
Kähler manifolds, lecture 1 M. Verbitsky

Kähler manifolds,

lecture 1

Misha Verbitsky

UNICAMP, Brasil

Wednesday 17,
November 2009,

Campinas.

1



Kähler manifolds, lecture 1 M. Verbitsky

Connection and torsion

Notation: Let M be a smooth manifold, TM its tangent bundle, ΛiM the
bundle of differential i-forms, C∞M the smooth functions. The space of

sections of a bundle B is denoted by B.

DEFINITION: A connection on a vector bundle B is a map B
∇−→ Λ1M⊗B

which satisfies

∇(fb) = df ⊗ b+ f∇b

for all b ∈ B, f ∈ C∞M .

REMARK: For any tensor bundle B1 := B∗⊗B∗⊗ ...⊗B∗⊗B ⊗B ⊗ ...⊗B a

connection on B defines a connection on B1 using the Leibniz formula:

∇(b1 ⊗ b2) = ∇(b1)⊗ b2 + b1 ⊗∇(b2).

DEFINITION: A torsion of a connection Λ1 ∇−→ Λ1M ⊗ Λ1M is a map
Alt ◦∇ − d, where Alt : Λ1M ⊗ Λ1M −→ Λ2M is exterior multiplication. It is a
map T∇ : Λ1M −→ Λ2M .

An exercise: Prove that torsion is a C∞M-linear.
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Linearized torsion map

DEFINITION: A torsor over a group G is a space X with a free, transitive
action of G.

EXAMPLE: An affine space is a torsor over a linear space.

REMARK: If ∇1 and ∇2 are connections B, the difference ∇−∇2 is C∞M-
linear. This makes the space A(B) of connections on B into an affine
space, that is, a torsor over a linear space Λ1(M)⊗ End(B).

REMARK: Torsion is an affine map

A(Λ1M)−→ Hom(Λ1M,Λ2M) = TM ⊗ Λ2M.

DEFINITION: An linearized torsion map is a map

T∇,lin : Λ1(M)⊗ Λ1(M)⊗ TM −→ TM ⊗ Λ2M

obtained as a linearization of a torsion map A(Λ1M)−→ Hom(Λ1M,Λ2M).

REMARK: It is equal to

Alt⊗ IdTM : Λ1(M)⊗ Λ1(M)⊗ TM −→ Λ2M ⊗ TM.
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Levi-Civita connection

DEFINITION: Let (M, g) be a Riemannian manifold. A connection ∇ is

called orthogonal if ∇(g) = 0. It is called Levi-Civita if it is torsion-free.

CLAIM: Orthogonal connection always exists, on any vector bundle B.

Proof: Take a covering {Ui} such that B
∣∣∣Ui are trivial and admit an orthonor-

mal frame. Choose connections ∇i locally on Ui fixing these frames. Then

patch the local pieces together, using a splitting ψi of unit:

∇(b) =
∑
∇i(ψib)

Exercise: Show that this defines a connection.

THEOREM: (“the main theorem of differential geometry”)

For any Riemannian manifold, the Levi-Civita connection exists,

and it is unique.
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Levi-Civita connection (proof of existence and uniqueness)

Proof: Choose any orthogonal connection ∇0. The space of all orthogonal

connections is affine space modeled on Λ1M ⊗ so(TM).

Step 1: Identifying TM and Λ1M , obtain so(TM) = Λ2M .

Step 2: The linearized torsion map is

Alt⊗ IdTM : Λ1(M)⊗ Λ2M −→ Λ2M ⊗ TM.

This is an isomorphism (dimension count, representation theory). Denote

it by Ψ.

Step 3: Take ∇ := ∇0 −Ψ−1(T∇0
). Then T∇ = T∇0

−Ψ(Ψ−1(T∇0
)) = 0,

hence ∇ is torsion-free.

5



Kähler manifolds, lecture 1 M. Verbitsky

Principal G-bundles

DEFINITION: A principal G-fibration over M is a fibration X −→M with
free action of G, transitively acting on fibers.

EXAMPLE: A bundle of all frames in an n-dimensional vector bundle
B is principal a GL(n)-fibration. A bundle of orthonormal frames in an
orthogonal n-dimensional vector bundle B is a principal O(n)-fibration.

