Transcendental Hodge algebra

Misha Verbitsky

Journées Complexes Lorraines 2015

September 29, 2015, l'Institut Élie Cartan, Nancy, France

Hodge structures

DEFINITION: Let $V_{\mathbb{R}}$ be a real vector space. **A** (real) Hodge structure of weight w on a vector space $V_{\mathbb{C}} = V_{\mathbb{R}} \otimes_{\mathbb{R}} \mathbb{C}$ is a decomposition $V_{\mathbb{C}} = \bigoplus_{p+q=w} V^{p,q}$, satisfying $\overline{V^{p,q}} = V^{q,p}$. It is called rational Hodge structure if one fixes a rational lattice $V_{\mathbb{Q}}$ such that $V_{\mathbb{R}} = V_{\mathbb{Q}} \otimes \mathbb{R}$. A Hodge structure is equipped with U(1)-action, with $u \in U(1)$ acting as u^{p-q} on $V^{p,q}$. Morphism of Hodge structures is a rational map which is U(1)-invariant.

DEFINITION: Polarization on a rational Hodge structrure of weight w is a U(1)-invariant non-degenerate 2-form $h \in V^*_{\mathbb{Q}} \otimes V^*_{\mathbb{Q}}$ (symmetric or antisymmetric depending on parity of w) which satisfies

 $-\sqrt{-1}^{p-q}h(x,\overline{x}) > 0 \quad (*)$

("Riemann-Hodge relations") for each non-zero $x \in V^{p,q}$.

Hodge structures (2)

DEFINITION: A simple object of an abelian category is an object which has no proper subobjects. An abelian category is semisimple if any object is a direct sum of simple objects.

CLAIM: Category of polarized Hodge structures in semisimple.

Proof: Orthogonal complement of a Hodge substructure $V' \subset V$ with respect to h is again a Hodge substructure, and this complement does not intersect V'; both assertions follow from the Riemann-Hodge relations.

EXAMPLE: Let (M, ω) be a compact Kähler manifold. Then the Hodge decomposition $H^w(M, \mathbb{C}) = \bigoplus H^{p,q}(M)$ defines a Hodge structure on $H^w(M, \mathbb{C})$. If we restrict ourselves to the primitive cohomology space

$$H^w_{\text{prim}} := \{ \eta \in H^w(M) \ (*\eta) \land \omega = 0 \},\$$

and consider $h(x,y) := \int_M x \wedge y \wedge \omega^{\dim_{\mathbb{C}} M - w}$, relations (*) become the usual Hodge-Riemann relations. If, in addition, the cohomology class of ω is rational (in this case, by Kodaira theorem, (M, ω) is projective) the space $H^w_{\text{prim}}(M)$ is also rational, and **the Hodge decomposition** $H^w_{\text{prim}}(M, \mathbb{C}) = \oplus H^{p,q}_{\text{prim}}(M)$ **defines a polarized, rational Hodge structure.**

Mumford-Tate group

DEFINITION: Let V be a Hodge structure over \mathbb{Q} , and ρ the corresponding U(1)-action. Mumford-Tate group (Mumford, 1966; Mumford called it "the Hodge group") is the smallest algebraic group over \mathbb{Q} containing ρ .

THEOREM: Let V be a rational, polarized Hodge structure, and MT(V) its Mumford-Tate group. Consider the tensor algebra of V, $W = T^{\otimes}(V)$ with the Hodge structure (also polarized) induced from V. Let W_h be the space of all ρ -invariant rational vectors in W (such vectors are called "Hodge vectors"). **Then** MT(V) coincides with the stabilizer

 $\mathsf{St}_{GL(V)}(W_h) := \{ g \in GL(V) \mid \forall w \in W_h, g(w) = w \}.$

Proof: Follows from the Chevalley's theorem on tensor invariants.

Corollary 1: Let $V_{\mathbb{Q}}$ be a rational Hodge structure, and $W \subset V_{\mathbb{C}}$ a subspace. **Then the following are equivalent.**

(i) W is a Hodge substructure.

(ii) W is Mumford-Tate invariant.

