Kähler manifolds,

lecture 2

Misha Verbitsky

UNICAMP, Brasil Wednesday 25, November 2009,

Campinas.

Group representations

DEFINITION: Let V be a finite-dimensional vector space, $G \xrightarrow{\rho} End(V)$ a group representation. It is called **simple**, or **irreducible** if V has no non-trivial G-invariant subspaces $V_1 \subsetneq V$, and **semisimple** if V is a direct sum of simple representations.

EXAMPLE: If ρ is a unitary representation, it is semisimple. Indeed, an orthogonal complement V_1^{\perp} of a *G*-invariant space is also *G*-invariant.

EXAMPLE: If G is a reductive Lie group, all its representations are semisimple. This is one of the definitions of a reductive group.

EXAMPLE: If G is a finite group, all its representations are semisimple. Take a positive definite scalar product ξ on V, and let

$$\xi_G(x,y) := \sum_{g \in G} \xi(gx,gy).$$

Then ξ_G is a *G*-invariant and positive definite, and *V* is semisimple as shown above.

The group algebra

DEFINITION: A group algebra of a finite group G is a vector space $\mathbb{C}[G]$ with basis $\{g_1, ..., g_n\} = G$, and multiplication defined as in G. We consider $\mathbb{C}[G]$ as a representation of G, with G acting from the left.

THEOREM: Let V be an irreducible representation of G. Then V is a sub-representation of $\mathbb{C}[G]$.

Proof: Take $v \in V$, and let $\rho : \mathbb{C}[G] \longrightarrow V$ map $g \in \mathbb{C}[G]$ to g(v). This map is non-zero, hence surjective. Taking duals, obtain an embedding $V \hookrightarrow \mathbb{C}[G]$.

COROLLARY: There is only finitely many pairwise non-isomorphic simple representations of a finite group G.

COROLLARY: The symmetric group S_2 has only 2 irreducible representations. Indeed, $\mathbb{C}[G]$ is 2-dimensional.

DEFINITION: A conjugacy class in a group is a set $\{g^{-1}hg \mid g \in G\}$, where *h* is fixed and *g* runs through all *G*.

THEOREM: (Frobenius) The number of pairwise non-isomorphic simple representations of a finite group is equal to its number of conjugacy classes.

Representations of a symmetric group

DEFINITION: An element $a \in A$ of an algebra is called **idempotent** if $a^2 = a$.

We fix a *G*-invariant positive definite Hermitian form on $\mathbb{C}[G]$.

REMARK: Let $V \subset \mathbb{C}[G]$ be a sub-representation, and $\iota : \mathbb{C}[G] \longrightarrow V$ be an orthogonal (hence, *G*-invariant) projection. Then $\iota^2 = \iota$, that is, ι is idempotent.

Representations of S_n are classified by idempotents in $\mathbb{C}[S_n]$ called **Young** symmetrizers.

DEFINITION: For any embedding $G \hookrightarrow S_n$, of symmetric group, consider an idempotent $a_G \in C[S_n]$ called a symmetrizer,

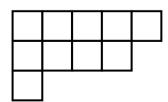
$$a_G(v) := \frac{1}{|G|} \sum_{g \in G} g(v)$$

and another one, called antisymmetrizer

$$b_G(v) := \frac{1}{|G|} \sum_{g \in G} sign(g)g(v)$$

Young symmetrizers

DEFINITION: Every partition of a set of *n* elements corresponds to a table called **a Young diagram**



Young diagram, corresponding to a partition of 10.

A Young tableau is obtained from a Young diagram by putting numbers from 1 to n arbitrarily in all squares.

1	2	4	7	8
3	5	6	9	
10				

Young tableau, corresponding to a partition of 10.

DEFINITION: Fix a Young tableau σ , and define the permutation groups P and $Q \subset S_n$ with P preserving each row and Q each column of a tableau. An element $c_{\sigma} := a_P b_Q$ is called **the Young symmetrizer**.

Specht modules

DEFINITION: An image of left multiplication by c_{σ} is a right S_n -subrepresentation $V_{\sigma} \subset \mathbb{C}[S_n]$, which is called a **Specht module**.

