Twistor transform, instantons and rational curves

Misha Verbitsky

January 23, 2012,

IPMU, Tokyo

Plan

- 1. Hyperkähler and quaternionic-Kähler manifolds and their twistor spaces
- 2. Chern connection
- 3. Hyperholomorphic bundles and twistor transform
- 4. Twistor transform for mathematical instantons

Hyperkähler manifolds

DEFINITION: A hyperkähler structure on a manifold M is a Riemannian structure g and a triple of complex structures I, J, K, satisfying quaternionic relations $I \circ J = -J \circ I = K$, such that g is Kähler for I, J, K.

REMARK: A hyperkähler manifold has three symplectic forms $\omega_I := g(I, \cdot), \ \omega_J := g(J, \cdot), \ \omega_K := g(K, \cdot).$

REMARK: This is equivalent to $\nabla I = \nabla J = \nabla K = 0$: the parallel translation along the Levi-Civita connection preserves I, J, K.

DEFINITION: Let M be a Riemannian manifold, $x \in M$ a point. The subgroup of $GL(T_xM)$ generated by parallel translations (along all paths) is called **the holonomy group** of M.

REMARK: A hyperkähler manifold can be defined as a manifold which has holonomy in Sp(n) (the group of all endomorphisms preserving I, J, K).

Marcel Berger

Classification of holonomies

THEOREM: (de Rham) A complete, simply connected Riemannian manifold with non-irreducible holonomy **splits as a Riemannian product**.

THEOREM: (Berger's theorem, 1955) Let G be an irreducible holonomy group of a Riemannian manifold which is not locally symmetric. Then G belongs to the Berger's list:

Berger's list	
Holonomy	Geometry
$SO(n)$ acting on \mathbb{R}^n	Riemannian manifolds
$U(n)$ acting on \mathbb{R}^{2n}	Kähler manifolds
$SU(n)$ acting on \mathbb{R}^{2n} , $n>2$	Calabi-Yau manifolds
$Sp(n)$ acting on \mathbb{R}^{4n}	hyperkähler manifolds
$Sp(n) imes Sp(1)/\{\pm 1\}$	quaternionic-Kähler
acting on \mathbb{R}^{4n} , $n>1$	manifolds
G_2 acting on \mathbb{R}^7	G_2 -manifolds
$Spin(7)$ acting on \mathbb{R}^8	Spin(7)-manifolds

Quaternionic-Kähler manifolds

DEFINITION: A quaternionic-Kähler manifold is a Riemannian (M,g) manifold with holonomy in $Sp(n) \times Sp(1)/\{\pm 1\}$. Equivalently, it is a Riemannian manifold equipped with a 3-dimensional sub-bundle $E \subset \mathfrak{so}(TM)$ satisfying the following

1. E is closed with respect to the commutator, and isomorphic to $\mathfrak{so}(3)$ acting as imaginary quaternions at each point of M

2. $\nabla E \subset E \otimes \Lambda^1 M$.

REMARK: A quaternionic-Kähler manifold is **Einstein**, that is, **satisfies** $\operatorname{Ric}(M) = \lambda g$, for some constant $\lambda \in \mathbb{R}$ (here, $\operatorname{Ric}(M) \in \operatorname{Sym}^2 T^*M$ is a Ricci curvature).

REMARK: Whenever the constant λ is equal 0, M is hyperkähler, otherwise it's **not hyperkähler**. Even if **hyperkähler manifolds are always quaternionic-Kähler**, when people say "quaternionic-Kähler" they actually mean "quaternionic-Kähler with $\lambda \neq 0$."

Further on, all quaternionic-Kähler manifolds will be non-Kähler.

Twistor spaces

DEFINITION: Induced complex structures on a hyperkähler manifold are complex structures of form $S^2 \cong \{L := aI + bJ + cK, a^2 + b^2 + c^2 = 1.\}$ **They are usually non-algebraic**. Indeed, if *M* is compact, for generic *a*, *b*, *c*, (*M*, *L*) has no divisors (Fujiki).