Mumford-Tate group and the $Gal(\mathbb{C}/\mathbb{Q})$ -action

DEFINITION: Let $V_{\mathbb{Q}}$ be a \mathbb{Q} -vector space, and $V_{\mathbb{C}} := V_{\mathbb{Q}} \otimes_{\mathbb{Q}} \mathbb{C}$ its complexification, equipped with a natural Galois group $Gal(\mathbb{C}/\mathbb{Q})$ action. We call a complex subspace $T \subset V_{\mathbb{C}}$ rational if $T = T_{\mathbb{Q}} \otimes_{\mathbb{Q}} \mathbb{C}$, where $T_Q = V_{\mathbb{Q}} \cap T$.

REMARK: A complex subspace $W \subset V_{\mathbb{C}}$ is rational if and only if it is $Gal(\mathbb{C}/\mathbb{Q})$ -invariant.

This implies

Claim 1: Consider a subspace $W \subset V_{\mathbb{C}}$, and let $\tilde{W}_{\mathbb{Q}} \subset V_{\mathbb{Q}}$ be a smallest subspace of $V_{\mathbb{Q}}$ such that $\tilde{W}_{\mathbb{Q}} \otimes_{\mathbb{Q}} \mathbb{C} \supset W$. Then $W_{\mathbb{Q}} \otimes_{\mathbb{Q}} \mathbb{C}$ is generated by $\sigma(W)$, for all $\sigma \in Gal(\mathbb{C}/\mathbb{Q})$.

PROPOSITION: Let $V_{\mathbb{Q}}$ be a rational, polarized Hodge structure, ρ the corresponding U(1)-action, and MT its Mumford-Tate group. Then MT is a Zariski closure of a group generated by $\sigma(\rho)$, for all $\sigma \in Gal(\mathbb{C}/\mathbb{Q})$.

Proof: Since MT is rational, it is preserved by $Gal(\mathbb{C}/\mathbb{Q})$. The algebraic closure of the group generated by $\sigma(\rho)$ coincides with MT, because it is a smallest group which is rational, Zariski closed and contains ρ .

Transcendental Hodge lattice

THEOREM: Let $V_{\mathbb{Q}}$ be a rational, polarized Hodge structure of weight w, $V_C = \bigoplus_{\substack{p+q=w\\p,q \ge 0}} V^{p,q}$, and $V^{tr} \subset V_{\mathbb{C}}$ a minimal rational subspace containing $V^{d,0}$. **Then** V^{tr} is a Hodge substructure.

Proof: By Claim 1, V^{tr} is generated by $\sigma(V^{d,0})$ for all $\sigma \in Gal(\mathbb{C}/\mathbb{Q})$. Since $V^{d,0}$ is preserved by the U(1)-action ρ , V^{tr} is preserved by the group generated by all $\sigma(\rho)$, which is MT. Finally, a rational subspace is a Hodge substructure if and only if it MT-invariant (Corollary 1).

THEOREM: Transcendental Hodge lattice is a birational invariant.

Proof: Let $\varphi : X \longrightarrow Y$ be a birational morphism of projective varieties. Then $\varphi^* : H^d(Y) \longrightarrow H^d(X)$ induces isomorphism on $H^{d,0}$. Therefore, it is injective on $H^d_{tr}(Y)$. Indeed, its kernel is a Hodge substructure of $H^d_{tr}(Y)$ not intersecting $H^{d,0}$, which is impossible. Applying the same argument to the dual map, we obtain that φ^* is also surjective on $H^d_{tr}(Y)$.

Transcendental Hodge algebra

PROPOSITION: Let M be a projective Kähler manifold, $H_{tr}^*(M) := \bigoplus_d H_{tr}^d(M)$ the direct sum of all transcendental Hodge lattices, and $H_{tr}^*(M)^{\perp}$ its orthogonal complement with respect to the polarization form $h(x, y) := \int_M x \wedge y \wedge \omega^{\dim_{\mathbb{C}} M - w}$. Then $H_{tr}^*(M)^{\perp}$ is an ideal in the cohomology algebra.

