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Kahler manifolds

DEFINITION: An Riemannian metric g on an almost complex manifiold M
is called Hermitian if g(Iz, Iy) = g(x,y). In this case, g(z,Iy) = g(Iz, [%y) =
—g(y,Ix), hence w(x,y) := g(x, [y) is skew-symmetric.

DEFINITION: The differential form w € ALL(M) is called the Hermitian
form of (M, 1,gq).

THEOREM: Let (M,1I,g) be an almost complex Hermitian manifold. Then
the following conditions are equivalent.

(i) The almost complex structure I is integrable, and the Hermitian form w
IS closed.

(ii) One has V(I) = 0, where V is the Levi-Civita connection

V : End(TM) — End(TM) @ A(M).

DEFINITION: A complex Hermitian manifold M is called Kahler if either
of these conditions hold. The cohomology class [w] € H2(M) of a form w is

called the Kahler class of M.
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Hyperkahler manifolds

DEFINITION: (Calabi, 1978) A hyperkahler structure on a manifold M is
a Riemannian structure g and a triple of complex structures I, J, K, satisfying
quaternionic relations I oJ = —J ol = K, such that g is Kahler for I, J, K.

REMARK: This is equivalent to VI =VJ = VK = 0: the parallel translation
along the connection preserves I, J, K.

REMARK: A hyperkahler manifold has three symplectic forms
wy .= 9(17)! Wy .= g(J7)’ WK = Q(K,)

REMARK: wj++v—1wg is a holomorphic symplectic form on (M,I). There-
fore, any hyperkahler manifold is also holomorphically symplectic.

DEFINITION: Let M be a Riemannian manifold, € M a point. The
subgroup of GL(T,M) generated by parallel translations (along all paths) is
called the holonomy group of M.

REMARK: A hyperkahler manifold can be defined as a manifold which
has holonomy in Sp(n) (the group of all endomorphisms preserving I, J, K).
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Holomorphically symplectic manifolds

DEFINITION: A holomorphically symplectic manifold is a complex manifold
equipped with non-degenerate, holomorphic (2,0)-form.

THEOREM: (Calabi-Yau) A compact, Kahler, holomorphically symplectic
manifold admits a unique hyperkahler metric in any Kahler class.

DEFINITION: For the rest of this talk, a hyperkahler manifold is a com-
pact, Kahler, holomorphically symplectic manifold.

DEFINITION: A hyperkahler manifold M is called simple if Hl(M) = 0,
H29(M) =C.

Bogomolov’s decomposition: Any hyperkahler manifold admits a finite cov-
ering which is a product of a torus and several simple hyperkahler manifolds.

Further on, all hyperkahler manifolds are assumed to be simple.
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EXAMPLES.

EXAMPLE: An even-dimensional complex torus.

EXAMPLE: A non-compact example: T*CP™ (Calabi).

REMARK: T*CP! is a resolution of a singularity C2/+1.

REMARK: Let M be a 2-dimensional complex manifold with holomorphic

symplectic form outside of singularities, which are all of form (CQ/il. Then
its resolution is also holomorphically symplectic.

EXAMPLE: Take a 2-dimensional complex torus T, then all the singularities
of T'/£1 are of this form. Its resolution T'/+1 is called a Kummer surface. It
IS holomorphically symplectic. A K3 surface is a deformation of a Kummer
surface.

EXAMPLE: There exist hyperkahler resolutions of singularities of symmetric
powers of a K3 surface and a torus (“Hilbert schemes of K3, ‘“generalized
Kummer varieties).
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The Teichmuller space and the mapping class group

Definition: Let M be a compact complex manifold, and Diffg(M) a con-
nected component of its diffeomorphism group (the group of isotopies).
Denote by Teich the space of complex structures on M, and let Teich =
Teich/ Diffg(M). We call it the Teichmuller space.

Remark: Teich is a finite-dimensional complex space (Kodaira), but often
non-Hausdorff.

Definition: Let Diff4 (M) be the group of oriented diffeomorphisms of M.
We call I := Diff . (M)/ Diffo(M) the mapping class group. The coarse
moduli space of complex structures on M is a connected component of
Teich /T.

THEOREM: (Kodaira) A small deformation of a compact Kahler man-
ifold is again Kahler.

