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Holonomy group

DEFINITION: (Cartan, 1923) Let (B,∇) be a vector bundle with connec-

tion over M . For each loop γ based in x ∈ M , let Vγ,∇ : B|x −→B|x be

the corresponding parallel transport along the connection. The holonomy

group of (B,∇) is a group generated by Vγ,∇, for all loops γ. If one takes

all contractible loops instead, Vγ,∇ generates the local holonomy, or the

restricted holonomy group.

REMARK: A bundle is flat (has vanishing curvature) if and only if its

restricted holonomy vanishes.

REMARK: If ∇(ϕ) = 0 for some tensor ϕ ∈ B⊗i ⊗ (B∗)⊗j, the holonomy

group preserves ϕ.

EXAMPLE: Holonomy of a Riemannian manifold lies in O(TxM, g|x) = O(n).

EXAMPLE: Holonomy of a Kähler manifold lies in U(TxM, g|x, I|x) = U(n).

REMARK: The holonomy group does not depend on the choice of a

point x ∈M.
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Holonomy representation

DEFINITION: Let (M, g) be a Riemannian manifold, G its holonomy group.
A holonomy representation is the natural action of G on TM .

THEOREM: Suppose that the holonomy representation is not irreducible:
TxM = V1 ⊕ V2. Then M locally splits as M = M1 ×M2, with V1 = TM1,
V2 = TM2.

Proof. Step 1: Using the parallel transform, we extend V1⊕V2 to a splitting
of vector bundles TM = B1 ⊕B2, preserved by holonomy.

Step 2: The sub-bundles B1, B2 ⊂ TM are integrable: [B1, B1] ⊂ Bi (the
Levi-Civita connection is torsion-free)

Step 3: Taking integral leaves of these integrable distributions, we obtain
a local decomposition M = M1 ×M2, with V1 = TM1, V2 = TM2.

Step 4: Since the splitting TM = B1 ⊕ B2 is preserved by the connection,
the leaves M1,M2 are totally geodesic.

Step 5: Therefore, locally M splits (as a Riemannian manifold):
M = M1 ×M2, where M1,M2 are any leaves of these foliations.
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The Lasso lemma

DEFINITION: A lasso is a loop of the following form:

The round part is called a working part of a loop.

REMARK: (“The Lasso Lemma”) Let {Ui} be a covering of a manifold,

and γ a loop. Then γ is a product of several lasso, with working part of

each inside some Ui.
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The de Rham splitting theorem

COROLLARY: Let M be a Riemannian manifold, and Hol0(M)
ρ−→ End(TxM)

a reduced holonomy representation. Suppose that ρ is reducible: TxM =

V1 ⊕ V2 ⊕ ... ⊕ Vk. Then G = Hol0(M) also splits: G = G1 × G2 × ... × Gk,
with each Gi acting trivially on all Vj with j 6= i.

Proof: Locally, this statement follows from the local splitting of M proven

above. To obtain it globally in M , use the Lasso Lemma.

THEOREM: (de Rham) A complete, simply connected Riemannian manifold

with non-irreducible holonomy splits as a Riemannian product.

REMARK: Easy to find non-complete or non-simply connected counterex-

amples to de Rham theorem.
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The Ambrose-Singer theorem

DEFINITION: Let (B,∇) be a bundle with connection, Θ ∈ Λ2(M)⊗End(B)

its curvature, and a, b ∈ TxM tangent vectors. An endomorphism Θ(a, b) ∈
End(B)|x is called a curvature element.

THEOREM: (Ambrose-Singer) The restricted holonomy group of B,∇ at

z ∈ M is a Lie group, with its Lie algebra generated by all curvature

elements Θ(a, b) ∈ End(B)|x transported to z along all loops.

REMARK: Its proof follows from Lasso lemma.
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An algebraic holonomy

DEFINITION: Let V be a Euclidean vector space, and R(V ) ⊂ Sym2(Λ2V )

be the kernel of a multiplication Sym2(Λ2V )−→ Λ4V . Then R(V ) is called

the space of algebraic curvature tensors. We consider it as a subspace in

Λ2(V )⊗ so(V ).

COROLLARY: Let M be a Riemannian manifold, and g its holonomy Lie

algebra acting on V = TxM . Then there exists a subspace S ⊂ R(V )

such that g ⊂ so(V ) is generated (as a Lie algebra) by a subspace

µ(S ⊗ V ⊗ V ) ⊂ so(V ), where

µ : S ⊗ V ⊗ V −→ so(V )

maps Θ, a, b to Θ(a, b).

DEFINITION: Let g ⊂ so(V ) be a subalgebra generated by S ⊂ R(V ) as

above. Then g is called an algebraic holonomy Lie algebra.
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Berger’s theorem and its proof

THEOREM: (Simons, 1962) Let g ⊂ so(V ) be an algebraic holonomy Lie
algebra generated by S ⊂ R(V ). Assume that g is irreducible, and g(S) 6= 0.
Then G = Lie(g) acts transitively on the unit sphere in V .

DEFINITION: A Riemannian manifold M is called symmetric if its isometry
group Iso(M) transitively acts on the set of pairs {x, y ∈ M | d(x, y) = ε},
for any ε ∈ R.

REMARK: This is equivalent to existence of an involution fixing a point
x ∈M and acting as -1 on TxM , for each x ∈M .

DEFINITION: A Riemannian manifold M is called locally symmetric if it
has a covering which is isometric to an open subset in a symmetric space.

