is not Hausdorff (Debarre, 1984).

2. The covering Teich /ΓI −→ Per/O+(H2(M, Z), q) is non-trivial, because

the map ΓI −→O+(H2(M, Z), q) is not surjective (Namikawa, 2002).
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The Hodge-theoretic Torelli theorem

REMARK: The group O(p, q) (p, q > 0) has 4 connected components, corresponding to

the orientations of positive p-dimensional and negative q-dimensional planes.

DEFINITION: A spin-orientation on a space with signature p, q is a choice
of orientation of positive p-dimensional planes. The group preserving spin-
orientation is denoted by O+(p, q).

REMARK: For the H2(M), the spin orientation is determined by the
Kaehler and holomorphic symplectic forms.

REMARK: A birational Hodge-theoretic Torelli theorem is true if and only
if ΓI (the stabilizer of a Torelli component in the mapping class group) is
isomorphic to O+(H2(M, Z), q).

THEOREM: (Markman) The for M = K3[n+1], the group ΓI is a subgroup
of O+(H2(M, Z), q) generated by spin-oriented reflections.

THEOREM: Let M = K3[n+1] with n a prime power. Then the (usual)
global Torelli theorem holds birationally: two deformations of a Hilbert
scheme with isomorphic Hodge structures are bimeromorphic. For
other n, it is false (Markman).
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Computation of the mapping class group

Theorem: (Sullivan) Let M be a compact simply connected (or nilpotent)
Kaehler manifold, dimC M > 3. Denote by Γ the group of automorphisms
of an algebra H∗(M, Z) preserving the Pontryagin classes pi(M). Then the
natural map Diff+(M)/Diff0 −→ Γ has finite kernel, and its image has
finite index in Γ.

Theorem: Let M be a simple hyperkaehler manifold, and Γ as above. Then
(i) Γ

∣∣∣H2(M,Q) is an arithmetic subgroup of O(H2(M, Q), q).

(ii) The map Γ−→O(H2(M, Q), q) has finite kernel.

Proof. Step 1: Fujiki formula v2n = q(v, v)n implies that Γ preserves the
Bogomolov-Beauville-Fujiki up to a sign.

Step 2: The sign is fixed, because Γ preserves p1(M), and (as Fujiki has
shown) v2n−2 ∧ p1(M) = q(v, v)n−1c, for some c ∈ R. The constant c is
positive, because the degree of c2(B) is positive for any Yang-Mills bundle
with c1(B) = 0.

Step 3: o(H2(M, Q), q) acts on H∗(M, Q) by automorphisms preserving Pon-
tryagin classes (V., 1995). Therefore Γ

∣∣∣H2(M,Q) is an arithmetic subgroup

of O(H2(M, R), q).
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Computation of the mapping class group (cont.)

Step 4: The kernel K of the map Γ−→ Γ
∣∣∣H2(M,Q) is finite, because it

commutes with the Hodge decomposition and Lefschetz sl(2)-action, hence

preserves the Riemann-Hodge form, which is positive definite.

REMARK: The same argument also proves that the group of automor-

phisms of H∗(M, R) preserving p1 is projected to O(H2(M, R), q) with

compact kernel.

REMARK: (Kollar-Matsusaka, Huybrechts) There are only finitely many

connected components of Teich.

COROLLARY: The group ΓI of elements of mapping class group preserving

a Torelli component is also arithmetic.

THEOREM: Let M be a hyperkaehler manifold, and W its birational moduli

space. Then W is isomorphic to Per/ΓI, where Per = SO(b2−3,3)/SO(2)×
SO(b2 − 3,1) and ΓI is an arithmetic group in O(H2(M, R), q)
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Weakly Hausdorff manifolds

DEFINITION: A point x ∈ X is called Hausdorff if x 6∼ y for any y 6= x.

DEFINITION: Let M be an n-dimensional real analytic manifold, not nec-

essarily Hausdoff. Suppose that the set Z ⊂ M of non-Hausdorff points is

contained in a countable union of real analytic subvarieties of codim > 2.

