Kähler manifolds,

lecture 1

Misha Verbitsky

UNICAMP, Brasil Wednesday 17, November 2009,

Campinas.

M. Verbitsky

Connection and torsion

Notation: Let M be a smooth manifold, TM its tangent bundle, $\Lambda^i M$ the bundle of differential *i*-forms, $C^{\infty}M$ the smooth functions. The space of sections of a bundle B is denoted by B.

DEFINITION: A connection on a vector bundle *B* is a map $B \xrightarrow{\nabla} \Lambda^1 M \otimes B$ which satisfies

$$\nabla(fb) = df \otimes b + f\nabla b$$

for all $b \in B$, $f \in C^{\infty}M$.

REMARK: For any tensor bundle $\mathcal{B}_1 := B^* \otimes B^* \otimes ... \otimes B^* \otimes B \otimes B \otimes ... \otimes B$ a connection on *B* defines a connection on \mathcal{B}_1 using the Leibniz formula:

$$\nabla(b_1 \otimes b_2) = \nabla(b_1) \otimes b_2 + b_1 \otimes \nabla(b_2).$$

DEFINITION: A torsion of a connection $\Lambda^1 \xrightarrow{\nabla} \Lambda^1 M \otimes \Lambda^1 M$ is a map $Alt \circ \nabla - d$, where $Alt : \Lambda^1 M \otimes \Lambda^1 M \longrightarrow \Lambda^2 M$ is exterior multiplication. It is a map $T_{\nabla} : \Lambda^1 M \longrightarrow \Lambda^2 M$.

An exercise: Prove that torsion is a $C^{\infty}M$ -linear.

Linearized torsion map

DEFINITION: A torsor over a group G is a space X with a free, transitive action of G.

EXAMPLE: An affine space is a torsor over a linear space.

REMARK: If ∇_1 and ∇_2 are connections B, the difference $\nabla_-\nabla_2$ is $C^{\infty}M$ linear. This makes the space $\mathcal{A}(B)$ of connections on B into an affine space, that is, a torsor over a linear space $\Lambda^1(M) \otimes \text{End}(B)$.

REMARK: Torsion is an affine map

$$\mathcal{A}(\Lambda^1 M) \longrightarrow \operatorname{Hom}(\Lambda^1 M, \Lambda^2 M) = TM \otimes \Lambda^2 M.$$

DEFINITION: An linearized torsion map is a map

$$T_{\nabla,lin}: \Lambda^1(M) \otimes \Lambda^1(M) \otimes TM \longrightarrow TM \otimes \Lambda^2 M$$

obtained as a linearization of a torsion map $\mathcal{A}(\Lambda^1 M) \longrightarrow \operatorname{Hom}(\Lambda^1 M, \Lambda^2 M)$.

REMARK: It is equal to

$$\mathsf{Alt} \otimes \mathrm{Id}_{TM} : \ \Lambda^1(M) \otimes \Lambda^1(M) \otimes TM \longrightarrow \Lambda^2 M \otimes TM.$$

Levi-Civita connection

DEFINITION: Let (M,g) be a Riemannian manifold. A connection ∇ is called **orthogonal** if $\nabla(g) = 0$. It is called **Levi-Civita** if it is torsion-free.

CLAIM: Orthogonal connection always exists, on any vector bundle B.

Proof: Take a covering $\{U_i\}$ such that $B|_{U_i}$ are trivial and admit an orthonormal frame. Choose connections ∇_i locally on U_i fixing these frames. Then patch the local pieces together, using a splitting ψ_i of unit:

$$\nabla(b) = \sum \nabla_i(\psi_i b)$$

Exercise: Show that this defines a connection.

THEOREM: ("the main theorem of differential geometry") **For any Riemannian manifold, the Levi-Civita connection exists, and it is unique**.

Levi-Civita connection (proof of existence and uniqueness)

Proof: Choose any orthogonal connection ∇_0 . The space of all orthogonal connections is affine space modeled on $\Lambda^1 M \otimes \mathfrak{so}(TM)$.

