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Group representations

DEFINITION: Let V be a finite-dimensional vector space, G
ρ−→ End(V ) a

group representation. It is called simple, or irreducible if V has no non-trivial

G-invariant subspaces V1 ( V , and semisimple if V is a direct sum of simple

representations.

EXAMPLE: If ρ is a unitary representation, it is semisimple. Indeed, an

orthogonal complement V1
⊥ of a G-invariant space is also G-invariant.

EXAMPLE: If G is a reductive Lie group, all its representations are

semisimple. This is one of the definitions of a reductive group.

EXAMPLE: If G is a finite group, all its representations are semisimple.

Take a positive definite scalar product ξ on V , and let

ξG(x, y) :=
∑
g∈G

ξ(gx, gy).

Then ξG is a G-invariant and positive definite, and V is semisimple as shown

above.
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The group algebra

DEFINITION: A group algebra of a finite group G is a vector space C[G]
with basis {g1, ...gn} = G, and multiplication defined as in G. We consider
C[G] as a representation of G, with G acting from the left.

THEOREM: Let V be an irreducible representation of G. Then V is a
sub-representation of C[G].

Proof: Take v ∈ V , and let ρ : C[G]−→ V map g ∈ C[G] to g(v). This map is
non-zero, hence surjective. Taking duals, obtain an embedding V ↪→ C[G].

COROLLARY: There is only finitely many pairwise non-isomorphic simple
representations of a finite group G.

COROLLARY: The symmetric group S2 has only 2 irreducible repre-
sentations. Indeed, C[G] is 2-dimensional.

DEFINITION: A conjugacy class in a group is a set {g−1hg | g ∈ G},
where h is fixed and g runs through all G.

THEOREM: (Frobenius) The number of pairwise non-isomorphic simple
representations of a finite group is equal to its number of conjugacy
classes.
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Representations of a symmetric group

DEFINITION: An element a ∈ A of an algebra is called idempotent if
a2 = a.

We fix a G-invariant positive definite Hermitian form on C[G].

REMARK: Let V ⊂ C[G] be a sub-representation, and ι : C[G]−→ V be
an orthogonal (hence, G-invariant) projection. Then ι2 = ι, that is, ι is
idempotent.

Representations of Sn are classified by idempotents in C[Sn] called Young
symmetrizers.

DEFINITION: For any embedding G ↪→ Sn, of symmetric group, consider
an idempotent aG ∈ C[Sn] called a symmetrizer,

aG(v) :=
1

|G|
∑
g∈G

g(v)

and another one, called antisymmetrizer

bG(v) :=
1

|G|
∑
g∈G

sign(g)g(v)
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Young symmetrizers

DEFINITION: Every partition of a set of n elements corresponds to a table
called a Young diagram

Young diagram, corresponding to a partition of 10.

A Young tableau is obtained from a Young diagram by putting numbers
from 1 to n arbitrarily in all squares.

Young tableau, corresponding to a partition of 10.

DEFINITION: Fix a Young tableau σ, and define the permutation groups P
and Q ⊂ Sn with P preserving each row and Q each column of a tableau. An
element cσ := aP bQ is called the Young symmetrizer.
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Specht modules

DEFINITION: An image of left multiplication by cσ is a right Sn-subrepre-

sentation Vσ ⊂ C[Sn], which is called a Specht module.

REMARK: The Young symmetrizer satisfies c2σ = λc2σ, where λ = n!
|P ||Q|dimVσ

.

THEOREM: Every irreducible representation of a symmetric group is iso-

morphic to a Specht module. Moreover, equivalence classes of irreducible

representations of a symmetric group are in 1 to 1 correspondence

with Young diagrams.

REMARK: This is essentially a special case of Frobenius theorem. Indeed,

the conjugacy classes of permutations are classified by partitions of n.
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Representations of GL(n)

THEOREM: Let V be a vector space, and V ⊗n its tensor power. Then V ⊗n

is a direct sum of irreducible GL(V )-representations, parametrized by
Young diagrams. Given a Young tableau σ, and the corresponding Young
symmetrizer cσ, the image cσ(V ⊗n) is irreducible.

EXAMPLE: V ⊗ V = Λ2V ⊕ Sym2 V .

EXAMPLE: V ⊗ V ⊗ V = Λ3V ⊕ Sym3 V ⊕K(V ), where K(V ) (“the space
of Cartan tensors”) can be defined as a kernel of Sym23

∣∣∣Λ2V⊗V .

