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Kähler manifolds

DEFINITION: An Riemannian metric g on an almost complex manifiold M

is called Hermitian if g(Ix, Iy) = g(x, y). In this case, g(x, Iy) = g(Ix, I2y) =
−g(y, Ix), hence ω(x, y) := g(x, Iy) is skew-symmetric.

DEFINITION: The differential form ω ∈ Λ1,1(M) is called the Hermitian

form of (M, I, g).

THEOREM: Let (M, I, g) be an almost complex Hermitian manifold. Then

the following conditions are equivalent.

(i) The almost complex structure I is integrable, and the Hermitian form ω

is closed.

(ii) One has ∇(I) = 0, where ∇ is the Levi-Civita connection

∇ : End(TM)−→ End(TM)⊗ Λ1(M).

DEFINITION: A complex Hermitian manifold M is called Kähler if either
of these conditions hold. The cohomology class [ω] ∈ H2(M) of a form ω is
called the Kähler class of M .
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Hyperkähler manifolds

DEFINITION: (Calabi, 1978) A hyperkähler structure on a manifold M is

a Riemannian structure g and a triple of complex structures I, J,K, satisfying

quaternionic relations I ◦ J = −J ◦ I = K, such that g is Kähler for I, J,K.

REMARK: This is equivalent to ∇I = ∇J = ∇K = 0: the parallel translation

along the connection preserves I, J,K.

REMARK: A hyperkähler manifold has three symplectic forms

ωI := g(I·, ·), ωJ := g(J ·, ·), ωK := g(K·, ·).

REMARK: ωJ +
√
−1ωK is a holomorphic symplectic form on (M, I). There-

fore, any hyperkähler manifold is also holomorphically symplectic.

DEFINITION: Let M be a Riemannian manifold, x ∈ M a point. The

subgroup of GL(TxM) generated by parallel translations (along all paths) is

called the holonomy group of M .

REMARK: A hyperkähler manifold can be defined as a manifold which

has holonomy in Sp(n) (the group of all endomorphisms preserving I, J,K).
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Holomorphically symplectic manifolds

DEFINITION: A holomorphically symplectic manifold is a complex manifold

equipped with non-degenerate, holomorphic (2,0)-form.

THEOREM: (Calabi-Yau) A compact, Kähler, holomorphically symplectic

manifold admits a unique hyperkähler metric in any Kähler class.

DEFINITION: For the rest of this talk, a hyperkähler manifold is a com-

pact, Kähler, holomorphically symplectic manifold.

DEFINITION: A hyperkähler manifold M is called simple if H1(M) = 0,

H2,0(M) = C.

Bogomolov’s decomposition: Any hyperkähler manifold admits a finite cov-

ering which is a product of a torus and several simple hyperkähler manifolds.

Further on, all hyperkähler manifolds are assumed to be simple.
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EXAMPLES.

EXAMPLE: An even-dimensional complex torus.

EXAMPLE: A non-compact example: T ∗CPn (Calabi).

REMARK: T ∗CP1 is a resolution of a singularity C2/±1.

REMARK: Let M be a 2-dimensional complex manifold with holomorphic

symplectic form outside of singularities, which are all of form C2/±1. Then

its resolution is also holomorphically symplectic.

EXAMPLE: Take a 2-dimensional complex torus T , then all the singularities

of T/±1 are of this form. Its resolution T̃/±1 is called a Kummer surface. It

is holomorphically symplectic. A K3 surface is a deformation of a Kummer

surface.

EXAMPLE: There exist hyperkähler resolutions of singularities of symmetric

powers of a K3 surface and a torus (“Hilbert schemes of K3”, “generalized

Kummer varieties”).
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The Teichmüller space and the mapping class group

Definition: Let M be a compact complex manifold, and Diff0(M) a con-
nected component of its diffeomorphism group (the group of isotopies).
Denote by T̃eich the space of complex structures on M , and let Teich :=
T̃eich/Diff0(M). We call it the Teichmüller space.

Remark: Teich is a finite-dimensional complex space (Kodaira), but often
non-Hausdorff.

Definition: Let Diff+(M) be the group of oriented diffeomorphisms of M .
We call Γ := Diff+(M)/Diff0(M) the mapping class group. The coarse
moduli space of complex structures on M is a connected component of
Teich /Γ.

THEOREM: (Kodaira) A small deformation of a compact Kähler man-
ifold is again Kähler.

COROLLARY: Small deformations of hyperkähler manifolds are hy-
perkähler.

