
Trascendental Hodge algebra Misha Verbitsky

Transcendental Hodge algebra

Misha Verbitsky

Journées Complexes Lorraines 2015

September 29, 2015, l’Institut Élie Cartan, Nancy, France
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Hodge structures

DEFINITION: Let VR be a real vector space. A (real) Hodge structure

of weight w on a vector space VC = VR ⊗R C is a decomposition VC =⊕
p+q=w V

p,q, satisfying V p,q = V q,p. It is called rational Hodge structure if

one fixes a rational lattice VQ such that VR = VQ ⊗ R. A Hodge structure is

equipped with U(1)-action, with u ∈ U(1) acting as up−q on V p,q. Morphism

of Hodge structures is a rational map which is U(1)-invariant.

DEFINITION: Polarization on a rational Hodge structrure of weight w is

a U(1)-invariant non-degenerate 2-form h ∈ V ∗Q ⊗ V
∗
Q (symmetric or antisym-

metric depending on parity of w) which satisfies

−
√
−1 p−qh(x, x) > 0 (∗)

(“Riemann-Hodge relations”) for each non-zero x ∈ V p,q.
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Hodge structures (2)

DEFINITION: A simple object of an abelian category is an object which
has no proper subobjects. An abelian category is semisimple if any object is
a direct sum of simple objects.

CLAIM: Category of polarized Hodge structures in semisimple.

Proof: Orthogonal complement of a Hodge substructure V ′ ⊂ V with respect
to h is again a Hodge substructure, and this complement does not intersect
V ′; both assertions follow from the Riemann-Hodge relations.

EXAMPLE: Let (M,ω) be a compact Kähler manifold. Then the Hodge
decomposition Hw(M,C) = ⊕Hp,q(M) defines a Hodge structure on Hw(M,C).
If we restrict ourselves to the primitive cohomology space

Hw
prim := {η ∈ Hw(M) (∗η) ∧ ω = 0},

and consider h(x, y) :=
∫
M x ∧ y ∧ ωdimCM−w, relations (*) become the usual

Hodge-Riemann relations. If, in addition, the cohomology class of ω is rational
(in this case, by Kodaira theorem, (M,ω) is projective) the space Hw

prim(M)
is also rational, and the Hodge decomposition Hw

prim(M,C) = ⊕Hp,q
prim(M)

defines a polarized, rational Hodge structure.
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Mumford-Tate group

DEFINITION: Let V be a Hodge structure over Q, and ρ the corresponding

U(1)-action. Mumford-Tate group (Mumford, 1966; Mumford called it “the

Hodge group”) is the smallest algebraic group over Q containing ρ.

THEOREM: Let V be a rational, polarized Hodge structure, and MT(V ) its

Mumford-Tate group. Consider the tensor algebra of V , W = T⊗(V ) with the

Hodge structure (also polarized) induced from V . Let Wh be the space of all

ρ-invariant rational vectors in W (such vectors are called “Hodge vectors”).

Then MT(V ) coincides with the stabilizer

StGL(V )(Wh) := {g ∈ GL(V ) | ∀w ∈Wh, g(w) = w}.

Proof: Follows from the Chevalley’s theorem on tensor invariants.

Corollary 1: Let VQ be a rational Hodge structure, and W ⊂ VC a subspace.

Then the following are equivalent.

(i) W is a Hodge substructure.

(ii) W is Mumford-Tate invariant.
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Mumford-Tate group and the Gal (C/Q)-action

DEFINITION: Let VQ be a Q-vector space, and VC := VQ ⊗Q C its complex-
ification, equipped with a natural Galois group Gal (C/Q) action. We call a
complex subspace T ⊂ VC rational if T = TQ ⊗Q C, where TQ = VQ ∩ T .

REMARK: A complex subspace W ⊂ VC is rational if and only if it is
Gal (C/Q)-invariant.

