Equivariant projective embeddings

Misha Verbitsky
IMPA,
Estruturas geométricas em variedades, March 21, 2024
joint with Liviu Ornea

LCK manifolds

DEFINITION: A complex Hermitian manifold (M, I, g, ω) is called locally conformally Kähler (LCK) if there exists a closed 1 -form θ such that $d \omega=$ $\theta \wedge \omega$. The 1 -form θ is called the Lee form and the g-dual vector field θ^{\sharp} is called the Lee field.

REMARK: This definition is equivalent with the existence of a Kähler $\operatorname{cover}(\tilde{M}, \tilde{\omega}) \rightarrow M$ such that the deck group Γ acts on $(M, \tilde{\omega})$ by holomorphic homotheties. Indeed, suppose that θ is exact, $d f=\theta$. Then $e^{-f} \omega$ is a Kähler form.

THEOREM: (Vaisman)
A compact LCK manifold with non-exact Lee form does not admit a Kähler structure.

REMARK: Such manifold are called strict LCK. Further on, we shall consider only strict LCK manifolds.

Vaisman manifolds

DEFINITION: The LCK manifold (M, I, g, ω) is a Vaisman manifold if the Lee form is parallel with respect to the Levi-Civita connection.

THEOREM: A compact (strictly) LCK manifold M is Vaisman if and only if it admits a non-trivial action of a complex Lie group of positive dimension, acting by holomorphic isometries.

DEFINITION: A linear Hopf manifold is a quotient $M:=\frac{\mathbb{C}^{n} \backslash 0}{\langle A\rangle}$ where A is a linear contraction. When A is diagonalizable, M is called diagonal Hopf.

CLAIM: All diagonal Hopf manifolds are Vaisman, and all non-diagonal Hopf manifolds are LCK and not Vaisman.

THEOREM: A compact complex manifold admits a Vaisman structure if and only if it admits a holomorphic embedding to a diagonal Hopf manifold.

THE MAIN QUESTION TODAY: Fix a Vaisman manifold M. What is the smallest dimension d of a Hopf manifold H such that M can be holomorphically embedded to H ? We want to bound d by some polynomial of $\operatorname{dim} M$.

Algebraic cones

DEFINITION: Let P be a projective orbifold, and L an ample line bundle on P. Assume that the total space $\operatorname{Tot}^{\circ}(L)$ of all non-zero vectors in L is smooth. An open algebraic cone is $\operatorname{Tot}^{\circ}(L)$.

EXAMPLE: Let $P \subset \mathbb{C} P^{n}$, and $L=\left.\mathcal{O}(1)\right|_{P}$. Then the open algebraic cone $\operatorname{Tot}^{\circ}(L)$ can be identified with the set $\pi^{-1}(P)$ of all $v \in \mathbb{C}^{n+1} \backslash 0$ projected to P under the standard map $\pi: \mathbb{C}^{n+1} \backslash 0 \rightarrow \mathbb{C} P^{n}$. The closed algebraic cone is its closure in \mathbb{C}^{n+1}.

REMARK: The closed algebraic cone is obtained by adding one point, called "the apex", or "the origin", to $\operatorname{Tot}^{\circ}(L)$.

THEOREM: Let M be a Vaisman manifold. Then M admits a \mathbb{Z}-cover \tilde{M} which is isomorphic to an open algebraic cone $\operatorname{Tot}^{\circ}(L)$, associated with an ample line bundle L over a projective orbifold X. Moreover, the \mathbb{Z}-action on \tilde{M} is obtained from an automorphism $f \in \operatorname{Aut}(X)$ and an equivariant action of f on L.

Embedding of Vaisman manifolds to Hopf

THEOREM: Let M be a Vaisman manifold, and $\tilde{M}=\operatorname{Tot}^{\circ}(L)$ the corresponding algebraic cone, associated with an ample line bundle L over a projective orbifold X. Assume that the the \mathbb{Z}-action on \tilde{M} is obtained from the linearized automorphism $f \in \operatorname{Aut}(X)$. Then any embedding of M to a Hopf manifold is obtained from the following data:
(a) a projective embedding of $X \xrightarrow{j} \mathbb{C} P^{m}$ such that $j^{*} \mathcal{O}(1) \cong L$
(b) An automorphism \tilde{f} of $\mathbb{C} P^{m}$ preserving X and acting on X as f.

Whitney theorem

THEOREM: (Whitney) Let M be a compact smooth manifold, $\operatorname{dim} M=n$. Then M admits an immersion to $\mathbb{R}^{2 n}$ and a smooth embedding to $\mathbb{R}^{2 n+1}$.

