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Plan

1. Hyperkähler and quaternionic-Kähler manifolds and their twistor spaces

2. Chern connection

3. Hyperholomorphic bundles and twistor transform

4. Twistor transform for mathematical instantons
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Hyperkähler manifolds

DEFINITION: A hyperkähler structure on a manifold M is a Riemannian

structure g and a triple of complex structures I, J,K, satisfying quaternionic

relations I ◦ J = −J ◦ I = K, such that g is Kähler for I, J,K.

REMARK: A hyperkähler manifold has three symplectic forms

ωI := g(I·, ·), ωJ := g(J ·, ·), ωK := g(K·, ·).

REMARK: This is equivalent to ∇I = ∇J = ∇K = 0: the parallel translation

along the Levi-Civita connection preserves I, J,K.

DEFINITION: Let M be a Riemannian manifold, x ∈ M a point. The

subgroup of GL(TxM) generated by parallel translations (along all paths) is

called the holonomy group of M .

REMARK: A hyperkähler manifold can be defined as a manifold which

has holonomy in Sp(n) (the group of all endomorphisms preserving I, J,K).
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Marcel Berger
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Classification of holonomies

THEOREM: (de Rham) A complete, simply connected Riemannian manifold

with non-irreducible holonomy splits as a Riemannian product.

THEOREM: (Berger’s theorem, 1955) Let G be an irreducible holonomy

group of a Riemannian manifold which is not locally symmetric. Then G

belongs to the Berger’s list:

Berger’s list

Holonomy Geometry

SO(n) acting on Rn Riemannian manifolds

U(n) acting on R2n Kähler manifolds

SU(n) acting on R2n, n > 2 Calabi-Yau manifolds

Sp(n) acting on R4n hyperkähler manifolds

Sp(n)× Sp(1)/{±1} quaternionic-Kähler

acting on R4n, n > 1 manifolds

G2 acting on R7 G2-manifolds

Spin(7) acting on R8 Spin(7)-manifolds
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Quaternionic-Kähler manifolds

DEFINITION: A quaternionic-Kähler manifold is a Riemannian (M, g)
manifold with holonomy in Sp(n) × Sp(1)/{±1}. Equivalently, it is a Rie-
mannian manifold equipped with a 3-dimensional sub-bundle E ⊂ so(TM)
satisfying the following

1. E is closed with respect to the commutator, and isomorphic to so(3) acting
as imaginary quaternions at each point of M

2. ∇E ⊂ E ⊗ Λ1M .

REMARK: A quaternionic-Kähler manifold is Einstein, that is, satisfies
Ric(M) = λg, for some constant λ ∈ R (here, Ric(M) ∈ Sym2 T ∗M is a Ricci
curvature).

REMARK: Whenever the constant λ is equal 0, M is hyperkähler, oth-
erwise it’s not hyperkähler. Even if hyperkähler manifolds are always
quaternionic-Kähler, when people say “quaternionic-Kähler” they actually
mean “quaternionic-Kähler with λ 6= 0.”

Further on, all quaternionic-Kähler manifolds will be non-Kähler.
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Twistor spaces

DEFINITION: Induced complex structures on a hyperkähler manifold are

complex structures of form S2 ∼= {L := aI + bJ + cK, a2 + b2 + c2 = 1.}
They are usually non-algebraic. Indeed, if M is compact, for generic a, b, c,

(M,L) has no divisors (Fujiki).

DEFINITION: A twistor space Tw(M) of a hyperkähler manifold is a com-

plex manifold obtained by gluing these complex structures into a holo-

morphic family over CP1. More formally:

Let Tw(M) := M ×S2. Consider the complex structure Im : TmM → TmM on

M induced by J ∈ S2 ⊂ H. Let IJ denote the complex structure on S2 = CP1.

The operator ITw = Im ⊕ IJ : TxTw(M) → TxTw(M) satisfies I2
Tw = − Id.

