Kahler manifolds, lecture 4 M. Verbitsky

Kahler manifolds and special holonomy,

lecture 4

Misha Verbitsky

UNICAMP, Brasil

Wednesday 9,
December 2009,

Campinas.



Kahler manifolds, lecture 4 M. Verbitsky

Holonomy group

DEFINITION: (Cartan, 1923) Let (B,V) be a vector bundle with connec-
tion over M. For each loop v based in x € M, let V, v : B|g — Bz be
the corresponding parallel transport along the connection. The holonomy
group of (B,V) is a group generated by V, v, for all loops ~v. If one takes
all contractible loops instead, V%V generates the local holonomy, or the
restricted holonomy group.

REMARK: A bundle is flat (has vanishing curvature) if and only if its
restricted holonomy vanishes.

REMARK: If V(p) = 0 for some tensor ¢ € B® @ (B*)®J, the holonomy
group preserves o.

EXAMPLE: Holonomy of a Riemannian manifold lies in O(T:M, g|z) = O(n).
EXAMPLE: Holonomy of a Kahler manifold lies in U(Ty M, glz, I|z) = U(n).
REMARK: The holonomy group does not depend on the choice of a

point x € M.
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Holonomy representation

DEFINITION: Let (M, g) be a Riemannian manifold, G its holonomy group.
A holonomy representation is the natural action of G on T'M.

THEOREM: Suppose that the holonomy representation is not irreducible:
TM = Vi & Vo, Then M locally splits as M = M4y x Mo, with V; = T'Mq,
Vo =T M>.

Proof. Step 1: Using the parallel transform, we extend V7 @& V5 to a splitting
of vector bundles T'M = By & B>, preserved by holonomy.

Step 2: The sub-bundles By, B> C TM are integrable: [By,B1] C B; (the
Levi-Civita connection is torsion-free)

Step 3: Taking integral leaves of these integrable distributions, we obtain
a local decomposition M = My x Mo, with Vi, =TMq, Vo =T Mo>.

Step 4: Since the splitting T'M = By & B> is preserved by the connection,
the leaves M4, M> are totally geodesic.

Step 5: Therefore, locally M splits (as a Riemannian manifold):
M = My x Mo, where M1, M> are any leaves of these foliations. =
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T he Lasso lemma

DEFINITION: A lasso is a loop of the following form:

,,,/

The round part is called a working part of a loop.

REMARK: (“The Lasso Lemma’”) Let {U;} be a covering of a manifold,
and v a loop. Then ~ is a product of several lasso, with working part of
each inside some U,.
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The de Rham splitting theorem

COROLLARY: Let M be a Riemannian manifold, and Holg(M) L, End(TyM)
a reduced holonomy representation. Suppose that p is reducible: T,M =
VieVo®...®d V. Then G = Holg(M) also splits: G = G1 X Gy X ... x G,
with each G; acting trivially on all V; with j 7 i.

Proof: Locally, this statement follows from the local splitting of M proven
above. To obtain it globally in M, use the Lasso Lemma. m

THEOREM: (de Rham) A complete, simply connected Riemannian manifold
with non-irreducible holonomy splits as a Riemannian product.

REMARK: Easy to find non-complete or non-simply connected counterex-
amples to de Rham theorem.
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The Ambrose-Singer theorem

DEFINITION: Let (B, V) be a bundle with connection, © € A2(M)®End(B)
its curvature, and a,b € T, M tangent vectors. An endomorphism ©(a,b) €
End(B)|, is called a curvature element.

THEOREM: (Ambrose-Singer) The restricted holonomy group of B,V at
z € M is a Lie group, with its Lie algebra generated by all curvature

elements ©(a,b) € End(B)|, transported to z along all loops.

REMARK: Its proof follows from Lasso lemma.
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An algebraic holonomy

DEFINITION: Let V be a Euclidean vector space, and R(V) C Sym2(A2V)
be the kernel of a multiplication Sym2(A2V) — A%V. Then R(V) is called
the space of algebraic curvature tensors. We consider it as a subspace in
A2(V) @ so(V).

COROLLARY: Let M be a Riemannian manifold, and g its holonomy Lie
algebra acting on V. = T,M. Then there exists a subspace S C R(V)
such that g C so(V) is generated (as a Lie algebra) by a subspace
w(S®V V) Cso(V), where

w: SRV V —so(V)
maps ©,a,b to ©(a,b).

DEFINITION: Let g C so(V) be a subalgebra generated by S C R(V) as
above. Then g is called an algebraic holonomy Lie algebra.
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Berger’'s theorem and its proof

THEOREM: (Simons, 1962) Let g C so(V) be an algebraic holonomy Lie
algebra generated by S C R(V). Assume that g is irreducible, and g(S) # 0.
Then G = Lie(g) acts transitively on the unit sphere in V.

DEFINITION: A Riemannian manifold M is called symmetric if its isometry
group Iso(M) transitively acts on the set of pairs {x,y € M | d(x,y) = €},
for any € € R.

REMARK: This is equivalent to existence of an involution fixing a point
x € M and acting as -1 on 1, M, for each x € M.