This implies

Claim 1: Consider a subspace W ⊂ VC, and let W̃Q ⊂ VQ be a smallest
subspace of VQ such that W̃Q ⊗Q C ⊃ W . Then WQ ⊗Q C is generated by
σ(W ), for all σ ∈ Gal (C/Q).

PROPOSITION: Let VQ be a rational, polarized Hodge structure, ρ the
corresponding U(1)-action, and MT its Mumford-Tate group. Then MT is a
Zariski closure of a group generated by σ(ρ), for all σ ∈ Gal (C/Q).

Proof: Since MT is rational, it is preserved by Gal (C/Q). The algebraic closure
of the group generated by σ(ρ) coincides with MT, because it is a smallest
group which is rational, Zariski closed and contains ρ.
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Transcendental Hodge lattice

THEOREM: Let VQ be a rational, polarized Hodge structure of weight w,

VC =
⊕

p+q=w
p,q>0

V p,q, and V tr ⊂ VC a minimal rational subspace containing V d,0.

Then V tr is a Hodge substructure.

Proof: By Claim 1, V tr is generated by σ(V d,0) for all σ ∈ Gal (C/Q). Since

V d,0 is preserved by the U(1)-action ρ, V tr is preserved by the group generated

by all σ(ρ), which is MT. Finally, a rational subspace is a Hodge substructure

if and only if it MT-invariant (Corollary 1).

THEOREM: Transcendental Hodge lattice is a birational invariant.

Proof: Let ϕ : X −→ Y be a birational morphism of projective varieties.

Then ϕ∗ : Hd(Y )−→Hd(X) induces isomorphism on Hd,0. Therefore, it is

injective on Hd
tr(Y ). Indeed, its kernel is a Hodge substructure of Hd

tr(Y ) not

intersecting Hd,0, which is impossible. Applying the same argument to the

dual map, we obtain that ϕ∗ is also surjective on Hd
tr(Y ).
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Transcendental Hodge algebra

PROPOSITION: Let M be a projective Kähler manifold, H∗tr(M) := ⊕dHd
tr(M)

the direct sum of all transcendental Hodge lattices, and H∗tr(M)⊥ its orthog-
onal complement with respect to the polarization form h(x, y) :=

∫
M x ∧ y ∧

ωdimCM−w. Then H∗tr(M)⊥ is an ideal in the cohomology algebra.

Proof: The space V ∗ := H∗tr(M)⊥ is a maximal Hodge structure contained in

A∗ :=
⊕

p+q=w
p,q>0

V p,q.

The space A∗ is clearly an ideal. For any two Hodge substructures X,Y ⊂
H∗(M), the product X · Y also rational and U(1)-invariant, hence it is also
a Hodge substructure. However, A∗ is an ideal, hence X · V ∗ is a Hodge
structure contained in A∗. Therefore, H∗(M) · V ∗ is contained in V ∗.

DEFINITION: The quotient algebra H∗(M)/H∗tr(M)⊥ = H∗tr(M) is called
the transcendental Hodge algebra of M .

PROPOSITION:
Transcendental Hodge algebra is a birational invariant.

Proof: Same as for transcendental Hodge lattices.
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Zarhin’s results about Hodge structures of K3 type

DEFINITION: A polarized, rational Hodge structure VC =
⊕

p+q=2
p,q>0

V p,q of

weight 2 with dimV 2,0 = 1 is called a Hodge structure of K3 type.

DEFINITION: A Hodge structure is called simple if it has no proper Hodge
substructures.

REMARK: Since the category of polarized Hodge structures is semisimple,
every Hodge structure is a direct sum of simple ones.

REMARK: Let M be a projective K3 surface, and VQ its transcendental
Hodge lattice. Then in is simple and of K3 type.

PROPOSITION: (Zarhin) Let VQ be a simple Hodge structure of K3 sype,
and E = End(VQ) an algebra of its endomorphisms in the category of Hodge
structures. Then E is a number field.