REMARK: For hyperkähler manifolds, it is convenient to take for Teich the
space of all complex structures of hyperkähler type, that is, holomor-
phically symplectic and Kähler. It is open in the usual Teichmüller space.
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The Bogomolov-Beauville-Fujiki form

THEOREM: (Fujiki). Let η ∈ H2(M), and dimM = 2n, where M is hy-

perkähler. Then
∫
M η2n = cq(η, η)n, for some quadratic form q on H2(M).

DEFINITION: This form is called Bogomolov-Beauville-Fujiki form (BBF

form). It is defined by this relation uniquely, up to a sign. The sign is

determined from the following formula (Bogomolov, Beauville)

λq(η, η) = (n/2)
∫
X
η ∧ η ∧Ωn−1 ∧Ωn−1−

− (1− n)
(∫
X
η ∧Ωn−1 ∧Ωn

)(∫
X
η ∧Ωn ∧Ωn−1

)
where Ω is the holomorphic symplectic form, and λ = Cn−1

2n−2
∫
M ∧Ωn∧Ωn

> 0.

CLAIM: q has signature (b2 − 3,3).

CLAIM: The Bogomolov-Beauville-Fujiki form is preserved by diffeomor-

phisms of M.

REMARK: For a K3 surface, the BBF form is equal to the Poincare pairing.
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Computation of the mapping class group

THEOREM: (Sullivan) Let M be a compact simply connected Kähler man-

ifold, dimCM > 3. Denote by Γ the group of automorphisms of an algebra

H∗(M,Z) preserving the Pontryagin classes pi(M). Then the natural map

Diff+(M)/Diff0 −→ Γ has finite kernel, and its image has finite index in

Γ.

THEOREM: Let M be a simple hyperkähler manifold, and Γ as above. Then

(i) Γ
∣∣∣H2(M,Q) is an arithmetic subgroup of O(H2(M,Q), q).

(ii) The map Γ−→O(H2(M,Q), q) has finite kernel.

REMARK: An arithmetic group is a subgroup of finite index in an algebraic

Lie group over integers, such as O(Zn, q).

THEOREM: (Huybrechts) There are only finitely many connected com-

ponents of Teich.

COROLLARY: The subgroup ΓI of mapping class group preserving a given

connected component of Torelli space is also arithmetic.
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The period map

Remark: For any J ∈ Teich, (M,J) is also a simple hyperkähler manifold,
hence H2,0(M,J) is one-dimensional.

Definition: Let P : Teich −→ PH2(M,C) map J to a line H2,0(M,J) ∈
PH2(M,C). The map P : Teich −→ PH2(M,C) is called the period map.

REMARK: P maps Teich into an open subset of a quadric, defined by

Per := {l ∈ PH2(M,C) | q(l, l) = 0, q(l, l) > 0.

It is called the period space of M .

REMARK: Per = SO(b2 − 3,3)/SO(2)× SO(b2 − 3,1)

BOGOMOLOV’S THEOREM: Let M be a simple hyperkähler manifold,
and Teich its Teichmüller space. Then the period map P : Teich −→ Per is

locally a diffeomorphism (in algebraic geometry, a local diffeomorphism is
called an etale map).

REMARK: Bogomolov’s theorem implies that Teich is smooth. It is non-

Hausdorff even in the simplest examples.
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Hausdorff reduction

REMARK: A non-Hausdorff manifold is a topological space locally diffeo-

morphic to Rn.

DEFINITION: Let M be a topological space. We say that x, y ∈M are non-

separable (denoted by x ∼ y) if for any open sets V 3 x, U 3 y, U ∩ V 6= ∅.

DEFINITION: Let X be a topological space. Suppose that ∼ is an equiva-

lence relation, and the quotient of M/ ∼ is Hausdorff. Then M/ ∼ is called a

Hausdorff reduction of M .

THEOREM: Let Teich be a Teichmüller space of a hyperkaehler manifold.

Then it admits a Hausdorff reduction which is a smooth complex manifold.

THEOREM: (D. Huybrechts) If I1, I2 ∈ Teich are non-separate points, then

P (I1) = P (I2), and (M, I1) is bimeromorphically equivalent to (M, I2).

DEFINITION: The Hausdorff reduction Teichb := Teich / ∼ is called a bi-

rational Teichmüller space of a hyperkähler manifold.
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Global Torelli theorem

THEOREM: Let P : Teich −→ Per be a period map of a hyperkähler man-

ifold. Then P is a Hausdorff reduction, for each connected component

of Teich. In particular, it is surjective and generically one-to-one on each

component.