Proof: The space $V^* := H^*_{tr}(M)^{\perp}$ is a maximal Hodge structure contained in

$$A^* := \bigoplus_{\substack{p+q=w\\p,q>0}} V^{p,q}.$$

The space A^* is clearly an ideal. For any two Hodge substructures $X, Y \subset H^*(M)$, the product $X \cdot Y$ also rational and U(1)-invariant, hence it is also a Hodge substructure. However, A^* is an ideal, hence $X \cdot V^*$ is a Hodge structure contained in A^* . Therefore, $H^*(M) \cdot V^*$ is contained in V^* .

DEFINITION: The quotient algebra $H^*(M)/H^*_{tr}(M)^{\perp} = H^*_{tr}(M)$ is called **the transcendental Hodge algebra** of M.

PROPOSITION:

Transcendental Hodge algebra is a birational invariant.

Proof: Same as for transcendental Hodge lattices.

Misha Verbitsky

Zarhin's results about Hodge structures of K3 type

DEFINITION: A polarized, rational Hodge structure $V_{\mathbb{C}} = \bigoplus_{\substack{p+q=2\\p,q \ge 0}} V^{p,q}$ of weight 2 with dim $V^{2,0} = 1$ is called a Hodge structure of K3 type.

DEFINITION: A Hodge structure is called **simple** if it has no proper Hodge substructures.

REMARK: Since the category of polarized Hodge structures is semisimple, every Hodge structure is a direct sum of simple ones.

REMARK: Let M be a projective K3 surface, and $V_{\mathbb{Q}}$ its transcendental Hodge lattice. Then in is simple and of K3 type.

PROPOSITION: (Zarhin) Let $V_{\mathbb{Q}}$ be a simple Hodge structure of K3 sype, and $E = \text{End}(V_{\mathbb{Q}})$ an algebra of its endomorphisms in the category of Hodge structures. Then *E* is a number field.

Proof: By Schur's lemma, E has no zero divisors, hence it is a division algebra. Since $E \subset \text{End}(V_{\mathbb{Q}})$, it is countable. To prove that it is a number field, it remains to show that E is commutative. However, E acts on a 1-dimensional space $V^{2,0}$. This defines a homomorphism from E to \mathbb{C} , which is injective, because E is a division algebra.

Zarhin's results about Hodge structures of K3 type (2)

THEOREM: (Zarhin) Let $V_{\mathbb{Q}}$ be a Hodge structure of K3 type, and $E := \text{End}(V_{\mathbb{Q}})$ its endomorphism field. Then E is either totally real (that is, all its embeddings to \mathbb{C} are real) or is an imaginary quadratic extension of a totally real field E_0 .

Proof. Step 1: Let $a \in E$ be an endomorphism, and a^* its conjugate with respect to the polarization h. Since the polarization is rational and U(1)-invariant, the map a^* also preserves the Hodge decomposition. Then $a^* \in E$. Denote the generator of $V^{2,0}$ by Ω . Then $h(a(\Omega), a(\overline{\Omega})) = h(a^*a(\Omega), \overline{\Omega}) > 0$, hence $\frac{a^*a(\Omega)}{\Omega}$ is a positive real number. Then, the embedding $E \hookrightarrow \mathbb{C}$ induced by $b \longrightarrow \frac{b(\Omega)}{\Omega}$ maps a^*a to a positive real number.

Step 2: The group $Gal(\mathbb{C}/\mathbb{Q})$ acts transitively on embeddings from E to \mathbb{C} . Therefore, all embeddings $E \hookrightarrow \mathbb{C}$ map a^*a to a positive real number.

Step 3: The map $a \longrightarrow a^*$ is either a non-trivial involution or identity. In the second case, all embeddings $E \hookrightarrow \mathbb{C}$ map a^2 to a positive real number, and E is totally real. In the first case, the fixed set $E^{\tau} =: E_0$ is a degree 2 subfield of E, with τ the generator of the Galois group $Gal(E/E_0)$.

