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Linear algebra on Hermitian manifolds

DEFINITION: Let (M,I) be an almost complex manifold, and Al(M) =
ALO(AM) @ AOL(M) be the usual decomposition along the eigenvalues of I.
The Hodge decomposition AF(M) = Dp+tq—k NPI(M) is defined by

APA(M) = NP(ABO (M) @ AY(ADL (M),

DEFINITION: Let M be a Riemannian oriented manifold, dimension m. We
consider A*(M) as orthogonal bundles with the metric induced from M. Let
Vol € A™(M) be its Riemannian volume form. We define the Hodge star
operator x : AY(M) — A H(M) by (n,n') Vol =n A 1.

DEFINITION: Let (M, I, g) be an almost complex Hermitian manifold, dim¢g M =
n, and w € ALL(M) its Hermitian form. Define the Hodge operators
L(n) ;= wAn, A := xLx it Hermitian conjugate, and H|AkM = (n — k) 1d.

CLAIM: The Hodge operators satisfy the relations of the Lie algebra
sl(2):

(LAl = H, [H,L]=2L, [H,A]=-2A.

DEFINITION: The triple (L,A\, H) is called the Lefschetz s((2)-triple.
2



Kahler manifolds, lecture 3 M. Verbitsky

De Rham differential on Kaehler manifolds

DEFINITION: Let M be an almost complex manifold. From the Leibniz
formula, we obtain that d(AP2(M)) c APTLI(M) @ AP2TLI(M). This gives
the usual decomposition d =  + 0 (first component, second component).

DEFINITION: d¢ .= —IdI.

REMARK: Onehas 0+0=d, 0 —0 =+—1d°.

THEOREM: The following statements are equivalent.

1. Iis integrable. 2. 82=0. 3. 3°=0. 4. dd°= —d°d 5. dd° = 2+/—1 90.
DEFINITION: The operator dd°€ is called the pluri-Laplacian.

THEOREM: Let M be a Kaehler manifold. One has the following identities
( “Kodaira idenitities’).

IN,O] =v—-10", [L,0]=—-/—-10%* [NO]=—-/-10, |[L,8]=+-10.
Equivalently,

A, d] = (d°)7, [L,d*] = —df, A, d°] = —d¥, [L, (d°)*] = d.
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Lie superalgebras and supercommutators

DEFINITION: An operator on a graded vector space is called even (odd)
if it shifts the grading by even (odd) number. The parity a of an operator a
is O if it is even, 1 if it is odd.

DEFINITION: A supercommutator of operators on a graded vector space
is defined by a formula {a,b} = ab — (—1)%ba.

DEFINITION: A graded Lie algebra (Lie superalgebra) is a graded vector
space g* equipped with a bilinear graded map {-,-} : g¢g* x g* — g* which
is graded anticommutative: {a,b} = —(—1)%{b,a} and satisfies the super
Jacobi identity

{c,{a,b}} = {{c,a}, b} + (=1)*{a, {c,b}}

EXAMPLE: Consider the algebra End(A*) of operators on a graded vector
space, with supercommutator as above. Then End(A*),{:,-} is a graded
Lie algebra.

Lemma 1: Let d be an odd element of a Lie superalgebra, satisfying {d,d} =
0, and L an even element. Then {{L,d},d} = 0.

Proof: 0= {L,{d,d}} = {{L,d},d} + {d,{L,d}} = 2{{L,d},d}. m
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Laplacians and supercommutators

THEOREM: Let
Agi={d,d*}, Dge:={dd"}, Dy :={0,0"},05:={0,0}.

Then Ay = Age = 2A5 = 2A5. In particular, A,; preserves the Hodge
decomposition.

Proof: By Kodaira relations, {d,d‘} = 0, and graded Jacobi identity,
{d7 d*} — _{d7 {Avdc}} — {{/\7d}7dc} — {dca dc*}'

Same calculation with 9,9 gives Ag = A5.. Also, {9,0"} = v/—=1{0,{A,0}} =
0, (Lemma 1), and the same argument implies that all anticommutators
0,0, etc. vanish except {9,0*} and {0,0"}. This gives Ay =Ay+ Ay =

DEFINITION: The operator A := A, is called the Laplacian.

DEFINITION: Define the Weil operator W; by W;|aP? = /-1 (p — ¢q) Id.
Clearly, d¢ = [W;,d]. The supercommutators of L,A,d,W; generate all
differentials and Hodge operators.

REMARK: We actually proved that operators L, A,d,W; generate a Lie
superalgebra of dimension (5/4) (5 even, 4 odd), with a 1-dimensional
center RA.
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Hodge theory
DEFINITION: A differential form n is called harmonic if An = 0.

REMARK: Let M be a compact Riemannian manifold, and H*(M) the space
of harmonic forms. For any n € H*(M), one has

(n, An) = (n,dd"n + d*dn) = (dn,dn) + (d*n,d"n) = 0,

hence dn = d*n = 0. Moreover, (n,dv) = (d*n,v) = 0, for all (« — 1)-forms v.
Therefore, the natural projection from H!(M) to H*(M) is injective.

DEFINITION: Denote by P the orthogonal projection from A*(M) to a finite-
dimensional space H*(M). This operator is called the harmonic projection.
Since (Pn,dv) = 0, one has Pd = dP = 0. Similarly, Pd* = d*P = 0.
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Hodge theory

THEOREM: (Main theorem of Hodge theory)
There is an operator Ga : AY(M) — AY(M) called Green operator which
satisfies

AOGA:GAOA:Id—P.