DEFINITION: Define the birational moduli space of a hyperkähler mani-

fold as a quotient Teichb /Γ, where Γ is a mapping class group.

THEOREM: Let M be a hyperkähler manifold, and W a connected com-

ponent of its birational moduli space. Then W is isomorphic to Per/ΓI,

where Per = SO(b2 − 3,3)/SO(2) × SO(b2 − 3,1) and ΓI is an arithmetic

group in O(b2 − 3,3)

A CAUTION: Usually “the global Torelli theorem” is understood as a the-

orem about Hodge structures. For K3 surfaces, the Hodge structure on

H2(M,Z) determines the complex structure. For dimCM > 2, it is false,

except for a few cases when it follows from the above theorem and an explicit

description of Γ due to E. Markman.
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THE END!
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The Hodge-theoretic Torelli theorem

REMARK: The group O(p, q) (p, q > 0) has 4 connected components,
corresponding to the orientations of positive p-dimensional and negative q-
dimensional planes.

DEFINITION: A spin-orientation on a space with signature p, q is a choice
of orientation of positive p-dimensional planes. The group preserving spin-
orientation is denoted by O+(p, q).

REMARK: The Hodge-theoretic birational Torelli theorem is an isomor-
phism Teich /ΓI −→ Per/O+(H2(M,Z), q).

REMARK: A birational Hodge-theoretic Torelli theorem is true if and only
if ΓI (the stabilizer of a Torelli component in the mapping class group) is
isomorphic to O+(H2(M,Z), q).

THEOREM: (Markman) The for M = K3[n+1], the group ΓI is a subgroup
of O+(H2(M,Z), q) generated by spin-oriented reflections.

THEOREM: Let M = K3[n+1] with n a prime power. Then the (usual)
global Torelli theorem holds birationally: two deformations of a Hilbert
scheme with isomorphic Hodge structures are bimeromorphic. For
other n, it is false (Markman).
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Weakly Hausdorff manifolds

DEFINITION: A point x ∈ X is called Hausdorff if x 6∼ y for any y 6= x.

DEFINITION: Let M be an n-dimensional real analytic manifold, not nec-

essarily Hausdoff. Suppose that the set Z ⊂M of non-Hausdorff points is

contained in a countable union of real analytic subvarieties of codim > 2.

Suppose, moreover, that

(S) For every x ∈ M , there is a closed neighbourhood B ⊂ M of x and a

continuous surjective map Ψ : B −→ Rn to a closed ball in Rn, inducing a

homeomorphism on an open neighbourhood of x.

Then M is called a weakly Hausdorff manifold.

REMARK: The period map satisfies (S). Also, the non-Hausdorff points

of Teich are contained in the countable union of divisors.

THEOREM: A weakly Hausdorff manifold X admits a Hausdorff reduc-

tion. In other words, the quotient X/ ∼ is a Hausdorff. Moreover, X −→X/ ∼
is locally a homeomorphism.
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Birational Teichmüller moduli space

DEFINITION: The space Teichb := Teich / ∼ is called the birational Te-

ichmüller space of M .

THEOREM: The period map Teichb
P−→ Per is an isomorphism.

Idea of a proof:

0. Since Per = SO(b2 − 3,3)/SO(2) × SO(b2 − 3,1) is simply connected, it

will suffice to show it’s a covering.

1. It is etale (Bogomolov).

2. For each hyperkähler structure (I, J,K) on M , there is a whole S2 of

complex structures L = aI + bJ + cK on M , for a2 + b2 + c2 = 1.

3. On every such line, P is surjective.

15



Global Torelli Theorem M. Verbitsky

Birational Teichmüller moduli space (cont’d)

4. For any point x ∈ Per, let NS(x) be the corresponding lattice of integer

(1,1)-classes in H2(M). Then the set of Kaehler classes can be deter-

mined explicitly when rkNS(x) 6 1. Every Kaehler class gives a hyperkaehler

structure, hence a line in Teichb.

5. The whole Teichmüller space is covered by such curves, hence

Teichb
P−→ Per satisfies the following condition:

(*) For each closed subset V ⊂ Per with smooth boundary, and each con-

nected component W ⊂ P−1(V ), the restriction W
P−→ V is surjective.

6. This condition (*) always implies that P is a covering.

16