REMARK: The Young symmetrizer satisfies $c_{\sigma}^2 = \lambda c_{\sigma}^2$, where $\lambda = \frac{n!}{|P||Q| \dim V_{\sigma}}$.

THEOREM: Every irreducible representation of a symmetric group is isomorphic to a Specht module. Moreover, **equivalence classes of irreducible representations of a symmetric group are in 1 to 1 correspondence** with Young diagrams.

REMARK: This is essentially a special case of Frobenius theorem. Indeed, the conjugacy classes of permutations are classified by partitions of n.

Representations of GL(n)

THEOREM: Let V be a vector space, and $V^{\otimes n}$ its tensor power. Then $V^{\otimes n}$ is a direct sum of irreducible GL(V)-representations, parametrized by Young diagrams. Given a Young tableau σ , and the corresponding Young symmetrizer c_{σ} , the image $c_{\sigma}(V^{\otimes n})$ is irreducible.

EXAMPLE: $V \otimes V = \Lambda^2 V \oplus \text{Sym}^2 V$.

EXAMPLE: $V \otimes V \otimes V = \Lambda^3 V \oplus \text{Sym}^3 V \oplus K(V)$, where K(V) ("the space of Cartan tensors") can be defined as a kernel of $\text{Sym}_{23}|_{\Lambda^2 V \otimes V}$.

EXAMPLE: $V \otimes V \otimes V \otimes V = \Lambda^4 V \oplus \text{Sym}^4 V \oplus V_{3,1} \oplus V_{2,1,1} \oplus V_{2,2}$. Here $V_{3,1} = \ker \text{Sym}_{34} |_{\Lambda^3 V \otimes V}$, $V_{3,1} = \ker \text{Alt}_{34} |_{\text{Sym}^3 V \otimes V}$, and $V_{2,2}$ their orthogonal complement, which can be defined as a space of tensors which are antysymmetric under interchange of 1 and 2 and 3 and 4, symmetrized under interchange of 1 and 4 and 3 and 4.

CLAIM: This is the same as a kernel of a multiplication

$$\ker\left(\operatorname{Sym}^{2}(\Lambda^{2}V)\longrightarrow\Lambda^{4}V\right).$$

DEFINITION: The space $V_{2,2} \subset V \otimes V \otimes V \otimes V$ is called the space of algebraic curvature tensors.

Curvature of a connection

Let M be a manifold, B a bundle, $\Lambda^i M$ the differential forms, and ∇ : $B \longrightarrow B \otimes \Lambda^1 M$ a connection. We extend ∇ to $B \otimes \Lambda^i M \xrightarrow{\nabla} B \otimes \Lambda^{i+1} M$ in a natural way, using the formula

 $\nabla(b\otimes\eta)=\nabla(b)\wedge\eta+b\otimes d\eta,$

and define the curvature Θ_{∇} of ∇ as $\nabla \circ \nabla$: $B \longrightarrow B \otimes \Lambda^2 M$.

CLAIM: This operator is $C^{\infty}M$ -linear.

REMARK: We shall consider Θ_{∇} as an element of $\Lambda^2 M \otimes \text{End } B$, that is, an End *B*-valued 2-form.

REMARK: Given vector fields $X, Y \in TM$, the curvature can be written in terms of a connection as follows

$$\Theta_{\nabla}(b) = \nabla_X \nabla_Y b - \nabla_Y \nabla_X B - \nabla_{[X,Y]} b.$$

CLAIM: Suppose that the structure group of B is reduced to its subgroup G, and let ∇ be a connection which preserves this reduction. This is the same as to say that the connection form takes values in $\Lambda^1 \otimes \mathfrak{g}(B)$. Then Θ_{∇} lies in $\Lambda^2 M \otimes \mathfrak{g}(B)$.

Symmetries of Riemannian curvature

EXAMPLE: Let ∇ be a Levi-Civita connection of a Riemannian manifold. Then Θ_{∇} lies in $\Lambda^2 M \otimes \mathfrak{so}(TM) = \Lambda^2 M \otimes \Lambda^2 M$.