Proof: By Schur’s lemma, E has no zero divisors, hence it is a division
algebra. Since E ⊂ End(VQ), it is countable. To prove that it is a number
field, it remains to show that E is commutative. However, E acts on a
1-dimensional space V 2,0. This defines a homomorphism from E to C, which
is injective, because E is a division algebra.
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Zarhin’s results about Hodge structures of K3 type (2)

THEOREM: (Zarhin) Let VQ be a Hodge structure of K3 type, and E :=

End(VQ) its endomorphism field. Then E is either totally real (that is, all

its embeddings to C are real) or is an imaginary quadratic extension of

a totally real field E0.

Proof. Step 1: Let a ∈ E be an endomorphism, and a∗ its conjugate with

respect to the polarization h. Since the polarization is rational and U(1)-

invariant, the map a∗ also preserves the Hodge decomposition. Then a∗ ∈ E.

Denote the generator of V 2,0 by Ω. Then h(a(Ω), a(Ω)) = h(a∗a(Ω),Ω) > 0,

hence a∗a(Ω)
Ω is a positive real number. Then, the embedding E ↪→ C induced

by b−→ b(Ω)
Ω maps a∗a to a positive real number.

Step 2: The group Gal (C/Q) acts transitively on embeddings from E to C.

Therefore, all embeddings E ↪→ C map a∗a to a positive real number.

Step 3: The map a−→ a∗ is either a non-trivial involution or identity. In the

second case, all embeddings E ↪→ C map a2 to a positive real number, and E

is totally real. In the first case, the fixed set Eτ =: E0 is a degree 2 subfield

of E, with τ the generator of the Galois group Gal (E/E0).
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Zarhin’s results about Mumford-Tate group

THEOREM: (Zarhin) Let VQ be a Hodge structure of K3 type, and E :=

End(VQ) the corresponding number field. Denote by SOE(V ) the group of

E-linear isometries of V for [E : Q] totally real, and by UE(V ) the group of

E-linear isometries of V for E an imaginary quadratic extension of a totally

real field. Then the Mumford-Tate group MT is SOE(V ) in the first case,

and UE(V ) in the second.

Proof: Zarhin, Yu.G., Hodge groups of K3 surfaces, Journal für die reine und

angewandte Mathematik Volume 341, page 193-220, 1983.

REMARK: As a Lie group, SOE(V ) is SO(Cn), where n is dimension of VQ
over E, because h is E-linear for the totally real E. For an imaginary quadratic

case, UE(V ) is U(Cn), because h is E0-linear and Hermitian with respect to

the complex conjugation map in Gal (E/E0).
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Irreducible representations of SO(V )

Claim 2: Let V be a vector space equipped with a non-degenerate symmetric

product h, and b ∈ Sym2(V ) an SO(V )-invariant bivector dual to h. Denote

by Sym∗+(V ) the quotient of Sym∗(V ) by the ideal generated by b. Then

Symi
+(V ) is irreducible as a representation of SO(V ).

Proof: It is well known (see [Weyl]) that Symi(V ) is decomposed to a direct

sum of irreducible representations of SO(V ) as follows:

Symi(V ) = Symi
i(V )⊕ Symi

i−2(V )⊕ ...⊕ Symi
i−2bi/2c(V ),

where Symi
i−k(V ) ∼= Symi−k

i−k(V ) and the subrepresentation Symi
i−2(V ) ⊕ ... ⊕

Symi
i−2bi/2c(V ) is the image of Symi−2(V ) under the map α−→ α · b. Then

Symi
+(V ) = Symi

i(V ), hence irreducible.
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Hyperkähler manifolds

DEFINITION: Hyperkähler manifold is compact, holomorphically symplec-

tic manifold M with π1(M) = 0 and H2,0(M) = C.

THEOREM: (Fujiki). Let η ∈ H2(M), and dimM = 2n, where M is hy-

perkähler. Then
∫
M η2n = cq(η, η)n, for some primitive integer quadratic

form q on H2(M,Z), and c > 0 a rational number.

DEFINITION: The form q is called Bogomolov-Beauville-Fujiki form. It

has signature (3, b2 − 3).