DEFINITION: A Riemannian manifold M is called locally symmetric if it
has a covering which is isometric to an open subset in a symmetric space.

PROPOSITION: M is locally symmetric if and only if V(R) = 0, where
R i1s its Riemannian curvature.

COROLLARY: (Berger's theorem) Let M be a manifold with irreducible
holonomy. Then either M is locally symmetric, or Hol(M) acts transi-
tively on the unit sphere in 7M.
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Berger’s list

THEOREM: Let GG be an irreducible holonomy group of a Riemannian man-
ifold which is not locally symmetric. Then G belongs to the Berger’s

list:

Berger’s list
Holonomy Geometry
SO(n) acting on R" Riemannian manifolds
U(n) acting on R<" Kahler manifolds
SU(n) acting on R4"™ n > 2 | Calabi-Yau manifolds
Sp(n) acting on R*" hyperkihler manifolds
Sp(n) x Sp(1)/{+1} quaternionic-Kahler
acting on R4 n > 1 manifolds
G acting on R’ Go>-manifolds
Spin(7) acting on RS Spin(7)-manifolds

REMARK: There is one more group acting transitively on a sphere: Spin(9)
acting on R0, In 1968, D. Alekseevsky has shown that a manifold with

holonomy Spin(9) is automatically locally symmetric.

REMARK: A similar list exists for non-orthogonal irreducible holonomy without torsion
(Merkulov, Schwachhofer, 1999).
)
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Spinors and Clifford algebras

DEFINITION: A Clifford algebra of a vector space V with a scalar product
g is an algebra generated by V with a relation xy + yx = q(z,y)1.

REMARK: A Clifford algebra of a complex vector space with V = (C” W|th
g non- degenerate is isomorphic to Mat(C"/2) (n even) and I\/Iat((C 2 )@

Mat(C"2") (n odd).

DEFINITION: The space of spinors of a complex vector space V,q is a
fundamental representation of CI(V) (n even) and one of two fundamental

n—1 n—1
representations of the components of Mat(C 2 ) @ Mat(C 2 ) (n odd).

REMARK: A 2-sheeted covering Spin(V) — SO(V) naturally acts on the
spinor space, which is called the spin representation of Spin(V).

DEFINITION: Let I be a principal SO(n)-bundle of a Riemannian oriented
manifold M. We say that M is a spin-manifold, if ' can be reduced to a
Spin(n)-bundle.

REMARK: This happens precisely when the second Stiefel-Whitney class
wo (M) vanishes.
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Spinor bundles and Dirac operator

DEFINITION: A bundle of spinors on a spin-manifold M is a vector bundle
associated to the principal Spin(n)-bundle and a spin representation.

DEFINITION: Consider the map T'M ® Spin — Spin induced by the Clifford
multiplication. One defines the Dirac operator D : Spin — Spin as a
composition of V: Spin — /\1M®Spin = TM ® Spin and the multiplication.

DEFINITION: A harmonic spinor is a spinor v such that D(y) = 0.

THEOREM: (Bochner) A harmonic spinor ¢ on a compact Ricci-flat mani-
fold satisfies Vi = 0.
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Bochner’s vanishing on Kaehler manifolds

REMARK: A Kaehler manifold is spin if and only if ¢y{(M) is even, or,
equivalently, if there exists a square root of a canonical bundle K1/2

REMARK: On a Kaehler manifold of complex dimension n, one has a
natural isomorphism between the spinor bundle and A*9(M) ® K1/2 (for
n even) and A2%9(M) @ K1/2 (for n odd).

REMARK: On a Kahler manifold, the Dirac operator corresponds to 9+ 0*.

COROLLARY: On a Ricci-flat Kahler manifold, all o € ker(9+40*)
ara parallel.

A0 (M)

THEOREM: (Bochner’s vanishing) Let M be a Ricci-flat Kaehler manifold,
and Q € AP9(M) a holomorphic differential form. Then V< = 0.

COROLLARY: Let M be a Ricci-flat Kaehler manifold with local holonomy
= SU(n). Then H*9(M) =0 if i # 0,n and H*9(M) = C for i = 0, n.

COROLLARY: Let M be a Ricci-flat Kaehler manifold with local holonomy
= Sp(n). Then H*O(M) = C if i = 0,2,4,6,8,....2n and HO(M) = 0
otherwise.
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Bogomolov’s decomposition theorem

THEOREM: (Cheeger-Gromoll) Let M be a compact Riemannian manifold
with 71 (M) infinite and non-negative Ricci curvature. Then a universal
covering of M is a product of R and a Ricci-flat manifold.

THEOREM: (Bogomolov’s splitting theorem) Let M be a compact,
Ricci-flat Kaehler manifold. Then there exists a finite covering M of
M which is is a product of Kaehler manifolds of the following form:

M=Tx M x..xMxKyx..xKj
with all M;, K; simply connected, T a torus, and Hol(M;) = Sp(n;), Hol(K;) =
SU(my)

REMARK: 711 (M) = 0if Hol(M) = Sp(n), or Hol(M) = SU(2n). If Hol(M) =
SU(2n+ 1), m1 (M) is finite.
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