EXAMPLE: V ⊗ V ⊗ V ⊗ V = Λ4V ⊕ Sym4 V ⊕ V3,1 ⊕ V2,1,1 ⊕ V2,2. Here
V3,1 = ker Sym34

∣∣∣Λ3V⊗V , V3,1 = ker Alt34

∣∣∣Sym3 V⊗V , and V2,2 their orthogonal
complement, which can be defined as a space of tensors which are
antysymmetric under interchange of 1 and 2 and 3 and 4, symmetrized
under interchange of 1 and 4 and 3 and 4.

CLAIM: This is the same as a kernel of a multiplication

ker
(
Sym2(Λ2V )−→ Λ4V

)
.

DEFINITION: The space V2,2 ⊂ V ⊗ V ⊗ V ⊗ V is called the space of
algebraic curvature tensors.
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Curvature of a connection

Let M be a manifold, B a bundle, ΛiM the differential forms, and ∇ :
B −→B ⊗ Λ1M a connection. We extend ∇ to B ⊗ ΛiM

∇−→ B ⊗ Λi+1M

in a natural way, using the formula

∇(b⊗ η) = ∇(b) ∧ η + b⊗ dη,
and define the curvature Θ∇ of ∇ as ∇ ◦∇ : B −→B ⊗ Λ2M .

CLAIM: This operator is C∞M-linear.

REMARK: We shall consider Θ∇ as an element of Λ2M ⊗EndB, that is, an
EndB-valued 2-form.

REMARK: Given vector fields X,Y ∈ TM , the curvature can be written in
terms of a connection as follows

Θ∇(b) = ∇X∇Y b−∇Y∇XB −∇[X,Y ]b.

CLAIM: Suppose that the structure group of B is reduced to its subgroup G,
and let ∇ be a connection which preserves this reduction. This is the same
as to say that the connection form takes values in Λ1 ⊗ g(B). Then Θ∇ lies
in Λ2M ⊗ g(B).
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Symmetries of Riemannian curvature

EXAMPLE: Let ∇ be a Levi-Civita connection of a Riemannian manifold.
Then Θ∇ lies in Λ2M ⊗ so(TM) = Λ2M ⊗ Λ2M.

PROPOSITION: (an algebraic Bianchi identity)
Let Θ∇ be a curvature of a Levi-Civita connection. Then

Cyclic 1,2,3(Θ∇) := Θ∇(X,Y, Z, ·) + Θ∇(Y, Z,X, ·) + Θ∇(Z,X, Y, ·) = 0.

Proof: Choose X,Y, Z which commute. Then ∇XY = ∇YX, etc., because
∇ is torsion-free. Then

Cyclic 1,2,3(Θ∇(X,Y, Z))

= (∇X∇Y Z −∇X∇ZY ) + (∇Y∇ZX −∇Y∇XY ) + (∇Z∇XY −∇Z∇YX) = 0

REMARK: It was discovered by Ricci some years after Bianchi discovered
the “differential Bianchi identity”.

COROLLARY: The Riemannian curvature tensor lies in the bundle
TM2,2 of algebraic curvature tensors.

Proof: Its projection to all other components of TM⊗TM⊗TM⊗TM vanish.
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Ricci decomposition

DEFINITION: Let V be a space with positive definite scalar product, dimV >
4 and V2,2 the space of algebraic curvature tensors. Consider the trace map
Tr1,3 : V2,2 −→ Sym2V It is denoted by Ric and called the Ricci curvature.
Its trace is called the scalar curvature.

PROPOSITION: Consider V2,2 as a representation of O(V ). Then V2,2 has
the following irreducible components:

V2,2 = W ⊕ Sym2
0V ⊕ R,

where W = ker Ric, and an embedding Sym2 V −→ V2,2 is Ric∗.

DEFINITION: Let M be a Riemannian manifold, and Θ = W + Ric be the
decomposition of its curvature tensor, with Ric = Ric0 +S a decomposition
of Ric onto its traceless part and the scalar part. Then W is called its Weyl
curvature (or conformal curvature), Ric the Ricci curvature, Ric0 the
traceless Ricci curvature, and S the scalar curvature.

REMARK: When dimV = 2, dimV2,2 = 1, when dimV = 3, W = 0 and
V2,2 = Sym2V . When dimV = 4, one has a decomposition

V2,2 = W+ ⊕W− ⊕ Sym2
0V ⊕ R.

because so(4) = so(3)⊕ so(3).
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Glossary of Riemannian geometry

Let (M, g) be a Riemannian manifold. Riemannian manifolds are classified

according to their curvature decomposition: Θ = W + Ric0 +S.