DEFINITION: A twistor space Tw(M) of a hyperkähler manifold is a complex manifold obtained by gluing these complex structures into a holomorphic family over $\mathbb{C}P^1$. More formally:

Let $\mathsf{Tw}(M) := M \times S^2$. Consider the complex structure $I_m : T_m M \to T_m M$ on M induced by $J \in S^2 \subset \mathbb{H}$. Let I_J denote the complex structure on $S^2 = \mathbb{C}P^1$.

The operator $I_{\mathsf{TW}} = I_m \oplus I_J : T_x \mathsf{Tw}(M) \to T_x \mathsf{Tw}(M)$ satisfies $I^2_{\mathsf{TW}} = -\operatorname{Id}$. **It defines an almost complex structure on** $\mathsf{Tw}(M)$. This almost complex structure is known to be integrable (Obata, Salamon)

EXAMPLE: If $M = \mathbb{H}^n$, $\mathsf{Tw}(M) = \mathsf{Tot}(\mathcal{O}(1)^{\oplus n}) \cong \mathbb{C}P^{2n+1} \setminus \mathbb{C}P^{2n-1}$

REMARK: For *M* compact, Tw(M) never admits a Kähler structure.

Twistor spaces for quaternionic-Kähler manifolds

DEFINITION: A twistor space Tw(M) of a quaternionic-Kähler manifold (M, g, E) is a total space of a unit sphere bundle on E, equipped with a complex structure as above.

EXAMPLE: If $M = \mathbb{H}P^n$, then $\mathsf{Tw}(M) = \mathbb{C}P^{2n+1}$. In particular, $\mathsf{Tw}(S^4) = \mathbb{C}P^3$.

REMARK: Consider a compact quaternionic-Kähler manifold (M,g) with $\operatorname{Ric}(M) = \lambda g$, $\lambda > 0$. Then $\operatorname{Tw}(M)$ is a holomorphically contact Fano manifold.. Conversely, any Kähler-Einstein holomorphically contact Fano manifold is a twistor space of a compact quaternionic-Kähler manifold (M,g) with $\operatorname{Ric}(M) = \lambda g$, $\lambda > 0$.

One can say that hyperkähler geometry is holomorphic symplectic geometry, and quaternionic-Kähler is holomorphic contact geometry

A holomorphic structure operator

DEFINITION: Let $d = d^{0,1} + d^{1,0}$ be the Hodge decomposition of the de Rham differential on a complex manifold, $d^{0,1} : \Lambda^{p,q}(M) \longrightarrow \Lambda^{p,q+1}(M)$ and $d^{1,0} : \Lambda^{p,q}(M) \longrightarrow \Lambda^{p+1,q}(M)$. The operators $d^{0,1}$, $d^{1,0}$ are denoted $\overline{\partial}$ and ∂ and called **the Dolbeault differentials**.

REMARK: From $d^2 = 0$, one obtains $\overline{\partial}^2 = 0$ and $\partial^2 = 0$.

REMARK: The operator $\overline{\partial}$ is \mathcal{O}_M -linear.

DEFINITION: Let *B* be a holomorphic vector bundle, and $\overline{\partial}$: $B_{C^{\infty}} \longrightarrow B_{C^{\infty}} \otimes \Lambda^{0,1}(M)$ an operator mapping $b \otimes f$ to $b \otimes \overline{\partial} f$, where $b \in B$ is a holomorphic section, and *f* a smooth function. This operator is called **a holomorphic** structure operator on *B*. It is correctly defined, because $\overline{\partial}$ is \mathcal{O}_M -linear.

REMARK: The kernel of $\overline{\partial}$ coincides with the set of holomorphic sections of *B*.

The $\overline{\partial}$ -operator on vector bundles

DEFINITION: A $\overline{\partial}$ -operator on a smooth bundle is a map $V \xrightarrow{\overline{\partial}} \Lambda^{0,1}(M) \otimes V$, satisfying $\overline{\partial}(fb) = \overline{\partial}(f) \otimes b + f\overline{\partial}(b)$ for all $f \in C^{\infty}M, b \in V$.

REMARK: A $\overline{\partial}$ -operator on *B* can be extended to

 $\overline{\partial}: \Lambda^{0,i}(M) \otimes V \longrightarrow \Lambda^{0,i+1}(M) \otimes V,$

using $\overline{\partial}(\eta \otimes b) = \overline{\partial}(\eta) \otimes b + (-1)^{\tilde{\eta}} \eta \wedge \overline{\partial}(b)$, where $b \in V$ and $\eta \in \Lambda^{0,i}(M)$.