REMARK: If B is a principal G0-bundle, and G ⊃ G0 is a Lie group containing
G0, we can pass to a principal G-bundle by taking B := B0 ×G0

G, where
B0 ×G0

G denotes a quotient of B0 ×G by the diagonal action of G0.

DEFINITION: A reduction of a principal G-fibration B to G0 ⊂ G is a
sub-bundle B0 ⊂ B which is a principal B0 fibration, such that B0×G0

G = B.

EXAMPLE: The bundle of orthonormal frames gives a reduction of a prin-
cipal GL(n)-bundle of all frames to O(n).

DEFINITION: A connection on a principal G-bundle B is a choice of a
splitting TB = TvertB ⊕ ThorB, where TvertB is a bundle of vertical tangent
vectors (vectors tangent to fibers of B).
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G-structures

DEFINITION: A G-structure on a manifold is a reduction of a principal

GL(n)-bundle of all frames to its subgroup G ⊂ GL(n).

EXAMPLE: Riemannian structure: reduction of GL(n) to O(n).

EXAMPLE: An almost complex structure. Let I : TM −→ TM be an

operator satisfying I2 = − Id. Such an operator is called an almost complex

structure on M . A bundle of all frames in T1,0(M) = {x ∈ TM ⊗C | I(x) =√
−1 x} is a principal GL(n,C)-bundle, giving a reduction of a structure

group to GL(n,C) ⊂ GL(2n).

EXAMPLE: An almost complex Hermitian structure. Let g be a Rie-

mannian metric on an almost complex manifold satisfying g(Ix, Iy) = g(x, y).

Such a metric is called Hermitian. A bundle of orthonormal frames in

T1,0(M) gives a reduction of a structure group to U(n) ⊂ GL(2n).
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G-connections

DEFINITION: A holonomy Hol(∇) of a connection ∇ is a group acting on
frames by parallel transport via ∇ along all loops in M .

DEFINITION: Fix a G-structure on an n-manifold M , with G ⊂ GL(n). A
connection ∇ on M is called a G-connection, or compatible with a G-
structure if its holonomy preserves the bundle of frames compatible with
G.

REMARK: When a G-structure is given by a set of tensors {ξi} (such as in
the case of almost complex, orthogonal, Hermitian), this is equivalent to
Hol(∇) preserving these tensors, that is, ∇(ξi) = 0.

REMARK: Let g ⊂ End(TM) be the Lie algebra of infinitesimal trans-
forms of a G-structure W , and ∇1, ∇2 be G-connections. Then ∇1−∇2 ∈
Λ1(M) ⊗ g. Converse is also true: adding a g-valued 1-form to a G con-
nection, we obtain another G-connection.

CLAIM: The space A(W ) of all G-connections is an affine space mod-
eled on Λ1(M)⊗ g.

Exercise: Prove that a G-connection always exists.
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Intrinsic torsion

Let M be a manifold with a G-structure W , A(W ) the space of all G-

connections, Λ1(M) ⊗ g its linearization, g ⊂ End(TM) the Lie algebra of

infinitesimal transforms of W , and

T∇,lin : Λ1(M)⊗ g−→ Λ2M ⊗ TM

the linearized torsion map.

DEFINITION: (Élie Cartan) the space of intrinsic torsion T is a quotient

of Λ2M ⊗ TM by the image of Λ1(M) ⊗ g, and an intrinsic torsion of a

G-structure is an image of Tor∇ in T, for some G-connection.

REMARK: An intrinsic torsion of a G-structure vanishes if and only if

there exists a torsion-free G-connection.

CLAIM: (Élie Cartan) An intrinsic torsion is the only first order invariant

of a G-structure. It vanishes if and only if a G-structure is flat up to second

order terms.
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Intrinsic torsion (examples)

EXAMPLE: For G = O(n), the space of intrinsic torsion vanishes, because

T∇,lin : Λ1(M)⊗ o(n)−→ Λ2M ⊗ TM

is an isomorphism.

EXAMPLE: When G = Sp(2n,R), one has g ∼= Sym2(Λ1(M)), and the

intrinsic torsion space is a cokernel of a map

T∇,lin : Λ1(M)⊗ Sym2(Λ1(M))−→ Λ2M ⊗ Λ1(M)

isomorphic to Λ3(M).

