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Ulam stabulity

DEFINITION: (D. Kazhdan)

Let V be a Hermitian space. An e-representation of a group [ as a map
p . =U(V) satisfying d(p(xy), p(x)p(y)) < e, where || - || is a left-invariant
metric on U(V) associated with an operator norm.

DEFINITION: Define the distance between two maps p1,p0> : T=U(V) as
d(p1, p2) = supgeqad(p1(x), pa(x)). The group I is called Ulam stable if for
any 0 > 0 there exists € > 0 such that any finite-dimensional e-representation
qg: MT=U(V) can be §-approximated by a representation p: T=U(V).

QUESTION: (V. Milman)
Which groups are Ulam stable?

Answer: (D. Kazhdan)
Amenable groups are Ulam stable.

Answer: (D. Kazhdan)
Let T = m1(S), where S is a compact Riemann surface of genus 2. Then I is
not Ulam stable. Moreover, for each € > O there exists an s-representation

of ', which cannot be 1—10—approximated.
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Hyperbolic groups are not Ulam stable

The main result for today:

THEOREM: (Brandenbursky - V.)

Let M be a compact manifold of negative sectional curvature, G a positive-
dimensional connected Lie group. Put a left-invariant metric on G such that
the diameter of any compact one-parametric subgroup is 1. Then for each
e > 0, there exists an e-representation of 71 (M) which cannot be 1/3-
approximated by a representation.

DEFINITION: (Gromov)
A quasimorphism is a map g : G—R which satisfies |q(xy) —q(x) —q(y)| < C,
where C is a constant independent from xz,y.

We generalize this notion to

DEFINITION: An (Ulam) gquasimorphism is a map ¢g from a group I' to a
topological group G such that q(zy)q(y) 1q(z)~! belongs to a fixed compact
subset of G.

To solve Milman’'s problem, we construct a new class of Ulam quasimor-
phisms, associated with vector bundles on manifolds of strictly negative

sectional curvature.
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Stanistaw Ulam (1909-1984)

Stanistaw and Francoise Ulam, 1940s
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Stanistaw Ulam (1909-1984)

Stanistaw Ulam and the hydrogen bomb
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Stanistaw Ulam (1909-1984)

... The Ulam spiral or prime spiral is a graphical depiction of the set of prime numbers, devised
by mathematician Stanistaw Ulam in 1963 and popularized in Martin Gardner’'s Mathematical
Games column in Scientific American a short time later. It is constructed by writing the

positive integers in a square spiral and specially marking the prime numbers.
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The Scottish Book (Polish: Ksiega Szkocka)

...For problem 153, which was later recognized as being closely related to
Stefan Banach's " basis problem’”, Stanistaw Mazur offered the prize of a live
goose. This problem was solved only in 1972 by Per Enflo, who was presented
with the live goose in a ceremony that was broadcast throughout Poland.

Stanistaw Mazur, Per Enflo and a goose, 1972
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Vitaly Milman (b. 1939)
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David Kazhdan (b. 1946)
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Area of a geodesic triangle

DEFINITION: Let M be a simply connected, complete manifold of non-
positive sectional curvature. Let v be the geodesic segment connecting b to c.
The geodesic triangle A(a,b,c), associated with the points a,b,c € M is the
union Uyc(o 1] [Hao(t)(b), Ho(t)(c)], where Hy(t) : M—M is the homotopy along
geodesics passing through a, and [Hq(t)(b), Hy(t)(c)] the geodesic segment
connecting Hy(t)(b) and Hy(t)(c).

THEOREM: (Gromov)

Let M be a simply connected, complete manifold of strictly negative sectional
curvature K(M) < —e < 0, and A(a,b,c) a geodesic triangle defined above.
Then the Riemannian area Area(Af(a,b,c)) satisfies Area(A(a,b,c)) <

W€_2.

DEFINITION: Let (B,V) be a vector bundle, or a principal G-bundle, with
connection over M. For each loop ~ based in x € M, the holonomy V%v ;
B|z— Bl is result of the parallel transport along the connection.
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Mikhail Leonidovich Gromov (b. 1943)
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Holonomy in a geodesic polygon

THEOREM: Let M be a compact manifold of negative sectional curvature,
and © a geodesic n-polygon in M, that is, a contractible loop of n geodesic
segments. Consider a principal G-bundle (P, V) with connection on M, and
let h(©) € G be the holonomy along the boundary of ©, considered as a loop
starting and ending at p € ©. Then h(©) belongs to a compact K, C G
which is independent from the choice of ©, but depends on the choice
of n and (P,V) and the bound on the curvature of M.