It defines an almost complex structure on Tw(M). This almost complex

structure is known to be integrable (Obata, Salamon)

EXAMPLE: If M = Hn, Tw(M) = Tot(O(1)⊕n) ∼= CP2n+1\CP2n−1

REMARK: For M compact, Tw(M) never admits a Kähler structure.
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Twistor spaces for quaternionic-Kähler manifolds

DEFINITION: A twistor space Tw(M) of a quaternionic-Kähler manifold

(M, g,E) is a total space of a unit sphere bundle on E, equipped with a

complex structure as above.

EXAMPLE: If M = HPn, then Tw(M) = CP2n+1. In particular, Tw(S4) =

CP3.

REMARK: Consider a compact quaternionic-Kähler manifold (M, g) with

Ric(M) = λg, λ > 0. Then Tw(M) is a holomorphically contact Fano

manifold.. Conversely, any Kähler-Einstein holomorphically contact Fano

manifold is a twistor space of a compact quaternionic-Kähler manifold

(M, g) with Ric(M) = λg, λ > 0.

One can say that hyperkähler geometry is holomorphic symplectic ge-

ometry, and quaternionic-Kähler is holomorphic contact geometry
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A holomorphic structure operator

DEFINITION: Let d = d0,1 + d1,0 be the Hodge decomposition of the de

Rham differential on a complex manifold, d0,1 : Λp,q(M)−→ Λp,q+1(M) and

d1,0 : Λp,q(M)−→ Λp+1,q(M). The operators d0,1, d1,0 are denoted ∂ and ∂

and called the Dolbeault differentials.

REMARK: From d2 = 0, one obtains ∂
2

= 0 and ∂2 = 0.

REMARK: The operator ∂ is OM-linear.

DEFINITION: Let B be a holomorphic vector bundle, and ∂ : BC∞ −→BC∞⊗
Λ0,1(M) an operator mapping b ⊗ f to b ⊗ ∂f , where b ∈ B is a holomorphic

section, and f a smooth function. This operator is called a holomorphic

structure operator on B. It is correctly defined, because ∂ is OM-linear.

REMARK: The kernel of ∂ coincides with the set of holomorphic sections

of B.
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The ∂-operator on vector bundles

DEFINITION: A ∂-operator on a smooth bundle is a map V
∂−→ Λ0,1(M)⊗

V , satisfying ∂(fb) = ∂(f)⊗ b+ f∂(b) for all f ∈ C∞M, b ∈ V .

REMARK: A ∂-operator on B can be extended to

∂ : Λ0,i(M)⊗ V −→ Λ0,i+1(M)⊗ V,

using ∂(η ⊗ b) = ∂(η)⊗ b+ (−1)η̃η ∧ ∂(b), where b ∈ V and η ∈ Λ0,i(M).

REMARK: If ∂ is a holomorphic structure operator, then ∂
2

= 0.

THEOREM: (Atiyah-Bott) Let ∂ : V −→ Λ0,1(M) ⊗ V be a ∂-operator,

satisfying ∂
2

= 0. Then B := ker ∂ ⊂ V is a holomorphic vector bundle of

the same rank.

DEFINITION: ∂-operator ∂ : V −→ Λ0,1(M) ⊗ V on a smooth manifold is

called a holomorphic structure operator, if ∂
2

= 0.
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Connections and holomorphic structure operators

DEFINITION: let (B,∇) be a smooth bundle with connection and a holo-
morphic structure ∂ B −→ Λ0,1(M) ⊗ B. Consider a Hodge decomposition
∇ = ∇0,1 +∇1,0,

∇0,1 : B −→ Λ0,1(M)⊗B, ∇1,0 : B −→ Λ1,0(M)⊗B.
We say that ∇ is compatible with the holomorphic structure if ∇0,1 = ∂.

DEFINITION: A Chern connection on a holomorphic Hermitian vector
bundle is a connection compatible with the holomorphic structure and pre-
serving the metric.

THEOREM: On any holomorphic Hermitian vector bundle, the Chern con-
nection exists, and is unique.

REMARK: The curvature of a Chern connection on B is an End(B)-valued
(1,1)-form: ΘB ∈ Λ1,1(End(B)).

