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Ulam stabulity

DEFINITION: (D. Kazhdan)
Let V be a Hermitian space. An ε-representation of a group Γ as a map
ρ : Γ→U(V ) satisfying d(ρ(xy), ρ(x)ρ(y)) < ε, where ‖ · ‖ is a left-invariant
metric on U(V ) associated with an operator norm.

DEFINITION: Define the distance between two maps ρ1, ρ2 : Γ→U(V ) as
d(ρ1, ρ2) := supx∈G d(ρ1(x), ρ2(x)). The group Γ is called Ulam stable if for
any δ > 0 there exists ε > 0 such that any finite-dimensional ε-representation
q : Γ→U(V ) can be δ-approximated by a representation ρ : Γ→U(V ).

QUESTION: (V. Milman)
Which groups are Ulam stable?

Answer: (D. Kazhdan)
Amenable groups are Ulam stable.

Answer: (D. Kazhdan)
Let Γ = π1(S), where S is a compact Riemann surface of genus 2. Then
for each ε > 0 there exists an ε-representation of Γ, which cannot be
1

10-approximated.
2



Hyperbolic geometry and Ulam stability M. Verbitsky

Hyperbolic groups are not Ulam stable

The main result for today:
THEOREM: (Brandenbursky - V.)
Let M be a compact manifold of negative sectional curvature, G a positive-
dimensional connected Lie group. Put a left-invariant metric on G such that
the diameter of any compact one-parametric subgroup is 1. Then for each
ε > 0, there exists an ε-representation of π1(M) which cannot be 1/3-
approximated by a representation.

DEFINITION: (Gromov)
A quasimorphism is a map q : G→R which satisfies |q(xy)− q(x)− q(y)| < C,
where C is a constant independent from x, y.

We generalize this notion to

DEFINITION: An (Ulam) quasimorphism is a map q from a group Γ to a
topological group G such that q(xy)q(y)−1q(x)−1 belongs to a fixed compact
subset of G.

To solve Milman’s problem, we construct a new class of Ulam quasimor-
phisms, associated with vector bundles on manifolds of strictly negative
sectional curvature.
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Stanis law Ulam (1909-1984)

Stanis law and Françoise Ulam, 1940s
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Stanis law Ulam (1909-1984)

Stanis law Ulam and the hydrogen bomb
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Stanis law Ulam (1909-1984)

...The Ulam spiral or prime spiral is a graphical depiction of the set of prime numbers, devised

by mathematician Stanis law Ulam in 1963 and popularized in Martin Gardner’s Mathematical

Games column in Scientific American a short time later. It is constructed by writing the

positive integers in a square spiral and specially marking the prime numbers.
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Vitaly Milman (b. 1939)
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David Kazhdan (b. 1946)
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Cartan-Hadamard theorem

THEOREM: (Cartan-Hadamard)
Let M be a complete, simply connected Riemannian manifold of non-positive
sectional curvature. Then M is contractible.

Proof. Step 1: Let γ1 : [a, b]→M and γ2 : [c, d]→M be segments of geodesics
in M , parametrized by the arc length. Gromov’s CAT inequalities imply that
the distance function D : [a, b] × [c, d]→R>0 taking x, y to d(γ1(x), γ2(y)) is
strictly convex, unless the geodesics γ1, γ2 are segments of the same geodesic
line.

Step 2: This implies that any two points are connected by a unique
geodesic: indeed, if γ1 and γ2 have the same ends, γ1(a) = γ2(c) and γ1(b) =
γ2(d) the function D would be equal to 0 in (a, c) and (b, d), hence it is zero
on the diagonal, and the images of γ1 and γ2 coincide.

Step 3: Fix a reference point p ∈ M and consider the function H : M ×
[0,1]→M taking x ∈M and t ∈ [0,1] to γ(t ·d(p, x)), where γ : [0, d(p, x)] is the
geodesic connecting p to x. Convexity of D implies that H is continuous;
clearly, H is a deformation retract of M to p, hence M is contractible.

REMARK: Further on, we tacitly assume that the base manifold of strictly
negative curvature has dimension at least 2.
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Area of a geodesic triangle

DEFINITION: Let M be a simply connected, complete manifold of non-

positive sectional curvature. Let γ be the geodesic segment connecting b to c.

The geodesic triangle ∆(a, b, c), associated with the points a, b, c ∈M is the

union ∪t∈[0,1][Ha(t)(b), Ha(t)(c)], where Ha(t) : M→M is the homotopy along

geodesics passing through a, and [Ha(t)(b), Ha(t)(c)] the geodesic segment

connecting Ha(t)(b) and Ha(t)(c).

THEOREM: (Gromov)

Let M be a simply connected, complete manifold of strictly negative sectional

curvature K(M) < −ε < 0, and ∆(a, b, c) a geodesic triangle defined above.

Then the Riemannian area Area(∆(a, b, c)) satisfies Area(∆(a, b, c)) 6

πε−2.