Moreover, G IS a compact operator in any of Sobolev’s L2-norms, and
maps continuous forms to smooth.

REMARK: Since AGadx = dzxr, and dAGax = dzx, the Green operator
commutes with 4 and d*.

REMARK: One obviously has ¢ = dd*x 4+ d*dx + P(x). This gives a har-
monic decomposition on the space of all smooth forms:

AY (M) =imd L imd* L ker A,

Since imd*L kerd, the space ker A is therefore identified with cohomology.
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dd®-lemma

THEOREM: (“dd°-lemma’)
Let M be a compact Kaehler manifold, and nAP9(M) an exact form. Then
n = dd‘a, for some o € AP~ L.a=1(Ar).

Proof. Step 1:
Hodge theory gives n = GAAn. Since dn = 0, we obtain

N — GAdd*n — dGAd*n.

Step 2:
The same argument also gives n = GAd(d°)*n = d°G A (d°)*n.
Comparing these equations, we obtain n = d°G A (d°)*dG ad*n.

Step 3:
Commutator relations (Kodaira) give n = dd°GAGAd*(d°)*n. m

DEFINITION: A Kaehler class of a Kaehler manifold (M, I,w) is the co-
homology class of w in Hb1(M). Given two Kaehler forms w,«w’ in the same
Kaehler class, one has w — w’ = dd°f, for some function f on M.
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Chern connection

Let M be a complex manifold.

DEFINITION: An (0,1)-connection on a vector bundle B is an operator d : B— B ®
A%1(M) which satisfies 9(fb) = fo(b) +b® Of, for any f € C®M.

REMARK: Using the Leibniz identity 9(b®n) = 9(b) ® n + b ® dn, we extend any (0, 1)-
connection to the following sequence of maps, also denoted by 0

B L Bant(wm) L BoA2(Mm) % Be A3 (M) L

DEFINITION: A holomorphic structure on a vector bundle is a (0, 1)-connection which
satisfies & = 0.

DEFINITION: A Chern connection on a holomorphic Hermitian bundle is
a Hermitian connection B -~ B ® AL(M) which satisfies V01 = 8.

REMARK: The Chern connection exists and is unique. Choose a holo-
morphic frame bq,...,b; in B (locally), and let h be its Hermitian form. Then
Vh = 0 implies that oh(b;,b;) = h(V1:0b;, b))

In particular, when dimB = 1, b a holomorphic section, one has

V10 = % = dlog |b|.

COROLLARY: The curvature of the Chern connection is equal to ddlog |b].
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Calabi-Yau manifolds

DEFINITION: Let (M, I,w) be a Kaehler n-manifold, and K(M) := A™O(M)
its canonical bundle. The natural Hermitian metric on K(M) is written as
(a, &) >O‘¢‘/J\§/. Ricci curvature Ric of M is a curvature of the Chern con-
nection on K(M).

DEFINITION:.:
A Calabi-Yau manifold is a compact Kaehler manifold with ¢1(M) = 0.

THEOREM: (Calabi-Yau)

Let (M, I, g) be Calabi-Yau manifold. Then there exists a unique Ricci-flat
Kaehler metric in any given Kaehler class.

10



Kahler manifolds, lecture 3 M. Verbitsky

Ricci curvature of Calabi-Yau manifold

REMARK: The canonical bundle of a Calabi-Yau manifold is topolog-
ically trivial. Let ® be a non-degenerate section of K(M), |®| = 1. For
any metric v on K(M), the curvature of its Chern connection ©, is equal to
Ric +dd°log |D|,.

CLAIM: A Kaehler metric wy on M is Ricci-flat iff dd€log 7% — — RIC.

Proof: Let v be the new metric on K(M) induced by w1. Then

n
©, = Ric+dd°log ||, = Ric +dd®log L.
wh

REMARK: From dd“-lemma, we obtain that Ric = dd¢f, for some f.

COROLLARY:
A Kaehler metric wy on M is Ricci-flat iff w = elw™, where Ric = dd°f. m
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The Monge-Ampere equation

THEOREM: (Calabi-Yau)
Let (M,w) be a compact Kaehler n-manifold, and f any smooth function.
Then there exists a unique up to a constant function ¢ such that

(w4 ddp)™ = Ael W™,

where A is a positive constant obtained from the formula [; Aefw™ = [;; W".

REMARK:
(w4 ddp)™ = Ael W™,

is called the Monge-Ampere equation.
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Uniqueness of solutions of complex Monge-Ampere equation

PROPOSITION: (Calabi) A complex Monge-Ampere equation has at
most one solution, up to a constant.

Proof. Step 1: Let wjy,wy be solutions of Monge-Ampere equation. Then
wy = wh. By dd°-lemma, one has wp = w; + dd“. We need to show

Y = const.

Step 2: This gives

n—1
0 = (w1 +dd)" — Wi = ddp A Y wi AWl
1=0

Step 3: Let P =Y 1w1 A wy —1=t This is a positive (n — 1,n — 1)-form.
There exists a Hermitian form w3 on M such that w5 ! = P.

Step 4: Since dd“yp AP = 0, this gives ydd“yp AP = 0. Stokes’ formula implies

O=/sz/\85¢/\P= —/Mazp/\észP: —/M|a¢|§w§.

where |- |3 is the metric associated to w3. Therefore 9y = 0. =
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