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Linear algebra on Hermitian manifolds

DEFINITION: Let (M, I) be an almost complex manifold, and Λ1(M) =
Λ1,0(M) ⊕ Λ0,1(M) be the usual decomposition along the eigenvalues of I.
The Hodge decomposition Λk(M) =

⊕
p+q−k Λp,q(M) is defined by

Λp,q(M) = Λp(Λ1,0(M))⊗ Λq(Λ0,1(M)).

DEFINITION: Let M be a Riemannian oriented manifold, dimension m. We
consider Λi(M) as orthogonal bundles with the metric induced from M . Let
Vol ∈ Λm(M) be its Riemannian volume form. We define the Hodge star
operator ∗ : Λi(M)−→ Λm−i(M) by (η, η′) Vol = η ∧ ∗η′.

DEFINITION: Let (M, I, g) be an almost complex Hermitian manifold, dimCM =
n, and ω ∈ Λ1,1(M) its Hermitian form. Define the Hodge operators
L(η) := ω ∧ η, Λ := ∗L∗ it Hermitian conjugate, and H

∣∣∣ΛkM := (n− k) Id.

CLAIM: The Hodge operators satisfy the relations of the Lie algebra
sl(2):

[L,Λ] = H, [H,L] = 2L, [H,Λ] = −2Λ.

DEFINITION: The triple (L,Λ, H) is called the Lefschetz sl(2)-triple.
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De Rham differential on Kaehler manifolds

DEFINITION: Let M be an almost complex manifold. From the Leibniz
formula, we obtain that d (Λp,q(M)) ⊂ Λp+1,q(M) ⊕ Λp,q+1(M). This gives
the usual decomposition d = ∂ + ∂ (first component, second component).

DEFINITION: dc := −IdI.

REMARK: One has ∂ + ∂ = d, ∂ − ∂ =
√
−1 dc.

THEOREM: The following statements are equivalent.

1. I is integrable. 2. ∂2 = 0. 3. ∂
2

= 0. 4. ddc = −dcd 5. ddc = 2
√
−1 ∂∂.

DEFINITION: The operator ddc is called the pluri-Laplacian.

THEOREM: Let M be a Kaehler manifold. One has the following identities
(“Kodaira idenitities”).

[Λ, ∂] =
√
−1 ∂

∗
, [L, ∂] = −

√
−1 ∂∗, [Λ, ∂

∗
] = −

√
−1 ∂, [L, ∂∗] =

√
−1 ∂.

Equivalently,

[Λ, d] = (dc)∗, [L, d∗] = −dc, [Λ, dc] = −d∗, [L, (dc)∗] = d.
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Lie superalgebras and supercommutators

DEFINITION: An operator on a graded vector space is called even (odd)
if it shifts the grading by even (odd) number. The parity ã of an operator a
is 0 if it is even, 1 if it is odd.

DEFINITION: A supercommutator of operators on a graded vector space
is defined by a formula {a, b} = ab− (−1)ã̃bba.

DEFINITION: A graded Lie algebra (Lie superalgebra) is a graded vector
space g∗ equipped with a bilinear graded map {·, ·} : g∗ × g∗ −→ g∗ which
is graded anticommutative: {a, b} = −(−1)ã̃b{b, a} and satisfies the super
Jacobi identity

{c, {a, b}} = {{c, a}, b}+ (−1)ãc̃{a, {c, b}}

EXAMPLE: Consider the algebra End(A∗) of operators on a graded vector
space, with supercommutator as above. Then End(A∗), {·, ·} is a graded
Lie algebra.

Lemma 1: Let d be an odd element of a Lie superalgebra, satisfying {d, d} =
0, and L an even element. Then {{L, d}, d} = 0.

Proof: 0 = {L, {d, d}} = {{L, d}, d}+ {d, {L, d}} = 2{{L, d}, d}.
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Laplacians and supercommutators

THEOREM: Let

∆d := {d, d∗}, ∆dc := {dc, dc∗}, ∆∂ := {∂, ∂∗},∆∂ := {∂, ∂∗}.
Then ∆d = ∆dc = 2∆∂ = 2∆∂. In particular, ∆d preserves the Hodge
decomposition.