Zarhin's results about Mumford-Tate group

THEOREM: (Zarhin) Let $V_{\mathbb{Q}}$ be a Hodge structure of K3 type, and E :=End($V_{\mathbb{Q}}$) the corresponding number field. Denote by $SO_E(V)$ the group of E-linear isometries of V for $[E : \mathbb{Q}]$ totally real, and by $U_E(V)$ the group of E-linear isometries of V for E an imaginary quadratic extension of a totally real field. Then the Mumford-Tate group MT is $SO_E(V)$ in the first case, and $U_E(V)$ in the second.

Proof: Zarhin, Yu.G., Hodge groups of K3 surfaces, Journal für die reine und angewandte Mathematik Volume 341, page 193-220, 1983. ■

REMARK: As a Lie group, $SO_E(V)$ is $SO(\mathbb{C}^n)$, where *n* is dimension of $V_{\mathbb{Q}}$ over *E*, because *h* is *E*-linear for the totally real *E*. For an imaginary quadratic case, $U_E(V)$ is $U(C^n)$, because *h* is E_0 -linear and Hermitian with respect to the complex conjugation map in $Gal(E/E_0)$.

Irreducible representations of SO(V)

Claim 2: Let *V* be a vector space equipped with a non-degenerate symmetric product *h*, and $b \in \text{Sym}^2(V)$ an SO(V)-invariant bivector dual to *h*. **Denote** by $\text{Sym}^*_+(V)$ the quotient of $\text{Sym}^*(V)$ by the ideal generated by *b*. Then $\text{Sym}^i_+(V)$ is irreducible as a representation of SO(V).

Proof: It is well known (see [Weyl]) that $Sym^i(V)$ is decomposed to a direct sum of irreducible representations of SO(V) as follows:

$$\operatorname{Sym}^{i}(V) = \operatorname{Sym}^{i}_{i}(V) \oplus \operatorname{Sym}^{i}_{i-2}(V) \oplus ... \oplus \operatorname{Sym}^{i}_{i-2|i/2|}(V),$$

where $\operatorname{Sym}_{i-k}^{i}(V) \cong \operatorname{Sym}_{i-k}^{i-k}(V)$ and the subrepresentation $\operatorname{Sym}_{i-2}^{i}(V) \oplus ... \oplus \operatorname{Sym}_{i-2\lfloor i/2 \rfloor}^{i}(V)$ is the image of $\operatorname{Sym}^{i-2}(V)$ under the map $\alpha \longrightarrow \alpha \cdot b$. Then $\operatorname{Sym}_{+}^{i}(V) = \operatorname{Sym}_{i}^{i}(V)$, hence irreducible.

Hyperkähler manifolds

DEFINITION: Hyperkähler manifold is compact, holomorphically symplectic manifold M with $\pi_1(M) = 0$ and $H^{2,0}(M) = \mathbb{C}$.

THEOREM: (Fujiki). Let $\eta \in H^2(M)$, and dim M = 2n, where M is hyperkähler. Then $\int_M \eta^{2n} = cq(\eta, \eta)^n$, for some primitive integer quadratic form q on $H^2(M, \mathbb{Z})$, and c > 0 a rational number.

DEFINITION: The form q is called **Bogomolov-Beauville-Fujiki form**. It has signature $(3, b_2 - 3)$.

Theorem 0: (V., 1995) Let M be a maximal holonomy hyperkähler manifold, $\dim_{\mathbb{C}} M = 2n$, and $H^*_{(2)}(M)$ subalgebra in cohomology generated by $H^2(M)$. Then $H^{2i}_{(2)}(M) = \operatorname{Sym}^i H^2(M)$ for all $i \leq n$.

Transcendental Hodge algebra for hyperkähler manifolds

The main result of today's talk:

THEOREM: Let M be a projective maximal holonomy hyperkähler manifold, $\dim_{\mathbb{C}} M = 2n$, $H_{tr}^{2*}(M)$ its transcendental Hodge algebra, and E =End(V) the number field of endomorphisms of its transcendental lattice $V = H_{tr}^2(M)$. Let Sym(V)_E denote the E-linear symmetric product. Then $H_{tr}^{2*}(M) = \bigoplus_{i=0}^{n} \text{Sym}^{i}(V)_{E}$ for E imaginary quadratic extension, and $H_{tr}^{2*}(M) = \bigoplus_{i=0}^{n} \text{Sym}^{i}(V)_{E}$ for E totally real.