Proof. Step 1: By the effective version of the Ambrose-Singer theorem, the
holonomy along a path is bounded by the integral of the curvature over
a disk filling this path.

Step 2: The area of any geodesic triangle is bounded by Gromov's theorem.
The absolute value of the curvature of V is bounded from above because M
is compact. This implies that h(©) belongs to a fixed compact K when
n =3 and © is a triangle.

Step 3: When n > 3, we represent © as a boundary of the union of n — 2
geodesic triangles Dq,..,D,_> with common vertex p. Then the holonomy
h(®) is obtained as a product h(©) = h(D1)h(D5>)..h(D,_>) C K" 2,
Therefore, h(©) belongs to a fixed compact K, := K" 2, independent
from the choice of ©. =
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Non-commutative Barge-Ghys quasimorphism

DEFINITION: Let M be a compact manifold with non-positive sectional
curvature, and (P, V) a principal G-bundle with connection. Fix z € M. The
non-commutative Barge-Ghys map takes v € 71 (M, x) to the holonomy of
V along the geodesic path starting and ending at x and homotopic to 7.

REMARK: Since M has non-positive curvature, this geodesic path is
unique in its homotopy class (Cartan-Hadamard).

PLAN: Using Gromov’'s theorem, we will prove that holonomy along geodesics
defines a Barge-Ghys quasimorphism. This quasimorphism is very hard
to control. We modify it, obtaining a homogeneous quasimorphism, which
is well controlled and can be used to obtain e-representations.
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Non-commutative Barge-Ghys quasimorphism (2)

COROLLARY: Let M be a compact manifold of negative sectional cur-
vature, and (P,V) a principal G-bundle with connection. Fix z € M, and
let ¢ : m1(M)—G be the non-commutative Barge-Ghys map associated with
(P,V). Then ¢ is an Ulam quasimorphism.

Proof. Step 1: Denote by M = M the universal cover of M. Let a,b € w1 (M),
and P,, P, € Diff(M) the corresponding deck transformations. Fix a preimage
7 € 7~ 1(x), and denote by (P, V) the pullback of (P,V) to M. By definition,
the product ¢(ab)q(b) 1q(a)~! is represented by the holonomy of (P, V)
along the geodesic triangle connecting the points z, P,(x), and P,(FP,(x))
in M.

Step 2: By the previous theorem, this quantity belongs to a compact
subset independent from the choice of t ¢ M and a,be 7 (M). =

REMARK: To prove Ulam non-stability, we need to be able to compute
q explicitly. We will modify this definition to arrive at a map which is easier
to determine.

DEFINITION: A quasimorphism ¢ : '—G is called homogeneous if g(z™) =

g(x)™ for all n € Z.
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Homogeneous Barge-Ghys quasimorphisms

DEFINITION: An element v € I is called primitive if it cannot be repre-
sented as a power v = ", for any n > 1.

REMARK: Let M be a manifold of strictly negative curvature. Then 71 (M)
has no torsion. Moreover, every element z € w1(M) is a power of a
primitive element.

Given a primitive v € m1 (M), let F, be the shortest free geodesic loop repre-
senting . By standard results of Riemannian geometry, F is unique in every
conjugacy class. For each conjugacy class of v we fix a choice of a point
x € Fy.

Fix a point p e M, and v € m1(M). We are going to define a homogeneous
quasimorphism ¢ : —GL(Bp), where B, denotes the fiber of B in p, as
follows. Let Fly ‘= vy~ o0 Fyo ,/;’% be the 3-segment piecewise geodesic path
obtained by connecting p to z, going around the loop F5 starting and ending in
x, and going back to p along vz~ in the opposite direction. Clearly, this path
represents ~ in w1 (M,p). Denote by q(y) € GL(Bp) the holonomy along F,.
By construction, g restricted to a cyclic subgroup is always a homomorphism.

DEFINITION: This map is called the HBG-map associated with the
connection V.
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Homogeneous Barge-Ghys quasimorphisms (2)

THEOREM: Let M be a compact manifold with strictly negative sectional
curvature, p € M a base point, I :=m1(M), and q: T—-=GL(By) the HBG map
defined above. Then ¢ : T—-GL(Bp) is a homogeneous Ulam quasimor-
phism.