REMARK: A converse is true, by Atiyah-Bott theorem. Given a Hermitian
connection ∇ on a vector bundle B with curvature in Λ1,1(End(B)), we obtain
a holomorphic structure operator ∂ = ∇0,1. Then, ∇ is a Chern connection
of (B, ∂).
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Hyperholomorphic connections

REMARK: Let M be a hyperkähler manifold. The group SU(2) of unitary
quaternions acts on Λ∗(M) multiplicatively.

DEFINITION: A hyperholomorphic connection on a vector bundle B over
M is a Hermitian connection with SU(2)-invariant curvature Θ ∈ Λ2(M) ⊗
End(B).

REMARK: Since the invariant 2-forms satisfy Λ2(M)SU(2) =
⋂
I∈CP1 Λ1,1

I (M),
a hyperholomorphic connection defines a holomorphic structure on B

for each I induced by quaternions.

REMARK: Let M be a compact hyperkähler manifold. Then SU(2) preserves
harmonic forms, hence acts on cohomology.

CLAIM: All Chern classes of hyperholomorphic bundles are SU(2)-
invariant.

Proof: Use Λ2(M)SU(2) =
⋂
I∈CP1 Λ1,1

I (M).

REMARK: Converse is also true (for stable bundles). See the next slide.
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Kobayashi-Hitchin correspondence

DEFINITION: Let F be a coherent sheaf over an n-dimensional compact
Kähler manifold M . Let

slope(F ) :=
1

rank(F )

∫
M

c1(F ) ∧ ωn−1

vol(M)
.

A torsion-free sheaf F is called (Mumford-Takemoto) stable if for all sub-
sheaves F ′ ⊂ F one has slope(F ′) < slope(F ). If F is a direct sum of stable
sheaves of the same slope, F is called polystable.

DEFINITION: A Hermitian metric on a holomorphic vector bundle B is
called Yang-Mills (Hermitian-Einstein) if the curvature of its Chern connec-
tion satisfies ΘB ∧ ωn−1 = slope(F ) · IdB ·ωn. A Yang-Mills connection is a
Chern connection induced by the Yang-Mills metric.

REMARK: Yang-Mills connections minimize the integral∫
M
|ΘB|2 VolM

Kobayashi-Hitchin correspondence: (Donaldson, Uhlenbeck-Yau). Let B
be a holomorphic vector bundle. Then B admits Yang-Mills connection if
and only if B is polystable. Moreover such a connection is unique.
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Kobayashi-Hitchin correspondence and hyperholomorphic bundles

CLAIM: Let M be a hyperkähler manifold. Then for any SU(2)-invariant
2-form η ∈ Λ2(M), one has η ∧ ωn−1 = 0.

COROLLARY: Any hyperholomorphic bundle is Yang-Mills (hence polystable).

REMARK: This implies that a hyperholomorphic connection on a given
holomorphic vector bundle is unique (if exists). Such a bundle is called
hyperholomorphic.

THEOREM: Let B be a polystable holomorphic bundle on (M, I), where
(M, I, J,K) is hyperkähler. Then the (unique) Yang-Mills connection on B

is hyperholomorphic if and only if the cohomology classes c1(B) and
c2(B) are SU(2)-invariant.

COROLLARY: The moduli space of stable holomorphic vector bundles with
SU(2)-invariant c1(B) and c2(B) is a hyperkähler manifold.

COROLLARY: Let (M, I, J,K) be a hyperkähler manifold, and L = aI +
bJ + cK a generic induced complex structure. Then any stable bundle on
(M,L) is hyperholomorphic.
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Twistor transform and hyperholomorphic bundles 1:

direct twistor transform

CLAIM: Let σ : Tw(M)−→M be the standard projection, where M is

hyperkähler or quaternionic-Kähler, and η ∈ Λ2M a 2-form. Then σ∗η is a

(1,1)-form iff η is SU(2)-invariant.

COROLLARY: Let (B,∇) be a bundle with connection, and σ∗B, σ∗∇ its

pullback to Tw(M). Then (σ∗B, σ∗∇) has (1,1)-curvature iff ∇ has SU(2)-

invariant curvature.

REMARK: This construction produces a holomorphic vector bundle on Tw(M)

starting from a connection with SU(2)-invariant curvature. It is called direct

twistor transform. The inverse twistor transform produces a bundle with

connection on M from a holomorphic bundle on Tw(M).

