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Holomorphically symplectic manifolds

DEFINITION: A holomorphically symplectic manifold is a complex manifold
equipped with non-degenerate, holomorphic (2,0)-form.

REMARK: Hyperkahler manifolds are holomorphically symplectic. Indeed,
QR =wj+ v—1wg is a holomorphic symplectic form on (M, I).

THEOREM: (Calabi-Yau) A compact, Kahler, holomorphically symplectic
manifold admits a unique hyperkahler metric in any Kahler class.

DEFINITION: For the rest of this talk, a hyperkahler manifold is a com-
pact, Kahler, holomorphically symplectic manifold.

DEFINITION: A hyperkdahler manifold M is called simple if 7{(M) = O,
H29(M) =C.

Bogomolov’s decomposition: Any hyperkahler manifold admits a finite cov-
ering which is a product of a torus and several simple hyperkahler manifolds.

Further on, all hyperkahler manifolds are assumed to be simple.
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Hilbert schemes

THEOREM: (a special case of Enriques-Kodaira classification)
Let M be a compact complex surface which is hyperkahler. Then M is either
a torus or a K3 surface.

DEFINITION: A Hilbert scheme M of a complex surface M is a clas-
sifying space of all ideal sheaves I C O,; for which the quotient O,;/I has
dimension n over C.

REMARK: A Hilbert scheme is obtained as a resolution of singularities
of the symmetric power Sym™ M.

THEOREM: (Fujiki, Beauville) A Hilbert scheme of a hyperkahler sur-
face is hyperkahler.
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EXAMPLES.
EXAMPLE: A Hilbert scheme of K3 is simple and hyperkahler.

EXAMPLE: Let T be a torus. Then it acts on its Hilbert scheme freely
and properly by translations. For n = 2, the quotient T[”]/T IS a Kummer
K3-surface. For n > 2, a universal covering of T[”]/T is called a generalized
Kummer variety.

REMARK: There are 2 more ‘sporadic’” examples of compact hyperkahler
manifolds, constructed by K. O’'Grady. All known simple hyperkaehler
manifolds are these 2 and the three series: tori, Hilbert schemes of K3,
and generalized Kummer.

QUESTION: Are there any other examples?
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Deformations of holomorphically symplectic manifolds.

THEOREM: (Kodaira) A small deformation of a compact Kahler man-
ifold is again Kahler.

COROLLARY: A small deformation of a holomorphically symplectic Kahler
manifold M is again holomorphically symplectic.

Proof: A small deformation M’ of M would satisfy H29(M'") = H2O(M),
however, a small deformation of a non-degenerate (2,0)-form remains non-
degenerate. m

COROLLARY: Small deformations of hyperkahler manifolds are hy-
perkahler.

REMARK: By the moduli of hyperkahler manifolds we shall understand the
deformation space of complex manifolds admitting holomorphically symplectic
and Kahler structure.
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The Teichmuller space and the mapping class group

Definition: Let M be a compact complex manifold, and Diffg(M) a con-
nected component of its diffeomorphism group (the group of isotopies).
Denote by Teich the space of complex structures on M, and let Teich =
Teich/ Diffg(M). We call it the Teichmuller space.

Remark: Teich is a finite-dimensional complex space (Kuranishi), but
often non-HausdorfF.

Definition: Let Diff4 (M) be the group of oriented diffeomorphisms of M.
We call I := Diff . (M)/ Diffo(M) the mapping class group. The coarse
moduli space of complex structures on M is a connected component of
Teich /T".

Remark: This terminology is standard for curves.
REMARK: For hyperkahler manifolds, it is convenient to take for Teich the
space of all complex structures of hyperkahler type, that is, holomor-

phically symplectic and Kahler. It is open in the usual Teichmuller space.

REMARK: To describe the moduli space, we shall compute Teich and I.
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The Bogomolov-Beauville-Fujiki form

THEOREM: (Fujiki). Let n € H2(M), and dimM = 2n, where M is hy-
perkdhler. Then [,;7°" = cq(n,n)"™, for some primitive integer quadratic form
g on H2(M,Z), and ¢ > 0 an integer number.

Definition: This form is called Bogomolov-Beauville-Fujiki form. It is
defined by the Fujiki’'s relation uniquely, up to a sign. The sign is
determined from the following formula (Bogomolov, Beauville)

Aa(n, 1) = /Xn AnAQTTIAT L

1 _ e
_n (/ n/\Q”_l/\Q”> (/ nAQPAQ" 1)
n X X

where €2 is the holomorphic symplectic form, and A\ > 0.

Remark: ¢ has signature (b, — 3,3). It is negative definite on primitive
forms, and positive definite on (Q2,Q,w), where w is a Kahler form.
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Computation of the mapping class group

Theorem: (Sullivan) Let M be a compact, simply connected Kahler mani-
fold, dimg M > 3. Denote by [ the group of automorphisms of an algebra
H*(M,Z) preserving the Pontryagin classes p,(M). Then the natural map
Diff L (M )/ Diffp — "o has finite kernel, and its image has finite index
in lp.