REMARK: If $\overline{\partial}$ is a holomorphic structure operator, then $\overline{\partial}^2 = 0$.

THEOREM: (Atiyah-Bott) Let $\overline{\partial}$: $V \longrightarrow \Lambda^{0,1}(M) \otimes V$ be a $\overline{\partial}$ -operator, satisfying $\overline{\partial}^2 = 0$. Then $B := \ker \overline{\partial} \subset V$ is a holomorphic vector bundle of the same rank.

DEFINITION: $\overline{\partial}$ -operator $\overline{\partial}$: $V \longrightarrow \Lambda^{0,1}(M) \otimes V$ on a smooth manifold is called a holomorphic structure operator, if $\overline{\partial}^2 = 0$.

Connections and holomorphic structure operators

DEFINITION: let (B, ∇) be a smooth bundle with connection and a holomorphic structure $\overline{\partial} B \longrightarrow \Lambda^{0,1}(M) \otimes B$. Consider a Hodge decomposition $\nabla = \nabla^{0,1} + \nabla^{1,0}$,

$$\nabla^{0,1}: B \longrightarrow \Lambda^{0,1}(M) \otimes B, \quad \nabla^{1,0}: B \longrightarrow \Lambda^{1,0}(M) \otimes B.$$

We say that ∇ is compatible with the holomorphic structure if $\nabla^{0,1} = \overline{\partial}$.

DEFINITION: A Chern connection on a holomorphic Hermitian vector bundle is a connection compatible with the holomorphic structure and preserving the metric.

THEOREM: On any holomorphic Hermitian vector bundle, **the Chern connection exists, and is unique.**

REMARK: The curvature of a Chern connection on *B* is an End(*B*)-valued (1,1)-form: $\Theta_B \in \Lambda^{1,1}(\text{End}(B))$.

REMARK: A converse is true, by Atiyah-Bott theorem. Given a Hermitian connection ∇ on a vector bundle B with curvature in $\Lambda^{1,1}(\text{End}(B))$, we obtain a holomorphic structure operator $\overline{\partial} = \nabla^{0,1}$. Then, ∇ is a Chern connection of $(B,\overline{\partial})$.

Hyperholomorphic connections

REMARK: Let *M* be a hyperkähler manifold. The group SU(2) of unitary quaternions acts on $\Lambda^*(M)$ multiplicatively.

DEFINITION: A hyperholomorphic connection on a vector bundle *B* over *M* is a Hermitian connection with SU(2)-invariant curvature $\Theta \in \Lambda^2(M) \otimes End(B)$.

REMARK: Since the invariant 2-forms satisfy $\Lambda^2(M)_{SU(2)} = \bigcap_{I \in \mathbb{C}P^1} \Lambda_I^{1,1}(M)$, **a hyperholomorphic connection defines a holomorphic structure on** *B* for each *I* induced by quaternions.

REMARK: Let M be a compact hyperkähler manifold. Then SU(2) preserves harmonic forms, hence **acts on cohomology.**

CLAIM: All Chern classes of hyperholomorphic bundles are SU(2)-invariant.

Proof: Use $\Lambda^2(M)_{SU(2)} = \bigcap_{I \in \mathbb{C}P^1} \Lambda_I^{1,1}(M)$.

REMARK: Converse is also true (for stable bundles). See the next slide.

Kobayashi-Hitchin correspondence

DEFINITION: Let F be a coherent sheaf over an n-dimensional compact Kähler manifold M. Let

slope(F) :=
$$\frac{1}{\operatorname{rank}(F)} \int_M \frac{c_1(F) \wedge \omega^{n-1}}{\operatorname{vol}(M)}$$
.

A torsion-free sheaf F is called **(Mumford-Takemoto) stable** if for all subsheaves $F' \subset F$ one has slope(F') < slope(F). If F is a direct sum of stable sheaves of the same slope, F is called **polystable**.

DEFINITION: A Hermitian metric on a holomorphic vector bundle *B* is called **Yang-Mills** (Hermitian-Einstein) if the curvature of its Chern connection satisfies $\Theta_B \wedge \omega^{n-1} = \text{slope}(F) \cdot \text{Id}_B \cdot \omega^n$. A Yang-Mills connection is a Chern connection induced by the Yang-Mills metric.