PROPOSITION: M is locally symmetric if and only if ∇(R) = 0, where
R is its Riemannian curvature.

COROLLARY: (Berger’s theorem) Let M be a manifold with irreducible
holonomy. Then either M is locally symmetric, or Hol(M) acts transi-
tively on the unit sphere in TxM.
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Berger’s list

THEOREM: Let G be an irreducible holonomy group of a Riemannian man-
ifold which is not locally symmetric. Then G belongs to the Berger’s
list:

Berger’s list

Holonomy Geometry

SO(n) acting on Rn Riemannian manifolds

U(n) acting on R2n Kähler manifolds

SU(n) acting on R2n, n > 2 Calabi-Yau manifolds

Sp(n) acting on R4n hyperkähler manifolds

Sp(n)× Sp(1)/{±1} quaternionic-Kähler

acting on R4n, n > 1 manifolds

G2 acting on R7 G2-manifolds

Spin(7) acting on R8 Spin(7)-manifolds

REMARK: There is one more group acting transitively on a sphere: Spin(9)
acting on R16. In 1968, D. Alekseevsky has shown that a manifold with
holonomy Spin(9) is automatically locally symmetric.

REMARK: A similar list exists for non-orthogonal irreducible holonomy without torsion

(Merkulov, Schwachhöfer, 1999).

9



Kähler manifolds, lecture 4 M. Verbitsky

Spinors and Clifford algebras

DEFINITION: A Clifford algebra of a vector space V with a scalar product
q is an algebra generated by V with a relation xy + yx = q(x, y)1.

REMARK: A Clifford algebra of a complex vector space with V = Cn with
q non-degenerate is isomorphic to Mat(Cn/2) (n even) and Mat(C

n−1
2 ) ⊕

Mat(C
n−1

2 ) (n odd).

DEFINITION: The space of spinors of a complex vector space V, q is a
fundamental representation of Cl(V ) (n even) and one of two fundamental

representations of the components of Mat(C
n−1

2 )⊕Mat(C
n−1

2 ) (n odd).

REMARK: A 2-sheeted covering Spin(V )−→ SO(V ) naturally acts on the
spinor space, which is called the spin representation of Spin(V ).

DEFINITION: Let Γ be a principal SO(n)-bundle of a Riemannian oriented
manifold M . We say that M is a spin-manifold, if Γ can be reduced to a
Spin(n)-bundle.

REMARK: This happens precisely when the second Stiefel-Whitney class
w2(M) vanishes.
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Spinor bundles and Dirac operator

DEFINITION: A bundle of spinors on a spin-manifold M is a vector bundle

associated to the principal Spin(n)-bundle and a spin representation.

DEFINITION: Consider the map TM⊗Spin −→ Spin induced by the Clifford

multiplication. One defines the Dirac operator D : Spin −→ Spin as a

composition of ∇ : Spin −→ Λ1M ⊗Spin = TM ⊗Spin and the multiplication.

DEFINITION: A harmonic spinor is a spinor ψ such that D(ψ) = 0.

THEOREM: (Bochner) A harmonic spinor ψ on a compact Ricci-flat mani-

fold satisfies ∇ψ = 0.
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Bochner’s vanishing on Kaehler manifolds

REMARK: A Kaehler manifold is spin if and only if c1(M) is even, or,
equivalently, if there exists a square root of a canonical bundle K1/2.

REMARK: On a Kaehler manifold of complex dimension n, one has a
natural isomorphism between the spinor bundle and Λ∗,0(M)⊗K1/2 (for
n even) and Λ2∗,0(M)⊗K1/2 (for n odd).

REMARK: On a Kähler manifold, the Dirac operator corresponds to ∂+ ∂∗.

COROLLARY: On a Ricci-flat Kähler manifold, all α ∈ ker(∂+∂∗)
∣∣∣Λ∗,0(M)

ara parallel.

THEOREM: (Bochner’s vanishing) Let M be a Ricci-flat Kaehler manifold,
and Ω ∈ Λp,0(M) a holomorphic differential form. Then ∇Ω = 0.

COROLLARY: Let M be a Ricci-flat Kaehler manifold with local holonomy
= SU(n). Then Hi,0(M) = 0 if i 6= 0, n and Hi,0(M) = C for i = 0, n.

COROLLARY: Let M be a Ricci-flat Kaehler manifold with local holonomy
= Sp(n). Then Hi,0(M) = C if i = 0,2,4,6,8, ...,2n and Hi,0(M) = 0
otherwise.

12



Kähler manifolds, lecture 4 M. Verbitsky

Bogomolov’s decomposition theorem

THEOREM: (Cheeger-Gromoll) Let M be a compact Riemannian manifold

with π1(M) infinite and non-negative Ricci curvature. Then a universal

covering of M is a product of R and a Ricci-flat manifold.

THEOREM: (Bogomolov’s splitting theorem) Let M be a compact,

Ricci-flat Kaehler manifold. Then there exists a finite covering M̃ of

M which is is a product of Kaehler manifolds of the following form:

M̃ = T ×M1 × ...×Mi ×K1 × ...×Kj,

with all Mi, Ki simply connected, T a torus, and Hol(Ml) = Sp(nl), Hol(Kl) =

SU(ml)

REMARK: π1(M) = 0 if Hol(M) = Sp(n), or Hol(M) = SU(2n). If Hol(M) =

SU(2n+ 1), π1(M) is finite.
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