DEFINITION: If W = 0, a manifold is called conformally flat. Such

manifold is locally conformally equivalent to a flat manifold.

DEFINITION: If Ric0 = 0, a manifold is called Einstein. For such a mani-

fold, one has Ric = λg. It is possible to show that λ = const. The number

λ is called an Einstein constant

DEFINITION: If W = Ric0 = 0, and Θ = S, a manifold is called a space

form, or a manifold of constant sectional curvature. It is locally isometric

to a Riemannian sphere, to a hyperbolic space, or to Rn.

DEFINITION: If S = const, a manifold has constant scalar curvature.
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Ricci decomposition for Kähler manifolds

DEFINITION: Let (M, I, g) be a Hermitian almost complex manifold, that is,

a Riemannian manifold with I : TM −→ TM , I2 = − IdTM , where g(Ix, Iy) =

g(x, y). Recall that (M, I, g) is called Kähler if I is preserved by the Levi-Civita

connection.

REMARK: The Kähler curvature is a section of a bundle

ker Sym2(Λ1,1M)−→ Λ2,2M .

DEFINITION: Let V be a complex Hermitian vector space, VC := V ⊗R
C its complexification, and Λ∗VC = ⊕Λp,qVC the Hodge decomposition on

its Grassmann algebra. Define the space of algebraic Kähler curvature

tensors K as the kernel of multiplicative map ker Sym2(Λ1,1V )−→ Λ2,2VC.

CLAIM: K is irreducible as a GL(V,C)-representation.

REMARK: The Ricci curvature of a Kähler curvature tensor is a symmetric

2-tensor satisfying Ric(Iv, Iw) = Ric(v, w). Denote the space of such tensors

by Her. Clearly, g(·, I·) ∈ Λ1,1(M), for any g ∈ Her. In other words, Her is a

space of pseudo-Hermitian forms.
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Ricci decomposition for Kähler manifolds (cont.)

CLAIM: Consider K as a representation of unitary group U(V ). Then K is

irreducibly decomposed in the following way:

K = K0 ⊕Her0 V ⊕ Cω,

where Her denotes the space of traceless pseudo-Hermitian forms.

COROLLARY: Let Θ ∈ K be a Kähler curvature tensor. Consider the trace

TrX,Y Θ(X, IY, ·, ·) ∈ Λ1,1(M). Then TrX,Y Θ(X, IY, ·, ·) ∈ Λ1,1(M) is propor-

tional to Ric(Θ) ∈ Her, if we identify Her with Λ1,1(M) using g −→ g(·, I·) as

above.

Proof: Follows from Schur’s lemma.
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Canonical bundle of a Kähler manifold

DEFINITION: Let (M, I) be a complex manifold, and L a holomorphic

Hermitian bundle. The holomorphic structure is understood as an opera-

tor ∂ : L−→ L⊗Λ0,1M , and integrability condition is ∂
2

: L⊗Λ0,2M satisfies

∂
2

= 0. We call a Chern connection a Hermitian connection on L which

satisfies ∇0,1 = ∂.

CLAIM: The Chern connection on any holomorphic Hermitian bundle

exists and is unique.

REMARK: The curvature of a Chern connection is obviously an EndL-

valued (1,1)-form.

DEFINITION: Let (M, I, g) be an Kaehler manifold, dimCM = n. Consider

the bundle Λn,0M of holomorphic volume forms, It is called the canonical

bundle of M .

CLAIM:

The Levi-Civita connection induces the Chern connection on Λn,0M.
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Canonical bundle and its curvature

REMARK: Let B be a bundle with connection, ΘB ∈ Λ2M ⊗ EndB its

curvature, detB := ΛdimBB its determinant bundle, equipped with induced

connection, and ΘdetB ∈ Λ2M the curvature on detB. Then ΘdetB = Tr ΘB.

This is clear, because

∇(b1 ∧ b2 ∧ ... ∧ bm) =
∑
i

b1 ∧ b2 ∧ ... ∧∇bi ∧ ...

REMARK: From this remark it follows that the curvature ΘΛn,0M is equal

to TrX,Y Θ(·, ·, X, IY ).

COROLLARY:

The curvature of a canonical bundle is proportional to Ric.
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