PROPOSITION: (an algebraic Bianchi identity) Let Θ_{∇} be a curvature of a Levi-Civita connection. Then

 $Cyclic_{1,2,3}(\Theta_{\nabla}) := \Theta_{\nabla}(X, Y, Z, \cdot) + \Theta_{\nabla}(Y, Z, X, \cdot) + \Theta_{\nabla}(Z, X, Y, \cdot) = 0.$

Proof: Choose X, Y, Z which commute. Then $\nabla_X Y = \nabla_Y X$, etc., because ∇ is torsion-free. Then

$$Cyclic_{1,2,3}(\Theta_{\nabla}(X,Y,Z)) = (\nabla_X \nabla_Y Z - \nabla_X \nabla_Z Y) + (\nabla_Y \nabla_Z X - \nabla_Y \nabla_X Y) + (\nabla_Z \nabla_X Y - \nabla_Z \nabla_Y X) = 0$$

REMARK: It was discovered by Ricci some years after Bianchi discovered the "differential Bianchi identity".

COROLLARY: The Riemannian curvature tensor lies in the bundle $TM_{2,2}$ of algebraic curvature tensors.

Proof: Its projection to all other components of $TM \otimes TM \otimes TM \otimes TM$ vanish.

Ricci decomposition

DEFINITION: Let V be a space with positive definite scalar product, dim V > 4 and $V_{2,2}$ the space of algebraic curvature tensors. Consider the trace map $Tr_{1,3}: V_{2,2} \longrightarrow Sym^2V$ It is denoted by Ric and called **the Ricci curvature**. Its trace is called **the scalar curvature**.

PROPOSITION: Consider $V_{2,2}$ as a representation of O(V). Then $V_{2,2}$ has the following irreducible components:

$$V_{2,2} = W \oplus Sym_0^2 V \oplus \mathbb{R},$$

where $W = \ker \operatorname{Ric}$, and an embedding $\operatorname{Sym}^2 V \longrightarrow V_{2,2}$ is Ric^* .

DEFINITION: Let M be a Riemannian manifold, and $\Theta = W + \text{Ric}$ be the decomposition of its curvature tensor, with $\text{Ric} = \text{Ric}_0 + S$ a decomposition of Ric onto its traceless part and the scalar part. Then W is called **its Weyl** curvature (or conformal curvature), Ric the Ricci curvature, Ric₀ the traceless Ricci curvature, and S the scalar curvature.

REMARK: When dim V = 2, dim $V_{2,2} = 1$, when dim V = 3, W = 0 and $V_{2,2} = Sym^2V$. When dim V = 4, one has a decomposition

$$V_{2,2} = W^+ \oplus W^- \oplus Sym_0^2 V \oplus \mathbb{R}.$$

because $\mathfrak{so}(4) = \mathfrak{so}(3) \oplus \mathfrak{so}(3)$.

Glossary of Riemannian geometry

Let (M, g) be a Riemannian manifold. Riemannian manifolds are classified according to their curvature decomposition: $\Theta = W + \text{Ric}_0 + S$.

DEFINITION: If W = 0, a manifold is called **conformally flat**. Such manifold is locally conformally equivalent to a flat manifold.

DEFINITION: If $Ric_0 = 0$, a manifold is called **Einstein**. For such a manifold, one has $Ric = \lambda g$. It is possible to show that $\lambda = const$. The number λ is called an **Einstein constant**

DEFINITION: If $W = \text{Ric}_0 = 0$, and $\Theta = S$, a manifold is called **a space** form, or a manifold of constant sectional curvature. It is locally isometric to a Riemannian sphere, to a hyperbolic space, or to \mathbb{R}^n .

DEFINITION: If S = const, a manifold has **constant scalar curvature**.

Ricci decomposition for Kähler manifolds

DEFINITION: Let (M, I, g) be a Hermitian almost complex manifold, that is, a Riemannian manifold with $I: TM \longrightarrow TM$, $I^2 = -\operatorname{Id}_{TM}$, where g(Ix, Iy) = g(x, y). Recall that (M, I, g) is called Kähler if I is preserved by the Levi-Civita connection.

REMARK: The Kähler curvature is a section of a bundle ker Sym²($\Lambda^{1,1}M$) $\longrightarrow \Lambda^{2,2}M$.

