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Hodge structures

DEFINITION: Let Vx be a real vector space. A (real) Hodge structure
of weight w on a vector space Vg = Vp Qp C is a decomposition Vg =
Dpiqg=w VP4, satisfying VP4 = V%P, It is called rational Hodge structure if
one fixes a rational lattice Vg such that Vg = Vg ® R. A Hodge structure is
equipped with U(1)-action, with v € U(1) acting as «P~7 on VP-4, Morphism
of Hodge structures is a rational map which is U(1)-invariant.

DEFINITION: Polarization on a rational Hodge structrure of weight w is
a U(1)-invariant non-degenerate 2-form h € VQ’ﬁ ® V@ (symmetric or antisym-
metric depending on parity of w) which satisfies

—V—=1P79(z,Z) >0 (%)

(“Riemann-Hodge relations” ) for each non-zero z € VP4,



Trascendental Hodge algebra Misha Verbitsky

Hodge structures (2)

DEFINITION: A simple object of an abelian category is an object which
has no proper subobjects. An abelian category is semisimple if any object is
a direct sum of simple objects.

CLAIM: Category of polarized Hodge structures in semisimple.

Proof: Orthogonal complement of a Hodge substructure V/ C V with respect
to h is again a Hodge substructure, and this complement does not intersect
V’: both assertions follow from the Riemann-Hodge relations. =

EXAMPLE: Let (M,w) be a compact Kahler manifold. Then the Hodge
decomposition HY(M,C) = @ HPY2(M) defines a Hodge structure on HY (M, C).
If we restrict ourselves to the primitive cohomology space

éurim ={ne H°(M) (1) Aw =0},

and consider h(z,y) ;= [z Ay AwdMcM—w relations (*) become the usual
Hodge-Riemann relations. If, in addition, the cohomology class of w is rational
(in this case, by Kodaira theorem, (M,w) is projective) the space H. (M)
is also rational, and the Hodge decomposition Hg’rim(M, C) = @Hp’r‘{m(M)
defines a polarized, rational Hodge structure.
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Mumford-Tate group

DEFINITION: Let V be a Hodge structure over Q, and p the corresponding
U(1)-action. Mumford-Tate group (Mumford, 1966; Mumford called it “the
Hodge group’ ) is the smallest algebraic group over Q containing p.

THEOREM: Let V be a rational, polarized Hodge structure, and MT (V) its
Mumford-Tate group. Consider the tensor algebra of V, W = T9(V) with the
Hodge structure (also polarized) induced from V. Let W, be the space of all
p-invariant rational vectors in W (such vectors are called “Hodge vectors”).
Then MT (V) coincides with the stabilizer

Stary(Wi) = {g € GL(V) | Yuw € Wy, g(w) = w}.

Proof: Follows from the Chevalley's theorem on tensor invariants. =

Corollary 1: Let V@ be a rational Hodge structure, and W C V¢ a subspace.
Then the following are equivalent.

(i) W is a Hodge substructure.

(ii) W is Mumford-Tate invariant. =
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Mumford-Tate group and the Ga/(C/Q)-action

DEFINITION: Let V@ be a Q-vector space, and Vp = VQ ®QC its complex-
ification, equipped with a natural Galois group Gal(C/Q) action. We call a
complex subspace T' C V¢ rational if T'=Tp ®q C, where T =V NT.

REMARK: A complex subspace W C V¢ is rational if and only if it is
Gal (C/Q)-invariant.

T his implies

Claim 1: Consider a subspace W C Vg, and let WQ C Vo be a smallest
subspace of Vg such that Wy ®pC D W. Then Wp ®g C is generated by
o(W), for all o € Gal(C/Q). =

PROPOSITION: Let Vo be a rational, polarized Hodge structure, p the
corresponding U(1)-action, and MT its Mumford-Tate group. Then MT is a
Zariski closure of a group generated by o(p), for all o € Gal (C/Q).

Proof: Since MT s rational, it is preserved by Gal(C/Q). The algebraic closure
of the group generated by o(p) coincides with MT, because it is a smallest
group which is rational, Zariski closed and contains p. =
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Transcendental Hodge lattice

THEOREM: Let VQ be a rational, polarized Hodge structure of weight w,

Vo = @ptiq=w VP4, and V™ C Vi a minimal rational subspace containing V4.0,
p,q=0

Then V¥ is a Hodge substructure.

Proof: By Claim 1, V! is generated by o(V%0) for all ¢ € Gal(C/Q). Since
V4.0 is preserved by the U(1)-action p, V" is preserved by the group generated
by all o(p), which is MT. Finally, a rational subspace is a Hodge substructure
if and only if it MT-invariant (Corollary 1). =

THEOREM: Transcendental Hodge lattice is a birational invariant.