REMARK: Yang-Mills connections minimize the integral

$$\int_{M} |\Theta_B|^2 \operatorname{Vol}_M$$

Kobayashi-Hitchin correspondence: (Donaldson, Uhlenbeck-Yau). Let *B* be a holomorphic vector bundle. Then *B* admits Yang-Mills connection if and only if *B* is polystable. Moreover such a connection is unique.

Kobayashi-Hitchin correspondence and hyperholomorphic bundles

CLAIM: Let *M* be a hyperkähler manifold. Then for any *SU*(2)-invariant 2-form $\eta \in \Lambda^2(M)$, one has $\eta \wedge \omega^{n-1} = 0$.

COROLLARY: Any hyperholomorphic bundle is Yang-Mills (hence polystable).

REMARK: This implies that a hyperholomorphic connection on a given holomorphic vector bundle is unique (if exists). Such a bundle is called hyperholomorphic.

THEOREM: Let *B* be a polystable holomorphic bundle on (M, I), where (M, I, J, K) is hyperkähler. Then the (unique) **Yang-Mills connection on** *B* **is hyperholomorphic if and only if the cohomology classes** $c_1(B)$ and $c_2(B)$ are SU(2)-invariant.

COROLLARY: The moduli space of stable holomorphic vector bundles with SU(2)-invariant $c_1(B)$ and $c_2(B)$ is a hyperkähler manifold.

COROLLARY: Let (M, I, J, K) be a hyperkähler manifold, and L = aI + bJ + cK a generic induced complex structure. Then any stable bundle on (M, L) is hyperholomorphic.

Twistor transform and hyperholomorphic bundles 1: direct twistor transform

CLAIM: Let σ : $\mathsf{Tw}(M) \longrightarrow M$ be the standard projection, where M is hyperkähler or quaternionic-Kähler, and $\eta \in \Lambda^2 M$ a 2-form. Then $\sigma^* \eta$ is a (1,1)-form iff η is SU(2)-invariant.

COROLLARY: Let (B, ∇) be a bundle with connection, and $\sigma^*B, \sigma^*\nabla$ its pullback to $\mathsf{Tw}(M)$. Then $(\sigma^*B, \sigma^*\nabla)$ has (1,1)-curvature iff ∇ has SU(2)-invariant curvature.

REMARK: This construction produces a holomorphic vector bundle on Tw(M) starting from a connection with SU(2)-invariant curvature. It is called **direct twistor transform**. The **inverse twistor transform** produces a bundle with connection on M from a holomorphic bundle on Tw(M).

DEFINITION: A non-Hermitian hyperholomorphic connection on a complex vector bundle B is a connection (not necessarily Hermitian) which has SU(2)-invariant curvature.

Twistor transform and hyperholomorphic bundles 2: inverse twistor transform

DEFINITION: Let M be a hyperkähler or quaternionic-Kähler manifold, and σ : $Tw(M) \longrightarrow M$ its twistor space. For each point $x \in M$, $\sigma^{-1}(x)$ is a holomorphic rational curve in Tw(M). It is called a horizontal twistor line.

THEOREM: (The inverse twistor transform; Kaledin-V.) Let *B* be a holomorphic vector bundle on Tw(M), which is trivial on any horizontal twistor line. Denote by B_0 the C^{∞} -bundle on *M* with fiber $H^0(B|_{\sigma^{-1}(x)})$ at $x \in M$. Then B_0 admits a unique non-Hermitian hyperholomorphic connection ∇ such that *B* is isomorphic (as a holomorphic vector bundle) to its twistor transform ($\sigma^*B_0, (\sigma^*\nabla)^{0,1}$).

REMARK: The condition of being trivial on any horizontal twistor line is **open.** Therefore, a holomorphic bundle on a Tw(M) is "more or less the same" as a bundle with non-Hermitian hyperholomorphic connection on M.

QUESTION: What can be said about the geometry of the moduli of holomorphic bundles on Tw(M)?

Rational curves on twistor spaces

From now on, we always assume that M is hyperkähler (and not quaternionic-Kähler).