COROLLARY: Small deformations of hyperkahler manifolds are hy-
perkahler.

REMARK: For hyperkahler manifolds, it is convenient to take for Teich the
space of all complex structures of hyperkahler type, that is, holomor-
phically symplectic and Kahler. It is open in the usual Teichmuller space.

6



Global Torelli Theorem M. Verbitsky

The Bogomolov-Beauville-Fujiki form

THEOREM: (Fujiki). Let n € H2(M), and dimM = 2n, where M is hy-
perkdhler. Then [,;n°" = cq(n,n)™, for some quadratic form ¢ on H?(M).

DEFINITION: This form is called Bogomolov-Beauville-Fujiki form (BBF
form). It is defined by this relation uniquely, up to a sign. The sign is
determined from the following formula (Bogomolov, Beauville)

xa(n, 1) = (n/2) /X nAn AT AQNT

—(1—n) (/XnAQ”—l/\ﬁn) (/Xn/\Q”Aﬁn_1>

where 2 is the holomorphic symplectic form, and \ = 72”‘,;_12 I AQPAQ" > 0.
CLAIM: ¢ has signature (b> — 3,3).

CLAIM: The Bogomolov-Beauville-Fujiki form is preserved by diffeomor-
phisms of M.

REMARK: For a K3 surface, the BBF form is equal to the Poincare pairing.
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Computation of the mapping class group

THEOREM: (Sullivan) Let M be a compact simply connected Kahler man-
ifold, dimg M > 3. Denote by [' the group of automorphisms of an algebra
H*(M,Z) preserving the Pontryagin classes p,(M). Then the natural map
Diff4 (M )/ Diffp — I has finite kernel, and its image has finite index in
.

THEOREM: Let M be a simple hyperkahler manifold, and [ as above. Then
(i) F‘HQ(M Q) is an arithmetic subgroup of O(H?(M,Q),q).
(ii) The map ' — O(H?(M, Q), q) has finite kernel.

REMARK: An arithmetic group is a subgroup of finite index in an algebraic
Lie group over integers, such as O(Z",q).

THEOREM: (Huybrechts) There are only finitely many connected com-
ponents of Teich.

COROLLARY: The subgroup 'y of mapping class group preserving a given
connected component of Torelli space is also arithmetic.
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The period map

Remark: For any J € Teich, (M, J) is also a simple hyperkahler manifold,
hence H29(M,J) is one-dimensional.

Definition: Let P : Teich — PH2(M,C) map J to a line H20(M,J) €
PH2(M,C). The map P: Teich — PH?(M,C) is called the period map.

REMARK: P maps Teich into an open subset of a quadric, defined by

Per := {l € PH?(M,C) | q(i,1) =0,q(l,1) > 0.
It is called the period space of M.

REMARK: Per = SO(by — 3,3)/50(2) x SO(by — 3,1)

BOGOMOLOV'S THEOREM: Let M be a simple hyperkahler manifold,
and Teich its Teichmuller space. Then the period map P : Teich — Per is
locally a diffeomorphism (in algebraic geometry, a local diffeomorphism is
called an etale map).

REMARK: Bogomolov's theorem implies that Teich is smooth. It is non-
Hausdorff even in the simplest examples.
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Hausdorff reduction

REMARK: A non-Hausdorff manifold is a topological space locally diffeo-
morphic to R"™.

DEFINITION: Let M be a topological space. We say that =,y € M are non-
separable (denoted by =z ~ y) if for any open sets V3 z, U3y, UNV # 0.

DEFINITION: Let X be a topological space. Suppose that ~ is an equiva-
lence relation, and the quotient of M/ ~ is Hausdorff. Then M/ ~ is called a
Hausdorff reduction of M.

THEOREM: Let Teich be a Teichmuller space of a hyperkaehler manifold.
Then it admits a Hausdorff reduction which is a smooth complex manifold.

THEOREM: (D. Huybrechts) If I, I» € Teich are non-separate points, then
P(I1) = P(I»), and (M, I;) is bimeromorphically equivalent to (M, I»).

DEFINITION: The Hausdorff reduction Teich, := Teich / ~ is called a bi-
rational Teichmuller space of a hyperkahler manifold.
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Global Torelli theorem

THEOREM: Let P: Teich — Per be a period map of a hyperkahler man-
ifold. Then P is a Hausdorff reduction, for each connected component
of Teich. In particular, it is surjective and generically one-to-one on each
component.