Step 1: Identifying TM and $\Lambda^1 M$, obtain $\mathfrak{s}_o(TM) = \Lambda^2 M$.

Step 2: The linearized torsion map is

$$\mathsf{Alt} \otimes \mathrm{Id}_{TM} : \ \Lambda^1(M) \otimes \Lambda^2 M \longrightarrow \Lambda^2 M \otimes TM.$$

This is an isomorphism (dimension count, representation theory). Denote it by Ψ .

Step 3: Take $\nabla := \nabla_0 - \Psi^{-1}(T_{\nabla_0})$. Then $T_{\nabla} = T_{\nabla_0} - \Psi(\Psi^{-1}(T_{\nabla_0})) = 0$, hence ∇ is torsion-free.

Principal *G*-bundles

DEFINITION: A principal *G*-fibration over *M* is a fibration $X \longrightarrow M$ with free action of *G*, transitively acting on fibers.

EXAMPLE: A bundle of all frames in an *n*-dimensional vector bundle *B* is principal a GL(n)-fibration. **A bundle of orthonormal frames** in an orthogonal *n*-dimensional vector bundle *B* is a principal O(n)-fibration.

REMARK: If *B* is a principal G_0 -bundle, and $G \supset G_0$ is a Lie group containing G_0 , we can pass to a principal *G*-bundle by taking $B := B_0 \times_{G_0} G$, where $B_0 \times_{G_0} G$ denotes a quotient of $B_0 \times G$ by the diagonal action of G_0 .

DEFINITION: A reduction of a principal *G*-fibration *B* to $G_0 \subset G$ is a sub-bundle $B_0 \subset B$ which is a principal B_0 fibration, such that $B_0 \times_{G_0} G = B$.

EXAMPLE: The bundle of orthonormal frames gives a reduction of a principal GL(n)-bundle of all frames to O(n).

DEFINITION: A connection on a principal *G*-bundle *B* is a choice of a splitting $TB = T_{vert}B \oplus T_{hor}B$, where $T_{vert}B$ is a bundle of vertical tangent vectors (vectors tangent to fibers of *B*).

G-structures

DEFINITION: A *G*-structure on a manifold is a reduction of a principal GL(n)-bundle of all frames to its subgroup $G \subset GL(n)$.

EXAMPLE: Riemannian structure: reduction of GL(n) to O(n).

EXAMPLE: An almost complex structure. Let $I : TM \longrightarrow TM$ be an operator satisfying $I^2 = -$ Id. Such an operator is called an almost complex structure on M. A bundle of all frames in $T^{1,0}(M) = \{x \in TM \otimes \mathbb{C} \mid I(x) = \sqrt{-1} x\}$ is a principal $GL(n, \mathbb{C})$ -bundle, giving a reduction of a structure group to $GL(n, \mathbb{C}) \subset GL(2n)$.

EXAMPLE: An almost complex Hermitian structure. Let g be a Riemannian metric on an almost complex manifold satisfying g(Ix, Iy) = g(x, y). Such a metric is called Hermitian. A bundle of orthonormal frames in $T^{1,0}(M)$ gives a reduction of a structure group to $U(n) \subset GL(2n)$.

G-connections

DEFINITION: A holonomy $\mathcal{H}ol(\nabla)$ of a connection ∇ is a group acting on frames by parallel transport via ∇ along all loops in M.

DEFINITION: Fix a *G*-structure on an *n*-manifold *M*, with $G \subset GL(n)$. A connection ∇ on *M* is called a *G*-connection, or compatible with a *G*-structure if its holonomy preserves the bundle of frames compatible with *G*.

REMARK: When a *G*-structure is given by a set of tensors $\{\xi_i\}$ (such as in the case of almost complex, orthogonal, Hermitian), this is equivalent to $\mathcal{H}ol(\nabla)$ preserving these tensors, that is, $\nabla(\xi_i) = 0$.