Let us prove a projective version of this theorem.
THEOREM: (Whitney) Let M be a projective manifold over $\mathbb{C}, \operatorname{dim}_{\mathbb{C}} M=n$.
Then M admits an immersion to $\mathbb{C} P^{2 n}$ and a projective embedding to $\mathbb{C} P^{2 n+1}$ 。

Proof. Step 1: Since M is projective, it can be realized as a subspace in $\mathbb{C} P^{m}$. It would suffice to show that there is a projection $\mathbb{C} P^{m} \rightarrow \mathbb{C} P^{m-1}$ which induces an injective map on M when $m>2 n+1$ and an immersion when $m>2 n$.

Step 2: Consider a point $x \in \mathbb{C} P^{m} \backslash M$, and let $\pi_{x}: \mathbb{C} P^{m} \backslash\{x\} \rightarrow \mathbb{C} P^{m-1}$ be the projection. It is constructed as follows: we identify $\mathbb{C} P^{m-1}$ with the space of lines passing through x, and take $z \in \mathbb{C} P^{m} \backslash\{x\}$ to the unique line $l_{x, z}$ connecting x and x. Clearly, $\pi_{x}: M \rightarrow \mathbb{C} P^{m-1}$ is an immersion if and only if $l_{x, z}$ is not tangent to M for any $z \in M$, and injective if and only if $l_{x, z} \cap M=\{z\}$ (that is, $\pi_{x}: M \rightarrow \mathbb{C} P^{m-1}$ is injective if any line passing through x intersects M in at most one point).

Whitney theorem (2)

Step 3: Consider the set \mathcal{T} of all lines tangent to some $z \in M$, and the set \mathcal{S} of all lines connecting two distinct points $z_{1} \neq z_{2} \in M$. Denote by $L(\mathcal{T}), L(\mathfrak{S}) \subset \mathbb{C} P^{m}$ the union of all lines in $\mathcal{T}, \mathfrak{S}$. From Step 2 it is clear that $\pi_{x}: M \rightarrow \mathbb{C} P^{m-1}$ is injective if $x \notin L(\mathfrak{S})$, and is immersion if $x \notin L(\mathfrak{T})$.

Step 4: The dimension of \mathcal{T} is $\leqslant 2 n-1$, because it is an image of $\mathbb{P} T M$, and $\operatorname{dim} \mathcal{S} \leqslant 2 n$, because it is an image of $M \times M \backslash \Delta$, where Δ is diagonal. On the other hand, $L(Z) \leqslant \operatorname{dim} Z+1$, because it is an image of a family of lines parametrized by Z. This implies that $\operatorname{dim} L(\mathcal{S}) \leqslant 2 n+1$ and $\operatorname{dim} L(\mathcal{T}) \leqslant 2 n$, hence $\mathbb{C} P^{m} \backslash L(\mathcal{T})$ is non-empty when $m>2 n$ and $\mathbb{C} P^{m} \backslash L(\mathcal{S})$ is non-empty when $m>2 n+1$. Choosing $x \in \mathbb{C} P^{m} \backslash L(\mathcal{T})$ or $x \in \mathbb{C} P^{m} \backslash L(\mathcal{S})$ and using Step 3, we obtain that $\pi_{x}: M \rightarrow \mathbb{C} P^{m-1}$ is an immersion (embedding).

Equivariant projective embeddings

DEFINITION: Let f be an automorphism of a projective manifold X. The automorphism is called linearizable if it acts equivariantly on an ample bundle. EXERCISE: Prove that f is linearizable if and only if there exists a projective embedding $X \hookrightarrow \mathbb{C} P^{m}$ and $\tilde{f} \in P G L(m+1, \mathbb{C})=\operatorname{Aut}\left(\mathbb{C} P^{m}\right)$ such that \tilde{f} preserves X and $\left.\tilde{f}\right|_{X}=f$.

DEFINITION: Let $f \in \operatorname{Aut}(X)$, where X is a projective variety A projective embedding $X \hookrightarrow \mathbb{C} P^{m}$ is called f-equivariant if f can be extended to $\tilde{f} \in$ $P G L(m+1, \mathbb{C})=\operatorname{Aut}\left(\mathbb{C} P^{m}\right)$.

We are interested in the following problem.
QUESTION: Consider an n-dimensional projective manifold X. What is the minimal m such that f-equivariant embedding exists? We want m to be a function of n, like in Whitney's theorem.

REMARK: Define a projection as a composition of a sequence of projections with a center in a point. Consider all projections $\pi: \mathbb{C} P^{m} \rightarrow \mathbb{C} P^{m_{1}}$ such that $\pi: X \rightarrow \pi(X)$ is an isomorphism. Following the same logic as in the proof of Whitney's theorem, we want to find the smallest m_{1} such that there exists $f_{1} \in P G L\left(m_{1}+1, \mathbb{C}\right)$ preserving the image $\pi(X)$ of X and acting on $\pi(X)$ as f. This problem can be understood as "the equivariant Whitney embedding problem".