Theorem: Let M be a simple hyperkahler manifold, and g as above. Then
() I‘O)HQ(MZ) is a finite index subgroup of O(H?2(M,Z),q).
(ii) The map Mg — O(H?2(M,Z),q) has finite kernel.

Proof. Step 1: Fujiki formula v2™ = g(v,v)" implies that g preserves the
Bogomolov-Beauville-Fujiki up to a sign. The sign is fixed, if n is odd.

Step 2: For even n, the sign is also fixed. Indeed, g preserves p1 (M), and (as
Fujiki has shown) v2" =2 A py (M) = q(v,v)" L¢, for some ¢ € R. The constant
c is positive, because the degree of c»>(B) is positive for any Yang-Mills
bundle with ¢1(B) = 0.
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Computation of the mapping class group (cont.)

Step 3: o(H2(M,Q),q) acts on H*(M,Q) by automorphisms preserving Pon-
tryagin classes (V., 1995). Therefore I‘O‘HQ(M ) Is an arithmetic subgroup

of O(H?(M,R),q).

Step 4: The kernel K of the map g — I_O‘HQ(MQ) Is finite, because it
commutes with the Hodge decomposition and Lefschetz si(2)-action, hence
preserves the Riemann-Hodge form, which is positive definite. =

REMARK: The same argument as in Step 4 also proves that the group of
automorphisms of H*(M,R) preserving p; is projected to O(H?(M,R),q)
with compact kernel.

REMARK: (Huybrechts) There are only finitely many connected com-
ponents of Teich.

REMARK: The mapping class group acts on the set of connected compo-
nents of Teich.

COROLLARY:?: Let 'y be the group of elements of mapping class group
preserving a connected component of Teichmuller space containing I € Teich.
Then [ is also arithmetic. Indeed, it has finite index in [,
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The period map

Remark: For any J € Teich, (M, J) is also a simple hyperkahler manifold,
hence H29(M, J) is one-dimensional.

Definition: Let P : Teich — PH?2(M,C) map J to a line H29(M,J) €
PH2(M,C). The map P: Teich — PH?2(M,C) is called the period map.

REMARK: P maps Teich into an open subset of a quadric, defined by
Per := {l € PH?(M,C) | ¢(l,1) =0,q(l,1) > 0.

It is called the period space of M.
REMARK: Per = SO(by — 3,3)/5S0(2) x SO(by — 3,1)

THEOREM: (Bogomolov) Let M be a simple hyperkdahler manifold, and
Teich its Teichmuller space. Then The period map P : Teich — Per iIs
locally a diffeomorphism.

REMARK: Bogomolov's theorem implies that Teich is smooth. It is non-
Hausdorff even in the simplest examples.
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Hausdorff reduction

REMARK: A non-Hausdorff manifold is a topological space locally diffeo-
morphic to R™.

DEFINITION: Let M be a topological space. We say that =,y € M are non-
separable (denoted by =z ~ y) if for any open sets Vo xz, U3y, UNV # 0.

THEOREM: (D. Huybrechts) If I;, I € Teich are non-separablee points,
then P(I1) = P(I»), and (M, I7) is birationally equivalent to (M, I»)

REMARK: Huybrechts proved this theorem for the “marked moduli space”
Teichy,, which is a quotient of Teich by the subgroup K C [ acting trivially
on cohomology. It’s extended on Teich using the Torelli theorem.

DEFINITION: Let M be a topological space for which M/ ~ is Hausdorff.
Then M/ ~ is called a Hausdorff reduction of M.

Problems:
1. ~ iIs not always an equivalence relation.
2. Even if ~ is equivalence, the M/ ~ is not always HausdorfF.

REMARK: A quotient M/ ~ is Hausdorff, if M — M/ ~ is open, and
the graph I'- € M x M is closed.
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Weakly Hausdorff manifolds
DEFINITION: A point z € X is called Hausdorff if z 4 y for any y #= .

DEFINITION: Let M be an n-dimensional real analytic manifold, not nec-
essarily Hausdoff. Suppose that the set Z C M of non-Hausdorff points is
contained in a countable union of real analytic subvarieties of codim > 2.
Suppose, moreover, that

(S) For every x € M, there is a closed neighbourhood B C M of x and a
continuous surjective map W : B — R"™ to a closed ball in R", inducing a
homeomorphism on an open neighbourhood of =x.

Then M is called a weakly Hausdorff manifold.

REMARK: The period map satisfies (S). Also, the non-Hausdorff points
of Teich are contained in a countable union of divisors.

THEOREM: A weakly Hausdorff manifold X admits a Hausdorff reduc-
tion. In other words, the quotient X/ ~ is a Hausdorff. Moreover, X — X/ ~
IS locally a homeomorphism.