Suppose, moreover, that

(S) For every x ∈ M , there is a closed neighbourhood B ⊂ M of x and a

continuous surjective map Ψ : B −→ Rn to a closed ball in Rn, inducing a

homeomorphism on an open neighbourhood of x.

Then M is called a weakly Hausdorff manifold.

REMARK: The period map satisfies (S). Also, the non-Hausdorff points

of Teich are contained in the countable union of divisors.

THEOREM: A weakly Hausdorff manifold X admits a Hausdorff reduc-

tion. In other words, the quotient X/ ∼ is a Hausdorff. Moreover, X −→X/ ∼
is locally a homeomorphism.
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Birational Teichmuller moduli space

DEFINITION: The space Teichb := Teich / ∼ is called the birational Te-

ichmuller space of M .

THEOREM: The period map Teichb
P−→ Per is an isomorphism.

Idea of a proof:

0. Since Per = SO(b2 − 3,3)/SO(2) × SO(b2 − 3,1) is simply connected, it

will suffice to show it’s a covering.

1. It is etale (Bogomolov).

2. For each hyperkaehler structure (I, J, K) on M , there is a whole S2 of

complex structures L = aI + bJ + cK on M , for a2 + b2 + c2 = 1.

3. On every such line, P is surjective.
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Birational Teichmuller moduli space (cont’d)

4. For any point x ∈ Per, let NS(x) be the corresponding lattice of integer

(1,1)-classes in H2(M). Then the set of hyperkaehler structures can be

determined explicitly from Boucksom’s divisorial Zariski decomposition.

5. The whole Teichmüller space is covered by such curves, hence

Teichb
P−→ Per satisfies the following condition:

(*) For each closed subset V ⊂ Per with smooth boundary, and each con-

nected component W ⊂ P−1(V ), the restriction W
P−→ V is surjective.

6. This condition (*) always implies that P is a covering.
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Divisorial Zariski decomposition

DEFINITION: A class η ∈ H1,1(M) is called pseudoeffective if it can be
represented by a positive current, and nef if it lies in the closure of a Kaehler
cone.

DEFINITION: A modified nef cone (also “birational nef cone” and “mov-
able nef cone”) is a closure of a union of all nef cones for all bimeromorphic
models of a holomorphically symplectic manifold M .

THEOREM: (D. Huybrechts, S. Boucksom)
The modified nef cone is dual to the pseudoeffective cone under the
Bogomolov-Beauville-Fujiki pairing.

The divisorial Zariski decomposition theorem: (S. Boucksom)
Let M be a simple hyperkähler manifold. Then every pseudoeffective class
can be decomposed as a sum η = ν +

∑
i ai[Ei], where ν is modified nef, ai

positive numbers, and Ei exceptional divisors satisfying q(Ei, Ei) < 0.

COROLLARY: Let M be a hyperkaehler manifold with H1,1(M, Z) = 0.
Then every pseudoeffective class is modified nef.

Proof: Indeed, on such M there are no exceptional divisors.
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A Kähler cone for generic hyperkähler manifolds

COROLLARY: Let M be a hyperkaehler manifold with H1,1(M, Z) = 0.

Then the modified nef cone is self-dual.

REMARK: For any nef classes ν, ν′, one has q(ν, ν′) > 0. Therefore, the nef

cone is contained in its dual. Moreover, the nef cone Kn is contained in one

of two components K+ of a set {ν ∈ H1,1(M) | q(ν, ν) > 0}, and therefore,

the dual nef cone contains K+:

Kn ⊂ K+ ⊂ K∗
n

REMARK: For H1,1(M, Z) = 0, the modified nef cone Kmn is self-dual, but

all elements of Kmn satisfy q(ν, ν) > 0. This gives

Kmn ⊂ K+ ⊂ K∗
mn = Kmn ⊂ K+.

We obtain

COROLLARY: Let M be a hyperkaehler manifold with H1,1(M, Z) = 0.

Then the Kaehler cone is one of two components of the set {ν ∈
H1,1(M) | q(ν, ν) > 0}.

16