Proof: Uses the convexity of the map D : [a, b]× [c, d]→R>0, implied by CAT

inequalities.
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Mikhail Leonidovich Gromov (b. 1943)
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Holonomy in a geodesic polygon

THEOREM: Let M be a compact manifold of negative sectional curvature,
and Θ a geodesic n-polygon in M , that is, a contractible loop of n geodesic
segments. Consider a principal G-bundle (P,∇) with connection on M , and
let h(Θ) ∈ G be the holonomy along the boundary of Θ, considered as a loop
starting and ending at p ∈ Θ. Then h(Θ) belongs to a compact Kn ⊂ G
which is independent from the choice of Θ, but depends on the choice
of n and (P,∇) and the bound on the curvature of M.

Proof. Step 1: By the effective version of the Ambrose-Singer theorem, the
holonomy along a path is bounded by the integral of the curvature over
a disk filling this path.

Step 2: The area of any geodesic triangle is bounded by Gromov’s theorem.
The absolute value of the curvature of ∇ is bounded from above because M
is compact. This implies that h(Θ) belongs to a fixed compact K when
n = 3 and Θ is a triangle.

Step 3: When n > 3, we represent Θ as a boundary of the union of n − 2
geodesic triangles D1, .., Dn−2 with common vertex p. Then the holonomy
h(Θ) is obtained as a product h(Θ) = h(D1)h(D2)...h(Dn−2) ⊂ Kn−2.
Therefore, h(Θ) belongs to a fixed compact Kn := Kn−2, independent
from the choice of Θ.
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Non-commutative Barge-Ghys quasimorphism

DEFINITION: Let M be a compact manifold with non-positive sectional

curvature, and (P,∇) a principal G-bundle with connection. Fix x ∈ M . The

non-commutative Barge-Ghys map takes γ ∈ π1(M,x) to the holonomy of

∇ along the geodesic path starting and ending at x and homotopic to γ.

REMARK: Since M has non-positive curvature, this geodesic path is

unique in its homotopy class (Cartan-Hadamard).
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Non-commutative Barge-Ghys quasimorphism (2)

COROLLARY: Let M be a compact manifold of negative sectional cur-
vature, and (P,∇) a principal G-bundle with connection. Fix x ∈ M , and
let q : π1(M)→G be the non-commutative Barge-Ghys map associated with
(P,∇). Then q is an Ulam quasimorphism.

Proof. Step 1: Denote by M̃
π→M the universal cover of M . Let a, b ∈ π1(M),

and Pa, Pb ∈ Diff(M̃) the corresponding deck transformations. Fix a preimage
x̃ ∈ π−1(x), and denote by (P̃ , ∇̃) the pullback of (P,∇) to M̃ . By definition,
the product q(ab)q(b)−1q(a)−1 is represented by the holonomy of (P̃ , ∇̃)
along the geodesic triangle connecting the points x̃, Pa(x̃), and Pb(Pa(x̃))
in M̃.

Step 2: By the previous theorem, this quantity belongs to a compact
subset independent from the choice of x ∈M and a, b ∈ π1(M).

REMARK: To prove Ulam non-stability, we need to be able to compute
q explicitly. We will modify this definition to arrive at a map which is easier
to determine.

DEFINITION: A quasimorphism q : Γ→G is called homogeneous if q(xn) =
q(x)n for all n ∈ Z.
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Homogeneous Barge-Ghys quasimorphisms

DEFINITION: An element γ ∈ Γ is called primitive if it cannot be repre-
sented as a power γ = ϕn, for any n > 1.

REMARK: Let M be a manifold of strictly negative curvature. Then π1(M)
has no torsion. Moreover, every element x ∈ π1(M) is a power of a
primitive element.

Given a primitive γ ∈ π1(M), let Fγ be the shortest free geodesic loop repre-
senting γ. By standard results of Riemannian geometry, Fγ is unique in every
conjugacy class. For each conjugacy class of γ we fix a choice of a point
x ∈ Fγ.

Fix a point p ∈ M , and γ ∈ π1(M). We are going to define a homogeneous
quasimorphism q : Γ→GL(Bp), where Bp denotes the fiber of B in p, as
follows. Let F̃γ := νx,γ ◦ Fγ ◦ ν−1

x,γ be the 3-segment piecewise geodesic path
obtained by connecting p to x, going around the loop Fγ starting and ending in
x, and going back to p along νx,γ in the opposite direction. Clearly, this path
represents γ in π1(M,p). Denote by q(γ) ∈ GL(Bp) the holonomy along F̃γ.
By construction, q restricted to a cyclic subgroup is always a homomorphism.

DEFINITION: This map is called the HBG-map associated with the
connection ∇.
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Homogeneous Barge-Ghys quasimorphisms (2)

THEOREM: Let M be a compact manifold with strictly negative sectional
curvature, p ∈M a base point, Γ := π1(M), and q : Γ→GL(Bp) the HBG map
defined above. Then q : Γ→GL(Bp) is a homogeneous Ulam quasimor-
phism.