Theorem 0: (V., 1995) Let M be a maximal holonomy hyperkähler man-

ifold, dimCM = 2n, and H∗(2)(M) subalgebra in cohomology generated by

H2(M). Then H2i
(2)(M) = SymiH2(M) for all i 6 n.
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Transcendental Hodge algebra for hyperkähler manifolds

The main result of today’s talk:

THEOREM: Let M be a projective maximal holonomy hyperkähler man-

ifold, dimCM = 2n, H2∗
tr (M) its transcendental Hodge algebra, and E =

End(V ) the number field of endomorphisms of its transcendental lattice

V = H2
tr(M). Let Sym(V )E denote the E-linear symmetric product. Then

H2∗
tr (M) =

⊕n
i=0 Symi(V )E for E imaginary quadratic extension, and

H2∗
tr (M) =

⊕n
i=0 Symi

+(V )E for E totally real.

Proof: By definition, H2i
tr (M) is the smallest Hodge substructure (that is,

the Mumford-Tate subrepresentation) of H2i(M) containing Ωi. By Theorem

0, one could replace H2i(M) with Symi(V ). This means that we need to

find the smallest UE(V )- and SOE(V )-representation containing Ωi. For V a

fundamental representation of U(V ), the space Symi(V ) is irreducible, and for

SO(V ), the irreducible component containing Ωi is precisely Symi
+(V ) (Claim

2).
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Non-degeneracy of the map x−→ xn in H∗tr(M)

THEOREM: Let M be a projective maximal holonomy hyperkähler manifold,

dimCM = 2n and x ∈ H2
tr(M) a non-zero vector. Then xn 6= 0 in Hn

tr(M).

Proof: When H∗tr(M) = Sym∗(V ), this is trivial. When H∗tr(M) = Sym∗+(V ),

this is proven as follows. The action of SO(V ) on the projectivization PV has

only two orbits: the quadric Q := {x | h(x, x) = 0} and the rest. The map

P (x) = xn is non-zero, hence it is non-zero on the open orbit. To check that

it is non-zero on the quadric, notice that Ω belongs to Q, and Ωn is non-zero

in Symn
+(V ).

DEFINITION: Let V be a 4n-dimensional vector space, and Ψ : W −→ Λ2(V )

a linear map. Assume that Ψ(ω) is a symplectic form for general ω ∈W , and

has rank 1
2 dimW for ω in a non-degenerate quadric Q ⊂W . Then Ψ is called

k-symplectic structure on V , where k = dimW .

THEOREM: (Soldatenkov-V.) Let V be a k-symplectic space. Then V is a

Clifford module over a Clifford algebra Cl (W0), with dimW0 = dimW−1 =

k, and dimV divisible by 2b(k−1)/2c.
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Application to symplectically embedded tori

Corollary 1: Let M be a projective maximal holonomy hyperkähler manifold,
N ↪→M a torus, dimCN = 2n, embedded holomorphically symplectically in M ,
and x ∈ H2(N) a restriction of a non-zero class x ∈ H2

tr(M). Then xn 6= 0.

Proof: Since the embedding N ↪→ M is holomorphically symplectic, the re-
striction map H2n

tr (M)−→H2n
tr (N) is non-zero, hence injective. On the other

hand, xn 6= 0 in H2n
tr (M) as shown above.

COROLLARY: Let M be a projective hyperkähler manifold with Picard rank
1, generic in its deformation space, and N ↪→ M a holomorphic symplectic
torus. Then dimN is divisible by 2b(b2(M)−2)/2c.

Proof: By Corollary 1, H1(T ) is k-symplectic, where k = dimH2
tr(M) =

b2(M)− 1. Then it is a Clifford module over Cl (k − 1) by Soldatenkov-V.

Similar result can be proven for all transcendental Hodge lattices.

THEOREM: Let M be a projective hyperkähler manifold, generic in a defor-
mation family of effective dimension d, and N ↪→M a holomorphic symplectic
torus. Then dimN is divisible by 2bd/2c.
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