DEFINITION: Denote by Sec(M) the space of holomorphic sections of the twistor fibration $Tw(M) \xrightarrow{\pi} \mathbb{C}P^1$. For each point $m \in M$, one has a horizontal section $C_m := \{m\} \times \mathbb{C}P^1$ of π . The space of horizontal sections is denoted $Sec_{hor}(M) \subset Sec(M)$

REMARK: The space of horizontal sections of π is identified with M. The normal bundle $NC_m = \mathcal{O}(1)^{\dim M}$. Therefore, some neighbourhood of $Sec_{hor}(M) \subset Sec(M)$ is a smooth manifold of dimension $2 \dim M$.

Let *B* be a (Hermitian) hyperholomorphic bundle on *M*, and *W* the deformation space of *B*, which is hyperkähler. Denote by \tilde{B} the holomorphic bundle on $\mathsf{Tw}(M)$, obtained as a twistor transform of *B*. Any deformation \tilde{B}_1 of \tilde{B} gives a holomorphic map $\mathbb{C}P^1 \longrightarrow \mathsf{Tw}(W)$ mapping $L \in \mathbb{C}P^1$ to a bundle $\tilde{B}_1|_{(M,L)} \subset \mathsf{Tw}(M)$, considered as a point in (W,L).

THEOREM: (Kaledin-V.) This construction identifies deformations of \tilde{B} (with appropriate stability conditions) and rational curves $S \in Sec(W)$. The twistor transforms of Hermitian hyperholomorphic bundles on M correspond to $Sec_h(W) \subset Sec(W)$.

Holomorphic bundles on $\mathbb{C}P^3$ and twistor sections

DEFINITION: An instanton on $\mathbb{C}P^2$ is a stable bundle *B* with $c_1(B) = 0$. A framed instanton is an instanton equipped with a trivialization $B|_C$ for a line $C \subset \mathbb{C}P^2$.

THEOREM: (Nahm, Atiyah, Hitchin) The space $\mathcal{M}_{r,c}$ of framed instantons on $\mathbb{C}P^2$ is **smooth, connected, hyperkähler.**

The main result of today's talk can be stated as follows

METATHEOREM: There is a similar correspondence between the holomorphic bundles on $Tw(\mathbb{H}) = \mathbb{C}P^3 \setminus \mathbb{C}P^1$, with appropriate stability and framing conditions, and twistor sections in $Sec(\mathcal{M}_{r,c})$.

Mathematical instantons

DEFINITION: A mathematical instanton bundle on $\mathbb{C}P^n$ is a locally free coherent sheaf E on $\mathbb{C}P^n$ with $c_1(E) = 0$ satisfying the following cohomological conditions:

- 1. for $n \ge 2$, $H^0(E(-1)) = H^n(E(-n)) = 0$;
- 2. for $n \ge 3$, $H^1(E(-2)) = H^{n-1}(E(1-n)) = 0$;
- 3. for $n \ge 4$, $H^p(E(k)) = 0$, $2 \le p \le n-2$ and $\forall k$;

The integer $c = -\chi(E(-1)) = h^1(E(-1)) = c_2(E)$ is called **the charge** of *E*. **A framed instanton** is a mathematical instanton equipped with a trivialization of $B|_{\ell}$ for some fixed line $\ell = \mathbb{C}P^1 \subset \mathbb{C}P^n$.

REMARK: Mathematical instantons of rank 2 are always stable (follows from the monad description below).

REMARK: The space $M_{r,c}$ of framed instantons with charge c and rank r is a principal SL(2)-bundle over the space of all mathematical instantons trivial on ℓ .

THEOREM: (Jardim–V.) The space \mathbb{M}_c of framed rank r mathematical instantons on $\mathbb{C}P^3$ is naturally identified with the space of twistor sections $Sec(\mathcal{M}_{r,c})$.

Monads and mathematical instantons

DEFINITION: A monad is a sequence of vector bundles $0 \longrightarrow A \xrightarrow{i} B \xrightarrow{j} C \longrightarrow 0$ which is exact in the first and the last term. The cohomology of a monad is ker $j/\operatorname{im} i$.

THEOREM: Let *B* be a holomorphic bundle of rank 2 on $\mathbb{C}P^n$, $c_1(B) = 0$, $c_2(B) = c$. Then the following conditions are equivalent.