Proof: By Kodaira relations, {d, dc} = 0, and graded Jacobi identity,

{d, d∗} = −{d, {Λ, dc}} = {{Λ, d}, dc} = {dc, dc∗}.
Same calculation with ∂, ∂ gives ∆∂ = ∆∂.. Also, {∂, ∂∗} =

√
−1 {∂, {Λ, ∂}} =

0, (Lemma 1), and the same argument implies that all anticommutators
∂, ∂
∗
, etc. vanish except {∂, ∂∗} and {∂, ∂∗}. This gives ∆d = ∆∂ + ∆∂.

DEFINITION: The operator ∆ := ∆d is called the Laplacian.

DEFINITION: Define the Weil operator WI by WI |Λp,q =
√
−1 (p − q) Id.

Clearly, dc = [WI , d]. The supercommutators of L,Λ, d,WI generate all
differentials and Hodge operators.

REMARK: We actually proved that operators L,Λ, d,WI generate a Lie
superalgebra of dimension (5|4) (5 even, 4 odd), with a 1-dimensional
center R∆.
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Hodge theory

DEFINITION: A differential form η is called harmonic if ∆η = 0.

REMARK: Let M be a compact Riemannian manifold, and H∗(M) the space

of harmonic forms. For any η ∈ H∗(M), one has

(η,∆η) = (η, dd∗η + d∗dη) = (dη, dη) + (d∗η, d∗η) = 0,

hence dη = d∗η = 0. Moreover, (η, dν) = (d∗η, ν) = 0, for all (i − 1)-forms ν.

Therefore, the natural projection from Hi(M) to Hi(M) is injective.

DEFINITION: Denote by P the orthogonal projection from Λi(M) to a finite-

dimensional space H∗(M). This operator is called the harmonic projection.

Since (Pη, dν) = 0, one has Pd = dP = 0. Similarly, Pd∗ = d∗P = 0.
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Hodge theory

THEOREM: (Main theorem of Hodge theory)

There is an operator G∆ : Λi(M)−→ Λi(M) called Green operator which

satisfies

∆ ◦G∆ = G∆ ◦∆ = Id−P.

Moreover, G is a compact operator in any of Sobolev’s L2-norms, and

maps continuous forms to smooth.

REMARK: Since ∆G∆dx = dx, and d∆G∆x = dx, the Green operator

commutes with d and d∗.

REMARK: One obviously has x = dd∗x + d∗dx + P (x). This gives a har-

monic decomposition on the space of all smooth forms:

Λi(M) = im d ⊥ im d∗ ⊥ ker ∆,

Since im d∗⊥ker d, the space ker ∆ is therefore identified with cohomology.
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ddc-lemma

THEOREM: (“ddc-lemma”)

Let M be a compact Kaehler manifold, and ηΛp,q(M) an exact form. Then

η = ddcα, for some α ∈ Λp−1,q−1(M).

Proof. Step 1:

Hodge theory gives η = G∆∆η. Since dη = 0, we obtain

η = G∆dd
∗η = dG∆d

∗η.

Step 2:

The same argument also gives η = G∆d
c(dc)∗η = dcG∆(dc)∗η.

Comparing these equations, we obtain η = dcG∆(dc)∗dG∆d
∗η.

Step 3:

Commutator relations (Kodaira) give η = ddcG∆G∆d
∗(dc)∗η.

DEFINITION: A Kaehler class of a Kaehler manifold (M, I, ω) is the co-

homology class of ω in H1,1(M). Given two Kaehler forms ω, ω′ in the same

Kaehler class, one has ω − ω′ = ddcf , for some function f on M .
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Chern connection

Let M be a complex manifold.

DEFINITION: An (0,1)-connection on a vector bundle B is an operator ∂ : B −→B ⊗
Λ0,1(M) which satisfies ∂(fb) = f∂(b) + b⊗ ∂f , for any f ∈ C∞M .