Proof: Let ¢ : X — Y Dbe a birational morphism of projective varieties.
Then ¢* : H¥Y) — HYX) induces isomorphism on H%0. Therefore, it is
injective on H%(Y). Indeed, its kernel is a Hodge substructure of Htcﬁn(Y) not
intersecting HCLO, which is impossible. Applying the same argument to the
dual map, we obtain that ¢* is also surjective on Hgn(Y). u
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Transcendental Hodge algebra

PROPOSITION: Let M be a projective Kdhler manifold, H;.(M) := @ HL(M)
the direct sum of all transcendental Hodge lattices, and H}.(M)= its orthog-
onal complement with respect to the polarization form h(z,y) = [z Ay A
wdiMcM-w Then H} (M) is an ideal in the cohomology algebra.

Proof: The space V* .= Hg;(M)L IS @ maximal Hodge structure contained in
A* = H vPa

ptHg=w
p,q>0

The space A* is clearly an ideal. For any two Hodge substructures X,Y C
H*(M), the product X -Y also rational and U(1)-invariant, hence it is also
a Hodge substructure. However, A* is an ideal, hence X - V* is a Hodge
structure contained in A*. Therefore, H*(M) - V* is contained in V*. =

DEFINITION: The quotient algebra IaI*(M)/Hg"r(M)L = H} (M) is called
the transcendental Hodge algebra of M.

PROPOSITION:
Transcendental Hodge algebra is a birational invariant.

Proof: Same as for transcendental Hodge lattices. =
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Zarhin’'s results about Hodge structures of K3 type

DEFINITION: A polarized, rational Hodge structure Vg = @pqq=2 V7 oOf

p,q=0

weight 2 with dim V29 = 1 is called a Hodge structure of K3 type.

DEFINITION: A Hodge structure is called simple if it has no proper Hodge
substructures.

REMARK: Since the category of polarized Hodge structures is semisimple,
every Hodge structure is a direct sum of simple ones.

REMARK: Let M be a projective K3 surface, and Vo its transcendental
Hodge lattice. Then in is simple and of K3 type.

PROPOSITION: (Zarhin) Let Vp be a simple Hodge structure of K3 sype,
and E = End(V@) an algebra of its endomorphisms in the category of Hodge
structures. Then E is a number field.

Proof: By Schur’s lemma, E has no zero divisors, hence it is a division
algebra. Since E C End(Vp), it is countable. To prove that it is a number
field, it remains to show that E is commutative. However, E acts on a
1-dimensional space V29, This defines a homomorphism from E to C, which
IS injective, because E is a division algebra. =
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Zarhin’s results about Hodge structures of K3 type (2)

THEOREM: (Zarhin) Let V be a Hodge structure of K3 type, and E :=
End(Vp) its endomorphism field. Then E is either totally real (that is, all
its embeddings to C are real) or is an imaginary quadratic extension of
a totally real field Ej.

Proof. Step 1: Let a € E be an endomorphism, and a* its conjugate with
respect to the polarization h. Since the polarization is rational and U(1)-
invariant, the map a* also preserves the Hodge decomposition. Then a* € E.
Denote the generator of V20 by Q. Then h(a(),a()) = h(a*a(2),2) > 0,
hence “*“T(Q) is a positive real number. Then, the embedding £ — C induced

by b >b(§) maps a*a to a positive real number.

Step 2: The group Gal(C/Q) acts transitively on embeddings from E to C.
Therefore, all embeddings E — C map a*a to a positive real number.

Step 3: The map a — a™ is either a non-trivial involution or identity. In the
second case, all embeddings E — C map a? to a positive real number, and FE
is totally real. In the first case, the fixed set E7 =: Ep is a degree 2 subfield
of E, with 7 the generator of the Galois group Gal(E/Ep). =
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Zarhin’s results about Mumford-Tate group

THEOREM: (Zarhin) Let Vp be a Hodge structure of K3 type, and E =
End(Vg) the corresponding number field. Denote by SOg(V) the group of
E-linear isometries of V for [E : Q] totally real, and by Ug(V) the group of
E-linear isometries of V for E an imaginary quadratic extension of a totally
real field. Then the Mumford-Tate group MT is SOg(V) in the first case,
and Ug(V) in the second.

Proof: Zarhin, Yu.G., Hodge groups of K3 surfaces, Journal fir die reine und
angewandte Mathematik Volume 341, page 193-220, 1983. =

REMARK: As a Lie group, SOg(V) is SO(C"™), where n is dimension of Vg
over E, because h is E-linear for the totally real E. For an imaginary quadratic
case, Ug(V) is U(C™), because h is Ep-linear and Hermitian with respect to
the complex conjugation map in Gal(E/Ep).
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Irreducible representations of SO(V)

Claim 2: Let V be a vector space equipped with a non-degenerate symmetric
product h, and b € Sym2(V) an SO(V)-invariant bivector dual to h. Denote
by Symj_(V) the quotient of Sym*(V) by the ideal generated by b. Then
Sym’f|_(V) Is irreducible as a representation of SO(V).