DEFINITION: Define the birational moduli space of a hyperkahler mani-
fold as a quotient Teichy /T", where I" is @ mapping class group.

THEOREM: Let M be a hyperkahler manifold, and W a connected com-
ponent of its birational moduli space. Then W is isomorphic to Per/l;,
where Per = SO(by — 3,3)/S0O(2) x SO(bp — 3,1) and [; is an arithmetic
group in O(b> — 3,3)

A CAUTION: Usually “the global Torelli theorem” is understood as a the-
orem about Hodge structures. For K3 surfaces, the Hodge structure on
H?(M,Z) determines the complex structure. For dimc M > 2, it is false,
except for a few cases when it follows from the above theorem and an explicit
description of ' due to E. Markman.
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THE END!
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The Hodge-theoretic Torelli theorem

REMARK: The group O(p,q) (p,qg > 0) has 4 connected components,
corresponding to the orientations of positive p-dimensional and negative g-
dimensional planes.

DEFINITION: A spin-orientation on a space with signature p, q is a choice
of orientation of positive p-dimensional planes. The group preserving spin-
orientation is denoted by O1(p,q).

REMARK: The Hodge-theoretic birational Torelli theorem is an isomor-
phism Teich /I ; — Per/O1T(H?(M,Z), q).

REMARK: A birational Hodge-theoretic Torelli theorem is true if and only
if ; (the stabilizer of a Torelli component in the mapping class group) is
isomorphic to OT(H2(M,Z),q).

THEOREM: (Markman) The for M = K3I[*t+1l the group Iy is a subgroup
of OT(H?(M,Z),q) generated by spin-oriented reflections.

THEOREM: Let M = K3+l with n a prime power. Then the (usual)
global Torelli theorem holds birationally: two deformations of a Hilbert
scheme with isomorphic Hodge structures are bimeromorphic. For
other n, it is false (Markman).
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Weakly Hausdorff manifolds
DEFINITION: A point z € X is called Hausdorff if x 4 y for any y #= .

DEFINITION: Let M be an n-dimensional real analytic manifold, not nec-
essarily Hausdoff. Suppose that the set Z C M of non-Hausdorff points is
contained in a countable union of real analytic subvarieties of codim > 2.
Suppose, moreover, that

(S) For every x € M, there is a closed neighbourhood B C M of = and a
continuous surjective map W : B — R™ to a closed ball in R", inducing a
homeomorphism on an open neighbourhood of x.

Then M is called a weakly Hausdorff manifold.

REMARK: The period map satisfies (S). Also, the non-Hausdorff points
of Teich are contained in the countable union of divisors.

THEOREM: A weakly Hausdorff manifold X admits a Hausdorff reduc-
tion. In other words, the quotient X/ ~ is a Hausdorff. Moreover, X — X/ ~
IS locally a homeomorphism.
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Birational Teichmuller moduli space

DEFINITION: The space Teich, := Teich / ~ is called the birational Te-
ichmuller space of M.

THEOREM: The period map Teichy 2, Per 1S an isomorphism.
Idea of a proof:

0. Since Per = SO(by — 3,3)/S0(2) x SO(by — 3,1) is simply connected, it
will suffice to show it’s a covering.

1. It is etale (Bogomolov).

2. For each hyperkahler structure (I,J,K) on M, there is a whole S2 of
complex structures L = al 4+ bJ + cK on M, for a? + b2 4+ 2 =

3. On every such line, P is surjective.
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Birational Teichmuller moduli space (cont’d)

4. For any point x € Per, let NS(x) be the corresponding lattice of integer
(1,1)-classes in H2(M). Then the set of Kaehler classes can be deter-
mined explicitly when rk NS(z) < 1. Every Kaehler class gives a hyperkaehler

structure, hence a line in Teich.

5. The whole Teichmuller space is covered by such curves, hence
Teichy L, Per satisfies the following condition:

(*) For each closed subset V C Per with smooth boundary, and each con-
nected component W c P~1(V), the restriction W N V' is surjective.

6. This condition (*) always implies that P is a covering.
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