Proof. Step 1: Let α, β, γ = (αβ)−1 be elements of Γ. Choose any points
a ∈ Fα, b ∈ Fβ, c ∈ Fγ. Then q(α)q(β)q(αβ)−1 is the holonomy of ∇
along a contractible geodesic polygon with 9 edges obtained by going along
νa,α, Fα, ν−1

a,α, νb,β, Fβ, ν
−1
b,β , νc,γ, Fγ, ν

−1
c,γ :
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Homogeneous Barge-Ghys quasimorphisms (3)

Step 2: The holonomy along any contractible geodesic 9-gon is bounded

by a constant depending on the curvature of ∇ and M, hence q is an

Ulam quasimorphism.

Step 3: Homogeneity of q is clear, because q(γn) is the holonomy of ∇ along

the loop νx,γ ◦ Fnγ ◦ ν−1
x,γ.
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Connections with prescribed holonomy

LEMMA: Let G be a connected Lie group, g its Lie algebra, and P a trivial

G-bundle on an interval [0,1]. Fix an element g ∈ G. Denote by ∇0 the trivial

connection on P . Then there exists a g-valued 1-form A with compact

support, such that the holonomy Hol(∇) of the connection ∇ := ∇0 +A

is equal to g.

Proof: Write A as a(t)dt, where a ∈ g and dt is the standard 1-form on [0,1].

Then Hol(∇) =
∫ 1
0 a(t)dt. By Newton-Leibnitz formula,

∫ 1
0 (γ(t)−1)∗γ̇dt =

g. Setting a(t) := (γ(t)−1)∗γ̇, we obtain a connection form which satisfies

Hol(∇) =
∫ 1
0 (γ(t)−1)∗γ̇dt = g.
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Constructing HBG-quasimorphisms

THEOREM: Let M be a compact manifold of strictly negative curvature,

G a non-abelian connected Lie group, and x1, ..., xn ∈ Γ := π1(M) a collection

of primitive elements generating cyclic subgroups Ui satisfying ∀u, v ∈ Γ, ∀i 6=
j, one has Uui ∩ U

v
j = 1. Fix a collection of elements gi ∈ G, with i = 1, ..., n.

Then there exists a connection ∇ on a trivial principal bundle P such

that the corresponding HBG-quasimorphism q∇ : Γ→G takes xi to gi,

i = 1,2, ..., n.

Proof: We are going to choose a connection ∇ on P such that the monodromy

of ∇ along γxi = νp,xiFxiν
−1
p,xi

is equal to gi.

Fix an open set Bxi containing a segment of Fxi and not intersecting the rest

of the loops. We can choose Bi in such a way that it does not intersect the

geodesic segment connecting p to pi. Denote by ∇0 the trivial connection

on P . Using the previous lemma, we modify ∇0 by adding a 1-form with

support in each Bi in such a way that the monodromy of ∇ along γi∩Bi
is equal to gi.
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Using HBG-quasimorphisms to prove that π1(M) is not Ulam stable

THEOREM: Let M be a compact manifold of negative sectional curvature,

G a positive-dimensional connected Lie group. Choose a left-invariant metric

on G such that the diameter of any closed subgroup is at least 1/3. Then

for each ε > 0, there exists a connection ∇ such that the corresponding

HBG quasimorphism q∇ is an ε-representation which cannot be 1/3-

approximated by a representation.

Proof. Step 1: Let a1, ..., an be the generators of π1(M). Find b ∈ π1(M)

such that the cyclic group generated by b does not intersect the cyclic groups

generated by ai. Construct a connection ∇ on a trivial bundle such that

the corresponding HBG-quasimorphism satisfies q(ai) = 0, q(b) = g, where

g is not a torsion element. Rescaling the connection form by 1
m, we can

assume that the holonomy of ∇ is bounded by any given constant, and

q(b)m = g. For m sufficiently large, this would give an ε-representation q∇
such that q∇(ai) = e, and q∇(b)m = g.
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Using HBG-quasimorphisms to prove that π1(M) is not Ulam stable (2)

Step 2: It remains to show that the ε-representation q∇ cannot be 1/3-

aproximated by a representation ρ. By contradiction, assume that q∇ is

1/3-aproximated by a representation ρ : π1(M)→G. Since d(ρ(ani ), q∇(ai)
n) <

1/3, and q∇(ai) = 1, the closure of a subgroup of G generated by ρ(ai) has

diameter less than 1/3. Since the diameter of non-trivial subgroups of G is

> 1/3, this implies that ρ(ai) = Id. Therefore, ρ(b) = Id. However, for all

n ∈ Z, we have d(ρ(b)n, q∇(b)n) < 1/3, because q∇ is 1/3-approximated by ρ.

Then the diameter of the subgroup of G generated by g = q∇(b) is less than

1/3, which again implies that g = Id, leading to contradiction.
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