This theorem is proven using 1920-ies style point-set topology.
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Birational Teichmuller moduli space

DEFINITION: The space Teichy := Teich/ ~ is called the birational Te-
ichmuller space of M.

THEOREM: The period map Teich, ﬂ Per 1s an isomorphism, for each

connected component of Teichy,.

Sketch of a proof: 0. Since Per = SO(by — 3,3)/S0(2) x SO(bs — 3,1) is
simply connected, it will suffice to show that Per a covering.

1. It is etale (Bogomolov).

2. For each hyperkihler structure (I,J,K) on M, there is a whole S? of
complex structures L = al +bJ 4+ cK on M, for a? + b2 4 2 = 1.

3. For any point x € Per, let NS(x) be the corresponding lattice of integer
(1,1)-classes in H2(M). Then the set K ¢ H1'1(M,R) of Kaehler classes
can be determined explicitly when rk NS(z) = O:

K:={veH YW (M,R) | q(v,v) >0}

4. Every Kaehler class gives a hyperkaehler structure, hence a line in Teichy.
Such a line is called generic hyperkahler curve (GHK curve) if it passes
through a point = € Per with rk NS(z) = 0.
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Birational Teichmuller moduli space (cont’d)

5. “Surgectivity on GHK curves’.

For every such line ¢, P~1(C) is a disconnected union of rational curves
bijectively mapped to C. Indeed, for each z € Teich mapping to z, the set
of GHK lines passing through z is identified with its Kahler cone IC, which is
independent from the choice of 7 € Per 1(z).

6. The whole Teichmuller space is covered by GHK curves.
7. Surjectivity on GHK curves leads to the following condition.

(*) Let Teichy L Per be the period map. Then for each open subset V' C Per
with smooth boundary, and each connected component W C P_l(V), the

restriction W L V' IS surjective.

8. The condition (*) always implies that P is a covering. It is, again, a
(non-trivial) exercise in point-set topology.

9. The period space is simply connected, hence P is an isomorphism on
each connected component. m
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Global Torelli theorem

DEFINITION: Let M be a hyperkaehler manifold, Teich, its birational Te-
ichmiller space, and ' the mapping class group. The quotient Teichy /T is
called the birational moduli space of M.

REMARK: The birational moduli space is obtained from the usual moduli
space by gluing some (but not all) non-separable points. It is still non-
HausdorfF.

THEOREM: Let (M,I) be a hyperkahler manifold, and W a connected
component of its birational moduli space. Then W is isomorphic to Per/I";,
where Per = SO(by — 3,3)/5S0(2) x SO(bo — 3,1) and I; is an arithmetic
group in O(H?(M,R),q).

A CAUTION: Usually *“the global Torelli theorem” is understood as a the-
orem about Hodge structures. For K3 surfaces, the Hodge structure on
H?(M,7) determines the complex structure. For dim¢ M > 2, it is false.
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The Hodge-theoretic Torelli theorem

REMARK: The group O(p,q) (p,g > 0) has 4 connected components,
corresponding to the orientations of positive p-dimensional and negative g-
dimensional planes.

DEFINITION: Let M be a hyperkaehler manifold. One says that the
Hodge-theoretic Torelli theorem holds for M if

Teich /T ; —s Per/OT(H?%(M, Z), q),

where O1(H?2(M,7),q) is a subgroup of O(H?(M,Z),q) preserving orientation
on positive 3-planes. Equivalently, it is true if M is uniquely determined
by its Hodge structure.

REMARK: The Hodge-theoretic Torelli theorem is true for K3 surfaces.
It is false for all other known examples of hyperkaehler manifolds.

Problems:

1. The moduli space Teich /I is not Hausdorff (Debarre, 1984). Indeed,
bimeromorphically equivalent hyperkahler manifolds have isomorphic Hodge
structures.

2. The covering Teich, /[ ; — Per/OT(H?2(M,Z),q) is non-trivial, because
the map My — OT(H?2(M,Z),q) is not surjective (Namikawa, 2002).
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T he birational Hodge-theoretic Torelli theorem

DEFINITION: The birational Hodge-theoretic Torelli theorem is true
for M if ; (the stabilizer of a Torelli component in the mapping class group)
is isomorphic to O (H?2(M,Z),q).

REMARK: If a birational Hodge-theoretic Torelli theorem holds for M, then
any deformation of M is up to a bimeromorphic equivalence determined by
the Hodge structure on H2(M).

THEOREM: (Markman) The for M = K3[”], the group Iy is a subgroup
of Ot (H?2(M,Z),q) generated by oriented reflections.

THEOREM: Let M = K31l with n a prime power. Then the (usual)
global Torelli theorem holds birationally: two deformations of a Hilbert
scheme with isomorphic Hodge structures are bimeromorphic. For
other n, it is false (Markman).
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