Proof: It is well known (see [Weyl]) that Sym*(V) is decomposed to a direct
sum of irreducible representations of SO(V') as follows:

Sym(V) = Symi(V) & Sym’! (V)& ...® Sym%_QWQJ (V),

where Sym:_, (V) & Sym!”7(V) and the subrepresentation Sym: (V) & .. &
Sym?;ﬁ_QWQJ(V) is the image of Sym’=2(V) under the map a« — a-b. Then

Sym? (V) = Sym’(V), hence irreducible. =
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Hyperkahler manifolds

DEFINITION: Hyperkahler manifold is compact, holomorphically symplec-
tic manifold M with 71(M) = 0 and H%%(M) = C.

THEOREM: (Fujiki). Let n € H2(M), and dimM = 2n, where M is hy-
perkahler. Then [, n°" = cq(n,n)", for some primitive integer quadratic
form g on H2(M,Z), and ¢ > 0 a rational number.

DEFINITION: The form ¢ is called Bogomolov-Beauville-Fujiki form. It
has signature (3,6, — 3).

Theorem 0: (V., 1995) Let M be a maximal holonomy hyperkahler man-
ifold, dimg¢ M = 2n, and HE‘Q)(M) subalgebra in cohomology generated by

H?(M). Then H(QQZ')(M) = Sym? H2(M) for all i < n.
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Transcendental Hodge algebra for hyperkahler manifolds
The main result of today’'s talk:

THEOREM: Let M be a projective maximal holonomy hyperkahler man-
ifold, dimgM = 2n, H%*(M) its transcendental Hodge algebra, and E =
End(V) the number field of endomorphisms of its transcendental lattice
V = H,?T(M). Let Sym(V)g denote the E-linear symmetric product. Then
HZ¥(M) = Do Sym‘(V)r for E imaginary quadratic extension, and
Hz*(M) = @}y Sym’ (V) for E totally real.

Proof: By definition, H%?(M) is the smallest Hodge substructure (that is,
the Mumford-Tate subrepresentation) of H2*(M) containing 2*. By Theorem
0, one could replace H?2'(M) with Sym% V). This means that we need to
find the smallest Ug(V)- and SOz (V)-representation containing Q. For V a
fundamental representation of U(V), the space Sym*(V) is irreducible, and for
SO(V), the irreducible component containing " is precisely Sym’_ (V) (Claim
2). =
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Non-degeneracy of the map z — z" in H}.(M)

THEOREM: Let M be a projective maximal holonomy hyperkahler manifold,
dimg M = 2n and = € HZ.(M) a non-zero vector. Then z" # 0 in HL(M).

Proof: When Hj, (M) = Sym*(V), this is trivial. When Hj (M) = Sym* (V),
this is proven as follows. The action of SO(V) on the projectivization PV has
only two orbits: the quadric Q := {z | h(xz,z) = 0} and the rest. The map
P(x) = z™ is non-zero, hence it is non-zero on the open orbit. To check that
it is non-zero on the quadric, notice that 2 belongs to Q, and Q2™ is non-zero
in Sym"_”i_(V). u

DEFINITION: Let V be a 4n-dimensional vector space, and WV : W — /\2(V)
a linear map. Assume that W(w) is a symplectic form for general w € W, and
has rank %dim W for w in a non-degenerate quadric Q C W. Then W is called
k-symplectic structure on V, where k =dimW.

THEOREM: (Soldatenkov-V.) Let V be a k-symplectic space. Then V' is a
Clifford module over a Clifford algebra /[ (Wy), withdimWyg=dimW -1 =
k, and dimV divisible by 2L(k=1)/2]
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Application to symplectically embedded tori

Corollary 1: Let M be a projective maximal holonomy hyperkahler manifold,
N — M a torus, dimg N = 2n, embedded holomorphically symplectically in M,
and z € H?(N) a restriction of a non-zero class « € H2.(M). Then z" # 0.

Proof: Since the embedding N — M is holomorphically symplectic, the re-
striction map HZ"(M) — HZ™(N) is non-zero, hence injective. On the other
hand, 2™ # 0 in HZ*(M) as shown above. m

COROLLARY: Let M be a projective hyperkahler manifold with Picard rank
1, generic in its deformation space, and N — M a holomorphic symplectic
torus. Then dim N is divisible by 2/(02(M)=2)/2]

Proof: By Corollary 1, H(T) is k-symplectic, where k = dim HZ.(M) =
b>(M) — 1. Then it is a Clifford module over C[(k — 1) by Soldatenkov-V. =

Similar result can be proven for all transcendental Hodge lattices.

THEOREM: Let M be a projective hyperkahler manifold, generic in a defor-
mation family of effective dimension d, and N — M a holomorphic symplectic
torus. Then dim N is divisible by 2l4/2],
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