DEFINITION: A non-Hermitian hyperholomorphic connection on a com-

plex vector bundle B is a connection (not necessarily Hermitian) which has

SU(2)-invariant curvature.
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Twistor transform and hyperholomorphic bundles 2:

inverse twistor transform

DEFINITION: Let M be a hyperkähler or quaternionic-Kähler manifold, and

σ : Tw(M)−→M its twistor space. For each point x ∈ M , σ−1(x) is a

holomorphic rational curve in Tw(M). It is called a horizontal twistor line.

THEOREM: (The inverse twistor transform; Kaledin-V.) Let B be a

holomorphic vector bundle on Tw(M), which is trivial on any horizontal

twistor line. Denote by B0 the C∞-bundle on M with fiber H0(B
∣∣∣σ−1(x))

at x ∈ M . Then B0 admits a unique non-Hermitian hyperholomorphic

connection ∇ such that B is isomorphic (as a holomorphic vector bundle)

to its twistor transform (σ∗B0, (σ
∗∇)0,1).

REMARK: The condition of being trivial on any horizontal twistor line is

open. Therefore, a holomorphic bundle on a Tw(M) is “more or less the

same” as a bundle with non-Hermitian hyperholomorphic connection

on M.

QUESTION: What can be said about the geometry of the moduli of holo-

morphic bundles on Tw(M)?
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Rational curves on twistor spaces

From now on, we always assume that M is hyperkähler (and not quaternionic-
Kähler).

DEFINITION: Denote by Sec(M) the space of holomorphic sections of
the twistor fibration Tw(M)

π−→ CP1. For each point m ∈ M , one has a
horizontal section Cm := {m} × CP1 of π. The space of horizontal sections
is denoted Sechor(M) ⊂ Sec(M)

REMARK: The space of horizontal sections of π is identified with M . The
normal bundle NCm = O(1)dimM . Therefore, some neighbourhood of
Sechor(M) ⊂ Sec(M) is a smooth manifold of dimension 2 dimM.

Let B be a (Hermitian) hyperholomorphic bundle on M , and W the deforma-
tion space of B, which is hyperkähler. Denote by B̃ the holomorphic bundle
on Tw(M), obtained as a twistor transform of B. Any deformation B̃1 of
B̃ gives a holomorphic map CP1 −→ Tw(W ) mapping L ∈ CP1 to a bundle
B̃1

∣∣∣(M,L) ⊂ Tw(M), considered as a point in (W,L).

THEOREM: (Kaledin-V.) This construction identifies deformations of B̃
(with appropriate stability conditions) and rational curves S ∈ Sec(W ).
The twistor transforms of Hermitian hyperholomorphic bundles on M corre-
spond to Sech(W ) ⊂ Sec(W ).
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Holomorphic bundles on CP3 and twistor sections

DEFINITION: An instanton on CP2 is a stable bundle B with c1(B) = 0.

A framed instanton is an instanton equipped with a trivialization B|C for a

line C ⊂ CP2.

THEOREM: (Nahm, Atiyah, Hitchin) The space Mr,c of framed instantons

on CP2 is smooth, connected, hyperkähler.

The main result of today’s talk can be stated as follows

METATHEOREM: There is a similar correspondence between the holo-

morphic bundles on Tw(H) = CP3\CP1, with appropriate stability and framing

conditions, and twistor sections in Sec(Mr,c).
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Mathematical instantons

DEFINITION: A mathematical instanton bundle on CPn is a locally free
coherent sheaf E on CPn with c1(E) = 0 satisfying the following cohomolog-
ical conditions:
1. for n > 2, H0(E(−1)) = Hn(E(−n)) = 0;
2. for n > 3, H1(E(−2)) = Hn−1(E(1− n)) = 0;
3. for n > 4, Hp(E(k)) = 0, 2 6 p 6 n− 2 and ∀k;
The integer c = −χ(E(−1)) = h1(E(−1)) = c2(E) is called the charge of E.
A framed instanton is a mathematical instanton equipped with a trivializa-
tion of B|` for some fixed line ` = CP1 ⊂ CPn.