DEFINITION: Let V be a complex Hermitian vector space, $V_{\mathbb{C}} := V \otimes_{\mathbb{R}} C$ its complexification, and $\Lambda^* V_{\mathbb{C}} = \bigoplus \Lambda^{p,q} V_{\mathbb{C}}$ the Hodge decomposition on its Grassmann algebra. Define **the space of algebraic Kähler curvature tensors** K as the kernel of multiplicative map ker Sym²($\Lambda^{1,1}V$) $\longrightarrow \Lambda^{2,2}V_{\mathbb{C}}$.

CLAIM: *K* is irreducible as a $GL(V, \mathbb{C})$ -representation.

REMARK: The Ricci curvature of a Kähler curvature tensor is a symmetric 2-tensor satisfying $\operatorname{Ric}(Iv, Iw) = \operatorname{Ric}(v, w)$. Denote the space of such tensors by Her. Clearly, $g(\cdot, I \cdot) \in \Lambda^{1,1}(M)$, for any $g \in \operatorname{Her}$. In other words, Her is a space of pseudo-Hermitian forms.

Ricci decomposition for Kähler manifolds (cont.)

CLAIM: Consider K as a representation of unitary group U(V). Then K is irreducibly decomposed in the following way:

 $K = K_0 \oplus \operatorname{Her}_0 V \oplus \mathbb{C}\omega,$

where Her denotes the space of traceless pseudo-Hermitian forms.

COROLLARY: Let $\Theta \in K$ be a Kähler curvature tensor. Consider the trace $\operatorname{Tr}_{X,Y} \Theta(X, IY, \cdot, \cdot) \in \Lambda^{1,1}(M)$. Then $\operatorname{Tr}_{X,Y} \Theta(X, IY, \cdot, \cdot) \in \Lambda^{1,1}(M)$ is proportional to $\operatorname{Ric}(\Theta) \in \operatorname{Her}$, if we identify Her with $\Lambda^{1,1}(M)$ using $g \longrightarrow g(\cdot, I \cdot)$ as above.

Proof: Follows from Schur's lemma. ■

Canonical bundle of a Kähler manifold

DEFINITION: Let (M, I) be a complex manifold, and L a holomorphic Hermitian bundle. The holomorphic structure is understood as an operator $\overline{\partial}$: $L \longrightarrow L \otimes \Lambda^{0,1}M$, and integrability condition is $\overline{\partial}^2$: $L \otimes \Lambda^{0,2}M$ satisfies $\overline{\partial}^2 = 0$. We call a **Chern connection** a Hermitian connection on L which satisfies $\nabla^{0,1} = \overline{\partial}$.

CLAIM: The Chern connection on any holomorphic Hermitian bundle exists and is unique.

REMARK: The curvature of a Chern connection is obviously an End *L*-valued (1,1)-form.

DEFINITION: Let (M, I, g) be an Kaehler manifold, $\dim_{\mathbb{C}} M = n$. Consider the bundle $\Lambda^{n,0}M$ of holomorphic volume forms, It is called **the canonical bundle of** M.

CLAIM:

The Levi-Civita connection induces the Chern connection on $\Lambda^{n,0}M$.

Canonical bundle and its curvature

REMARK: Let *B* be a bundle with connection, $\Theta_B \in \Lambda^2 M \otimes \text{End } B$ its curvature, det $B := \Lambda^{\dim B} B$ its determinant bundle, equipped with induced connection, and $\Theta_{\det B} \in \Lambda^2 M$ the curvature on det *B*. Then $\Theta_{\det B} = \text{Tr} \Theta_B$. This is clear, because

$$\nabla(b_1 \wedge b_2 \wedge \ldots \wedge b_m) = \sum_i b_1 \wedge b_2 \wedge \ldots \wedge \nabla b_i \wedge \ldots$$

REMARK: From this remark it follows that the curvature $\Theta_{\Lambda^{n,0}M}$ is equal to $\operatorname{Tr}_{X,Y} \Theta(\cdot, \cdot, X, IY)$.

COROLLARY:

The curvature of a canonical bundle is proportional to Ric.