REMARK: Using the Leibniz identity ∂(b ⊗ η) = ∂(b) ⊗ η + b ⊗ ∂η, we extend any (0,1)-
connection to the following sequence of maps, also denoted by ∂

B
∂−→ B ⊗ Λ0,1(M)

∂−→ B ⊗ Λ0,2(M)
∂−→ B ⊗ Λ0,3(M)

∂−→ ...

DEFINITION: A holomorphic structure on a vector bundle is a (0,1)-connection which

satisfies ∂
2

= 0.

DEFINITION: A Chern connection on a holomorphic Hermitian bundle is
a Hermitian connection B

∇−→ B ⊗ Λ1(M) which satisfies ∇0,1 = ∂.

REMARK: The Chern connection exists and is unique. Choose a holo-
morphic frame b1, ..., bl in B (locally), and let h be its Hermitian form. Then
∇h = 0 implies that ∂h(bi, bj) = h(∇1,0bi, bj)

In particular, when dimB = 1, b a holomorphic section, one has
∇1,0b = ∂b

|b| = ∂ log |b|.

COROLLARY: The curvature of the Chern connection is equal to ddc log |b|.
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Calabi-Yau manifolds

DEFINITION: Let (M, I, ω) be a Kaehler n-manifold, and K(M) := Λn,0(M)

its canonical bundle. The natural Hermitian metric on K(M) is written as

(α, α′)−→ α∧α′
ωn . Ricci curvature Ric of M is a curvature of the Chern con-

nection on K(M).

DEFINITION:

A Calabi-Yau manifold is a compact Kaehler manifold with c1(M) = 0.

THEOREM: (Calabi-Yau)

Let (M, I, g) be Calabi-Yau manifold. Then there exists a unique Ricci-flat

Kaehler metric in any given Kaehler class.
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Ricci curvature of Calabi-Yau manifold

REMARK: The canonical bundle of a Calabi-Yau manifold is topolog-

ically trivial. Let Φ be a non-degenerate section of K(M), |Φ| = 1. For

any metric ν on K(M), the curvature of its Chern connection Θν is equal to

Ric +ddc log |Φ|ν.

CLAIM: A Kaehler metric ω1 on M is Ricci-flat iff ddc log
ωn1
ωn = −Ric.

Proof: Let ν be the new metric on K(M) induced by ω1. Then

Θν = Ric +ddc log |Φ|ν = Ric +ddc log
ωn1
ωn
.

REMARK: From ddc-lemma, we obtain that Ric = ddcf , for some f .

COROLLARY:

A Kaehler metric ω1 on M is Ricci-flat iff ωn1 = efωn, where Ric = ddcf .
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The Monge-Ampere equation

THEOREM: (Calabi-Yau)

Let (M,ω) be a compact Kaehler n-manifold, and f any smooth function.

Then there exists a unique up to a constant function ϕ such that

(ω + ddcϕ)n = Aefωn,

where A is a positive constant obtained from the formula
∫
M Aefωn =

∫
M ωn.

REMARK:

(ω + ddcϕ)n = Aefωn,

is called the Monge-Ampere equation.
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Uniqueness of solutions of complex Monge-Ampere equation

PROPOSITION: (Calabi) A complex Monge-Ampere equation has at

most one solution, up to a constant.

Proof. Step 1: Let ω1, ω2 be solutions of Monge-Ampere equation. Then

ωn1 = ωn2. By ddc-lemma, one has ω2 = ω1 + ddcψ. We need to show

ψ = const.

Step 2: This gives

0 = (ω1 + ddcψ)n − ωn1 = ddcψ ∧
n−1∑
i=0

ωi1 ∧ ω
n−1−i
2 .

Step 3: Let P :=
∑n−1
i=0 ω

i
1 ∧ ω

n−1−i
2 . This is a positive (n − 1, n − 1)-form.

There exists a Hermitian form ω3 on M such that ωn−1
3 = P .

Step 4: Since ddcψ∧P = 0, this gives ψddcψ∧P = 0. Stokes’ formula implies

0 =
∫
M
ψ ∧ ∂∂ψ ∧ P = −

∫
M
∂ψ ∧ ∂ψ ∧ P = −

∫
M
|∂ψ|23ω

n
3.

where | · |3 is the metric associated to ω3. Therefore ∂ψ = 0.

13