Proof. Step 1: Let «,8,7 = (a8)~! be elements of . Choose any points
a € Fo, b € Fg, ¢ € F,. Then q(a)q(B)q(aB)~! is the holonomy of V

along a contractible geodesic polygon with 9 edges obtained by going along

-1 —1 —1.
Va,’a, Fa, VG,,OU Vb,B, FIB, Vb,ﬁ y Vc,fy, ny, I/C,’}/ .

~
Vo

!
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Homogeneous Barge-Ghys quasimorphisms (3)

Step 2: The holonomy along any contractible geodesic 9-gon is bounded
by a constant depending on the curvature of V and M, hence ¢ is an
Ulam quasimorphism.

Step 3: Homogeneity of q is clear, because q(14™) is the holonomy of V along

n —1
the loop vz yo Flov, 5. B
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Connections with prescribed holonomy

LEMMA: Let G be a connected Lie group, g its Lie algebra, and P a trivial
G-bundle on an interval [0, 1]. Fix an element g € GG. Denote by Vg the trivial
connection on P. Then there exists a g-valued 1-form A with compact
support, such that the holonomy Hol(V) of the connection V :=Vy+ A
IS equal to g.

Proof: Write A as a(t)dt, where a € g and dt is the standard 1-form on [0, 1].
Then Hol(V) = [da(t)dt. By Newton-Leibnitz formula, [3(y(t)~1)*ydt =
g. Setting a(¥) = (v(t)"1)*¥, we obtain a connection form which satisfies

HOl(V) = J[g(v() " )*ydt = g. m
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Constructing HBG-quasimorphisms

THEOREM: Let M be a compact manifold of strictly negative curvature,
G a non-abelian connected Lie group, and z1,...,xn € I := w1 (M) a collection
of primitive elements generating cyclic subgroups U; satisfying Yu,v € I',Vi #
J, one has U’ N U;? = 1. Fix a collection of elements g; € G, with + = 1, ..., n.
Then there exists a connection V on a trivial principal bundle P such
that the corresponding HBG-quasimorphism gy : [—+G takes z; to g,

1=1,2,...,n.

Proof: We are going to choose a connection V on P such that the monodromy

of V along vz; = vp .z Fr,vp 2. IS equal to g;.

Fix an open set By, containing a segment of F, and not intersecting the rest
of the loops. We can choose B; in such a way that it does not intersect the
geodesic segment connecting p to p;. Denote by Vg the trivial connection
on P. Using the previous lemma, we modify Vg by adding a 1-form with
support in each B; in such a way that the monodromy of V along ~; N B;
iIs equal to g;. =
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Using HBG-quasimorphisms to prove that =1 (M) is not Ulam stable

THEOREM: Let M be a compact manifold of negative sectional curvature,
(G a positive-dimensional connected Lie group. Choose a left-invariant metric
on G such that the diameter of any closed subgroup is at least 1/3. Then
for each € > 0, there exists a connection V such that the corresponding
HBG quasimorphism gy is an e-representation which cannot be 1/3-
approximated by a representation.

Proof. Step 1: Let aq,...,an be the generators of m1(M). Find b € w1(M)
such that the cyclic group generated by b does not intersect the cyclic groups
generated by a;. Construct a connection V on a trivial bundle such that
the corresponding HBG-quasimorphism satisfies ¢(a;) = 0, ¢q(b) = g, where
g is not a torsion element. Rescaling the connection form by % we can
assume that the holonomy of V is bounded by any given constant, and
q(b)™ = g. For m sufficiently large, this would give an e-representation gy
such that ¢u(a;) =€, and qu(b)™ = g.
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Using HBG-quasimorphisms to prove that =1 (M) is not Ulam stable (2)

Step 2: It remains to show that the s-representation ¢y cannot be 1/3-
aproximated by a representation p. By contradiction, assume that ¢y is
1/3-aproximated by a representation p: w1 (M)—G. Since d(p(al’), qv(a;)™) <
1/3, and gy(a;) = 1, the closure of a subgroup of G generated by p(a;) has
diameter less than 1/3. Since the diameter of non-trivial subgroups of G is
> 1/3, this implies that p(a;) = Id. Therefore, p(b) = Id. However, for all
n € Z, we have d(p(b)", qv(b)™) < 1/3, because ¢y is 1/3-approximated by p.
Then the diameter of the subgroup of G generated by g = gy(b) is less than
1/3, which again implies that g = Id, leading to contradiction. m
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