Exercise: Let G be Sp(2n,R)-structure defined by a non-degenerate skew-

symmetric form ω. Show that the corresponding intrinsic torsion term

is dω ∈ Λ3(M).

COROLLARY: An Sp(2n,R)-structure has no intrinsic torsion if and

only if it is symplectic.
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Complex manifolds

DEFINITION: Let M be a smooth manifold. An almost complex structure

is an operator I : TM −→ TM which satisfies I2 = − IdTM .

The eigenvalues of this operator are ±
√
−1. The corresponding eigenvalue

decomposition is denoted TM = T0,1M ⊕ T1,0(M).

DEFINITION: An almost complex structure is integrable if ∀X,Y ∈ T1,0M ,

one has [X,Y ] ∈ T1,0M . In this case I is called a complex structure op-

erator. A manifold with an integrable almost complex structure is called a

complex manifold.

THEOREM: (Newlander-Nirenberg)

This definition is equivalent to the usual one.

REMARK: The commutator defines a C∞M-linear map

N := Λ2(T1,0)−→ T0,1M , called the Nijenhuis tensor of I. One can rep-

resent N as a section of Λ2,0(M)⊗ T0,1M.
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Kähler manifolds

DEFINITION: An Riemannian metric g on an almost complex manifiold M

is called Hermitian if g(Ix, Iy) = g(x, y). In this case, g(x, Iy) = g(Ix, I2y) =

−g(y, Ix), hence ω(x, y) := g(x, Iy) is skew-symmetric.

DEFINITION: The differential form ω ∈ Λ1,1(M) is called the Hermitian

form of (M, I, g).

THEOREM: Let (M, I, g) be an almost complex Hermitian manifold. Then

the following conditions are equivalent.

(i) The complex structure I is integrable, and the Hermitian form ω is closed.

(ii) One has ∇(I) = 0, where ∇ is the Levi-Civita connection

∇ : End(TM)−→ End(TM)⊗ Λ1(M).

DEFINITION: A complex Hermitian manifold M is called Kähler if either

of these conditions hold. The cohomology class [ω] ∈ H2(M) of a form ω is

called the Kähler class of M .
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Examples of Kähler manifolds.

Definition: Let M = CPn be a complex projective space, and g a U(n+ 1)-
invariant Riemannian form. It is called Fubini-Study form on CPn. The
Fubini-Study form is obtained by taking arbitrary Riemannian form and aver-
aging with U(n+ 1).

Remark: For any x ∈ CPn, the stabilizer St(x) is isomorphic to U(n). Fubini-
Study form on TxCPn = Cn is U(n)-invariant, hence unique up to a constant.

Claim: Fubini-Study form is Kähler. Indeed, dω|x is a U(n)-invariant 3-
form on Cn, but such a form must vanish.

Corollary: Every projective manifold (complex submanifold of CPn) is Kähler.

REMARK: A manifold (M, I, g) is Kähler if and only if the intrinsic torsion

of its U(n)-structure vanishes.

REMARK: A Kähler manifold is flat, up to second order terms: There
is a map from Cn with a flat metric and a complex structure to M , compatible
with g and I up to a second order. This is clear from Cartans’ characterization
of intrinsic torsion.
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Intrinsic torsion of a Hermitian complex structure

For an almost complex Hermitian structure, g = u(n) is identified with

Λ1,1(M). This gives a linearized torsion map

T∇,lin : Λ1(M)⊗ Λ1,1(M)−→ Λ2M ⊗ Λ1(M).

REMARK: The space of intrinsic torsion of an almost complex Hermi-

tian structure is

Λ2,0 ⊗ Λ0,1(M)⊕ Λ0,2 ⊗ Λ1,0(M)⊕ Λ2,0 ⊗ Λ1,0(M)⊕ Λ0,2 ⊗ Λ0,1(M) =

= Λ2,1(M)⊕ Λ1,2(M)⊕ Λ2,0(M)⊗ T0,1 ⊕ Λ0,2(M)⊗ T1,0

CLAIM: Let (M, I, g) be a Hermitian structure, and T its intrinsic torsion,

decomposed as above, Then the first two terms of T are equal to dω,

where ω is a Hermitian form, and the last two terms of T are N and N,

where N is a Nijenhuis tensor.

COROLLARY: Intrinsic torsion of a complex Hermitian structure (I, g)

vanishes if and only if I is integrable and ω is closed.
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