REMARK: Let $\mathfrak{g} \subset \text{End}(TM)$ be the Lie algebra of infinitesimal transforms of a *G*-structure *W*, and ∇_1 , ∇_2 be *G*-connections. Then $\nabla_1 - \nabla_2 \in \Lambda^1(M) \otimes \mathfrak{g}$. Converse is also true: adding a \mathfrak{g} -valued 1-form to a *G* connection, we obtain another *G*-connection.

CLAIM: The space $\mathcal{A}(W)$ of all *G*-connections is an affine space modeled on $\Lambda^1(M) \otimes \mathfrak{g}$.

Exercise: Prove that a *G*-connection always exists.

Intrinsic torsion

Let M be a manifold with a G-structure W, $\mathcal{A}(W)$ the space of all Gconnections, $\Lambda^1(M) \otimes \mathfrak{g}$ its linearization, $\mathfrak{g} \subset \operatorname{End}(TM)$ the Lie algebra of infinitesimal transforms of W, and

$$T_{\nabla,lin}: \Lambda^1(M)\otimes \mathfrak{g} \longrightarrow \Lambda^2 M \otimes TM$$

the linearized torsion map.

DEFINITION: (Élie Cartan) the space of intrinsic torsion \mathfrak{T} is a quotient of $\Lambda^2 M \otimes TM$ by the image of $\Lambda^1(M) \otimes \mathfrak{g}$, and an intrinsic torsion of a *G*-structure is an image of Tor_{∇} in \mathfrak{T} , for some *G*-connection.

REMARK: An intrinsic torsion of a *G*-structure vanishes if and only if there exists a torsion-free *G*-connection.

CLAIM: (Élie Cartan) **An intrinsic torsion is the only first order invariant of a** *G***-structure.** It vanishes if and only if a *G*-structure is flat up to second order terms.

Intrinsic torsion (examples)

EXAMPLE: For G = O(n), the space of intrinsic torsion vanishes, because $T_{\nabla,lin}: \Lambda^1(M) \otimes \mathfrak{o}(n) \longrightarrow \Lambda^2 M \otimes TM$

is an isomorphism.

EXAMPLE: When $G = Sp(2n, \mathbb{R})$, one has $\mathfrak{g} \cong Sym^2(\Lambda^1(M))$, and the intrinsic torsion space is a cokernel of a map

$$T_{\nabla,lin}: \Lambda^1(M) \otimes \operatorname{Sym}^2(\Lambda^1(M)) \longrightarrow \Lambda^2 M \otimes \Lambda^1(M)$$

isomorphic to $\Lambda^3(M)$.

Exercise: Let G be $Sp(2n, \mathbb{R})$ -structure defined by a non-degenerate skewsymmetric form ω . Show that the corresponding intrinsic torsion term is $d\omega \in \Lambda^3(M)$.

COROLLARY: An $Sp(2n, \mathbb{R})$ -structure has no intrinsic torsion if and only if it is symplectic.

Complex manifolds

DEFINITION: Let *M* be a smooth manifold. An **almost complex structure** is an operator $I : TM \longrightarrow TM$ which satisfies $I^2 = -\operatorname{Id}_{TM}$.

The eigenvalues of this operator are $\pm \sqrt{-1}$. The corresponding eigenvalue decomposition is denoted $TM = T^{0,1}M \oplus T^{1,0}(M)$.

DEFINITION: An almost complex structure is **integrable** if $\forall X, Y \in T^{1,0}M$, one has $[X, Y] \in T^{1,0}M$. In this case *I* is called a **complex structure operator**. A manifold with an integrable almost complex structure is called a **complex manifold**.

THEOREM: (Newlander-Nirenberg) This definition is equivalent to the usual one.

REMARK: The commutator defines a $\mathbb{C}^{\infty}M$ -linear map $N := \Lambda^2(T^{1,0}) \longrightarrow T^{0,1}M$, called **the Nijenhuis tensor** of *I*. **One can represent** *N* **as a section of** $\Lambda^{2,0}(M) \otimes T^{0,1}M$.