(i) *B* is a mathematical instanton.

(ii) *B* is a cohomology of a monad

$$0 \longrightarrow V \otimes_{\mathbb{C}} \mathcal{O}_{\mathbb{C}P^k}(-1) \longrightarrow W \otimes_{\mathbb{C}} \mathcal{O}_{\mathbb{C}P^k} \longrightarrow U \otimes_{\mathbb{C}} \mathcal{O}_{\mathbb{C}P^k}(1) \longrightarrow 0$$

with dim $V = \dim U = c$ and dim W = 2c + 2.

ADHM construction

DEFINITION: Let V and W be complex vector spaces, with dimensions c and r, respectively. The **ADHM data** is maps

 $A, B \in \text{End}(V), I \in \text{Hom}(W, V), J \in \text{Hom}(V, W).$

We say that ADHM data is

stable,

if there is no subspace $S \subsetneq V$ such that $A(S), B(S) \subset S$ and $I(W) \subset S$;

costable,

if there is no nontrivial subspace $S \subset V$ such that $A(S), B(S) \subset S$ and $S \subset ker J$;

regular,

if it is both stable and costable.

The ADHM equation is [A, B] + IJ = 0.

THEOREM: (Atiyah, Drinfeld, Hitchin, Manin) Framed rank r, charge c instantons on $\mathbb{C}P^2$ are in bijective correspondence with the set of equivalence classes of regular ADHM solutions. In other words, the moduli of instantons on $\mathbb{C}P^2$ is identified with moduli of the corresponding quiver representation.

The multi-dimensional ADHM construction

DEFINITION: Let V and W be complex vector spaces, with dimensions c and r, respectively. The *d*-dimensional ADHM data is maps

 $A_k, B_k \in \text{End}(V), I_k \in \text{Hom}(W, V), J_k \in \text{Hom}(V, W), (k = 0, ..., d)$

Choose homogeneous coordinates $[z_0 : \cdots : z_d]$ on $\mathbb{C}P^d$ and define

$$\tilde{A} := A_0 \otimes z_0 + \dots + A_d \otimes z_d$$
 and $\tilde{B} := B_0 \otimes z_0 + \dots + B_d \otimes z_d$.

We say that *d*-dimensional ADHM data is globally regular, if $(\tilde{A}_p, \tilde{B}_p, \tilde{I}_p, \tilde{J}_p)$ is regular for every $p \in \mathbb{C}P^d$. The *d*dimensional ADHM equation is $[\tilde{A}_p, \tilde{B}_p] + \tilde{I}_p \tilde{J}_p = 0$, for all $p \in \mathbb{C}P^d$

THEOREM: (Marcos Jardim, Igor Frenkel) Let $C_d(r,c)$ denote the set of globally regular solutions of the *d*-dimensional ADHM equation. Then **there** exists a 1-1 correspondence between equivalence classes of globally regular solutions of the *d*-dimensional ADHM equations and isomorphism classes of rank *r* instanton bundles on \mathbb{CP}^{d+2} framed at a fixed line ℓ , where dim $W = \operatorname{rk}(E)$ and dim $V = c_2(E)$.

The multi-dimensional ADHM construction for d = 1

For d = 1, we obtain that the *d*-dimensional ADHM solutions are families of solutions of ADHM parametrized by $\mathbb{C}P^3$. Also, the space of 1-dimensional ADHM data is the space of sections of

$$\mathcal{O}(1)\otimes_{\mathbb{C}}\left[\mathsf{Hom}(W,V)\oplus\mathsf{Hom}(V,W)\oplus\mathsf{End}(V)\oplus\mathsf{End}(V)
ight]$$

over $\mathbb{C}P^1$, that is, the twistor space of a qquaternionic vector space $U = Hom(W, V) \oplus Hom(V, W) \oplus End(V) \oplus End(V)$. Now, the hyperkähler structure on 0-dimensional ADHM solutions for each $p \in \mathbb{C}P^1$ is compatible with the hyperkähler structure on U, because the space of 0-dimensional ADHM solutions is obtained from U by hyperkähler reduction. This is used to prove the theorem about instantons on $\mathbb{C}P^3$ and twistor sections.