REMARK: Mathematical instantons of rank 2 are always stable (follows
from the monad description below).

REMARK: The space Mr,c of framed instantons with charge c and rank r

is a principal SL(2)-bundle over the space of all mathematical instantons
trivial on `.

THEOREM: (Jardim–V.) The space Mc of framed rank r mathematical in-
stantons on CP3 is naturally identified with the space of twistor sections
Sec(Mr,c).
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Monads and mathematical instantons

DEFINITION: A monad is a sequence of vector bundles 0−→A
i−→ B

j−→
C −→ 0 which is exact in the first and the last term. The cohomology of a

monad is ker j/ im i.

THEOREM: Let B be a holomorphic bundle of rank 2 on CPn, c1(B) = 0,

c2(B) = c. Then the following conditions are equivalent.

(i) B is a mathematical instanton.

(ii) B is a cohomology of a monad

0−→ V ⊗C OCP k(−1)−→W ⊗C OCP k −→ U ⊗C OCP k(1)−→ 0

with dimV = dimU = c and dimW = 2c+ 2.
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ADHM construction

DEFINITION: Let V and W be complex vector spaces, with dimensions c

and r, respectively. The ADHM data is maps

A,B ∈ End(V ), I ∈ Hom(W,V ), J ∈ Hom(V,W ).

We say that ADHM data is
stable,

if there is no subspace S ( V such that A(S), B(S) ⊂ S and I(W ) ⊂ S;
costable,

if there is no nontrivial subspace S ⊂ V such that A(S), B(S) ⊂ S and S ⊂
ker J;

regular,
if it is both stable and costable.

The ADHM equation is [A,B] + IJ = 0.

THEOREM: (Atiyah, Drinfeld, Hitchin, Manin) Framed rank r, charge c

instantons on CP2 are in bijective correspondence with the set of equiva-
lence classes of regular ADHM solutions. In other words, the moduli of
instantons on CP2 is identified with moduli of the corresponding quiver
representation.
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The multi-dimensional ADHM construction

DEFINITION: Let V and W be complex vector spaces, with dimensions c

and r, respectively. The d-dimensional ADHM data is maps

Ak, Bk ∈ End(V ), Ik ∈ Hom(W,V ), Jk ∈ Hom(V,W ), (k = 0, . . . , d)

Choose homogeneous coordinates [z0 : · · · : zd] on CP d and define

Ã := A0 ⊗ z0 + · · ·+Ad ⊗ zd and B̃ := B0 ⊗ z0 + · · ·+Bd ⊗ zd.

We say that d-dimensional ADHM data is

globally regular, if (Ãp, B̃p, Ĩp, J̃p) is regular for every p ∈ CP d. The d-

dimensional ADHM equation is [Ãp, B̃p] + ĨpJ̃p = 0, for all p ∈ CP d

THEOREM: (Marcos Jardim, Igor Frenkel) Let Cd(r, c) denote the set of

globally regular solutions of the d-dimensional ADHM equation. Then there

exists a 1-1 correspondence between equivalence classes of globally

regular solutions of the d-dimensional ADHM equations and isomor-

phism classes of rank r instanton bundles on CPd+2 framed at a fixed line

`, where dimW = rk(E) and dimV = c2(E).
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The multi-dimensional ADHM construction for d = 1

For d = 1, we obtain that the d-dimensional ADHM solutions are families of

solutions of ADHM parametrized by CP3. Also, the space of 1-dimensional

ADHM data is the space of sections of

O(1)⊗C

[
Hom(W,V )⊕Hom(V,W )⊕ End(V )⊕ End(V )

]

over CP1, that is, the twistor space of a qquaternionic vector space U =

Hom(W,V )⊕Hom(V,W )⊕End(V )⊕End(V ). Now, the hyperkähler structure

on 0-dimensional ADHM solutions for each p ∈ CP1 is compatible with the

hyperkähler structure on U , because the space of 0-dimensional ADHM solu-

tions is obtained from U by hyperkähler reduction. This is used to prove

the theorem about instantons on CP3 and twistor sections.
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