Kähler manifolds

DEFINITION: An Riemannian metric g on an almost complex manifold M is called **Hermitian** if g(Ix, Iy) = g(x, y). In this case, $g(x, Iy) = g(Ix, I^2y) = -g(y, Ix)$, hence $\omega(x, y) := g(x, Iy)$ is skew-symmetric.

DEFINITION: The differential form $\omega \in \Lambda^{1,1}(M)$ is called the Hermitian form of (M, I, g).

THEOREM: Let (M, I, g) be an almost complex Hermitian manifold. Then the following conditions are equivalent.

(i) The complex structure I is integrable, and the Hermitian form ω is closed.

(ii) One has $\nabla(I) = 0$, where ∇ is the Levi-Civita connection

 ∇ : End $(TM) \longrightarrow$ End $(TM) \otimes \Lambda^1(M)$.

DEFINITION: A complex Hermitian manifold M is called Kähler if either of these conditions hold. The cohomology class $[\omega] \in H^2(M)$ of a form ω is called **the Kähler class** of M.

Examples of Kähler manifolds.

Definition: Let $M = \mathbb{C}P^n$ be a complex projective space, and g a U(n + 1)invariant Riemannian form. It is called **Fubini-Study form on** $\mathbb{C}P^n$. The
Fubini-Study form is obtained by taking arbitrary Riemannian form and averaging with U(n + 1).

Remark: For any $x \in \mathbb{C}P^n$, the stabilizer St(x) is isomorphic to U(n). Fubini-Study form on $T_x\mathbb{C}P^n = \mathbb{C}^n$ is U(n)-invariant, hence unique up to a constant.

Claim: Fubini-Study form is Kähler. Indeed, $d\omega|_x$ is a U(n)-invariant 3-form on \mathbb{C}^n , but such a form must vanish.

Corollary: Every projective manifold (complex submanifold of $\mathbb{C}P^n$) is Kähler.

REMARK: A manifold (M, I, g) is Kähler if and only if the intrinsic torsion of its U(n)-structure vanishes.

REMARK: A Kähler manifold is flat, up to second order terms: There is a map from \mathbb{C}^n with a flat metric and a complex structure to M, compatible with g and I up to a second order. This is clear from Cartans' characterization of intrinsic torsion.

M. Verbitsky

Intrinsic torsion of a Hermitian complex structure

For an almost complex Hermitian structure, $\mathfrak{g} = \mathfrak{u}(n)$ is identified with $\Lambda^{1,1}(M)$. This gives a linearized torsion map

$$T_{\nabla,lin}: \Lambda^1(M) \otimes \Lambda^{1,1}(M) \longrightarrow \Lambda^2 M \otimes \Lambda^1(M).$$

REMARK: The space of intrinsic torsion of an almost complex Hermitian structure is

$$\Lambda^{2,0} \otimes \Lambda^{0,1}(M) \oplus \Lambda^{0,2} \otimes \Lambda^{1,0}(M) \oplus \Lambda^{2,0} \otimes \Lambda^{1,0}(M) \oplus \Lambda^{0,2} \otimes \Lambda^{0,1}(M) = \\ = \Lambda^{2,1}(M) \oplus \Lambda^{1,2}(M) \oplus \Lambda^{2,0}(M) \otimes T^{0,1} \oplus \Lambda^{0,2}(M) \otimes T^{1,0}$$

CLAIM: Let (M, I, g) be a Hermitian structure, and \mathfrak{T} its intrinsic torsion, decomposed as above. Then **the first two terms of** \mathfrak{T} **are equal to** $d\omega$, where ω is a Hermitian form, and **the last two terms of** \mathfrak{T} **are** N **and** \overline{N} , where N is a Nijenhuis tensor.

COROLLARY: Intrinsic torsion of a complex Hermitian structure (I,g) vanishes if and only if I is integrable and ω is closed.