Proof: By definition, $H_{tr}^{2i}(M)$ is the smallest Hodge substructure (that is, the Mumford-Tate subrepresentation) of $H^{2i}(M)$ containing Ω^i . By Theorem 0, one could replace $H^{2i}(M)$ with $\operatorname{Sym}^i(V)$. This means that we need to find the smallest $U_E(V)$ - and $SO_E(V)$ -representation containing Ω^i . For V a fundamental representation of U(V), the space $\operatorname{Sym}^i(V)$ is irreducible, and for SO(V), the irreducible component containing Ω^i is precisely $\operatorname{Sym}^i_+(V)$ (Claim 2).

Non-degeneracy of the map $x \longrightarrow x^n$ in $H^*_{tr}(M)$

THEOREM: Let M be a projective maximal holonomy hyperkähler manifold, dim_{\mathbb{C}} M = 2n and $x \in H^2_{tr}(M)$ a non-zero vector. Then $x^n \neq 0$ in $H^n_{tr}(M)$.

Proof: When $H_{tr}^*(M) = \operatorname{Sym}^*(V)$, this is trivial. When $H_{tr}^*(M) = \operatorname{Sym}^*_+(V)$, this is proven as follows. The action of SO(V) on the projectivization $\mathbb{P}V$ has only two orbits: the quadric $Q := \{x \mid h(x, x) = 0\}$ and the rest. The map $P(x) = x^n$ is non-zero, hence it is non-zero on the open orbit. To check that it is non-zero on the quadric, notice that Ω belongs to Q, and Ω^n is non-zero in $\operatorname{Sym}^n_+(V)$.

DEFINITION: Let *V* be a 4n-dimensional vector space, and $\Psi : W \longrightarrow \Lambda^2(V)$ a linear map. Assume that $\Psi(\omega)$ is a symplectic form for general $\omega \in W$, and has rank $\frac{1}{2} \dim W$ for ω in a non-degenerate quadric $Q \subset W$. Then Ψ is called *k*-symplectic structure on *V*, where $k = \dim W$.

THEOREM: (Soldatenkov-V.) Let V be a k-symplectic space. Then V is a Clifford module over a Clifford algebra $\mathcal{Cl}(W_0)$, with dim $W_0 = \dim W - 1 = k$, and dim V divisible by $2^{\lfloor (k-1)/2 \rfloor}$.

Application to symplectically embedded tori

Corollary 1: Let M be a projective maximal holonomy hyperkähler manifold, $N \hookrightarrow M$ a torus, $\dim_{\mathbb{C}} N = 2n$, embedded holomorphically symplectically in M, and $x \in H^2(N)$ a restriction of a non-zero class $x \in H^2_{tr}(M)$. Then $x^n \neq 0$.

Proof: Since the embedding $N \hookrightarrow M$ is holomorphically symplectic, the restriction map $H^{2n}_{tr}(M) \longrightarrow H^{2n}_{tr}(N)$ is non-zero, hence injective. On the other hand, $x^n \neq 0$ in $H^{2n}_{tr}(M)$ as shown above.

COROLLARY: Let M be a projective hyperkähler manifold with Picard rank 1, generic in its deformation space, and $N \hookrightarrow M$ a holomorphic symplectic torus. Then dim N is divisible by $2^{\lfloor (b_2(M)-2)/2 \rfloor}$.

Proof: By Corollary 1, $H^1(T)$ is k-symplectic, where $k = \dim H^2_{tr}(M) = b_2(M) - 1$. Then it is a Clifford module over Cl(k-1) by Soldatenkov-V.

Similar result can be proven for all transcendental Hodge lattices.

THEOREM: Let M be a projective hyperkähler manifold, generic in a deformation family of effective dimension d, and $N \hookrightarrow M$ a holomorphic symplectic torus. Then dim N is divisible by $2^{\lfloor d/2 \rfloor}$.