Projections with centers of any dimension

REMARK 1: Let $U, V \subset W$ be non-intersecting subspaces of a vector space, $\operatorname{dim} U+\operatorname{dim} V=\operatorname{dim} W$. Clearly, for any point $x \in W$, there exists unique $u \in U, v \in V$ such that $x=u+v$. Therefore, for any $x \in \mathbb{P} W \backslash(\mathbb{P} U \cap \mathbb{P} V)$ there exists a unique line l_{x} which intersects $\mathbb{P} U$ and $\mathbb{P} V$.

DEFINITION: Let $X, Y \subset \mathbb{P}^{m}$ be projective subspaces, $\operatorname{dim} X+\operatorname{dim} Y=m-1$. For any $z \in \mathbb{P}^{m} \backslash(Y \cup X)$, consider the line l_{z} connecting z, X and Y; it is unique, as follows from Remark 1. Projection π_{Y} with center in Y takes z to the point $l_{z} \cap X$. When $z \in X$, we take $\pi_{Y}(z)=z$;

REMARK: It is not hard to see that the map $\pi_{Y}: \mathbb{P}^{m} \backslash Y \rightarrow X$, defined this way, is holomorphic. Also, π_{Y} can be obtained by taking a composition of projections from points y_{1}, \ldots, y_{k}, such that $Y=\mathbb{P}\left\langle y_{1}, \ldots, y_{k}\right\rangle$, and $\operatorname{dim} Y=$ $k-1$.

Linear systems and projective embeddings

DEFINITION: Let L be a holomorphic line bundle on a projective variety X. A linear system of divisors is a subspace $W \subset H^{0}(X, L)$. For any $w \in \mathbb{P}\left(H^{0}(X, L)\right)$, denote by D_{v} the zero divisor of v. The line system is the family D_{v} of divisors, where v runs through $H^{0}(X, L)$.

PROPOSITION: Projective embeddings $X \subset \mathbb{C} P^{m}$ are in bijective correspondence with line systems $W \subset H^{0}(X, L)$, where L is a very ample line bundle on X, and the following two conditions are satisfied.
(a) "Sections separate points": for every two points $x \neq y \in X$, there exists $a, b \in W$ such that $\left.a\right|_{x}=\left.b\right|_{y}=0$ and $\left.a\right|_{y} \neq 0,\left.b\right|_{x} \neq 0$.
(b) For every $x \in X$, there exists a collaction $a_{i} \in W$ such that each a_{i} has a simple zero in x (that is, $\left.a\right|_{x}=0$ and $\left.d a\right|_{x} \neq 0$), and the differentials $d a_{i}$ generate $T_{x}^{*} X$.

Proof: Next slide.

REMARK: These are the same conditions which guarantee that a very ample bundle L defines a projective embedding.

Linear systems and projective embeddings (2)
PROPOSITION: Projective embeddings $X \subset \mathbb{C} P^{m}$ are in bijective correspondence with line systems $W \subset H^{0}(X, L)$, where L is a very ample line bundle on X, and the following two conditions are satisfied.
(a) "Sections separate points": for every two points $x \neq y \in X$, there exists $a, b \in W$ such that $\left.a\right|_{x}=\left.b\right|_{y}=0$ and $\left.a\right|_{y} \neq 0,\left.b\right|_{x} \neq 0$.
(b) For every $x \in X$, there exists a collaction $a_{i} \in W$ such that each a_{i} has a simple zero in x (that is, $\left.a\right|_{x}=0$ and $\left.d a\right|_{x} \neq 0$), and the differentials $d a_{i}$ generate $T_{x}^{*} X$.

Proof. Step 1: For any $x \in X$, consider the restriction map $\lambda_{x}: W \rightarrow L \mid x$, which is a complex linear map from a vector space to a line. Condition (a) implies that $\lambda_{x} \neq 0$, hence this map defines a point in $\mathbb{P} W^{*}$. We obtain a holomorphic map $\varphi: X \rightarrow \mathbb{P} W^{*}$. Condition (a) implies that φ is injective, condition (b) that its derivative is non-zero, hence φ is also an immersion.

Step 2: Conversely, consider an embedding $j: X \hookrightarrow \mathbb{P} W^{*}$. Then $L:=$ $j^{*}(\mathcal{O}(1))$ is very ample, and the map $j^{*}: H^{0}(\mathcal{O}(1)) \rightarrow H^{0}(X, L)$ is surjective; its image is a linear system of divisors, which satisfy (a) and (b) because j is injective and immersive.

Linear systems and projective embeddings (3)

REMARK: The correspondence between the projection $\pi_{U}: \mathbb{C} P^{m} \rightarrow \mathbb{C} P^{r}$ with the center in $\mathbb{P} U \subset \mathbb{C} P^{m}$ and the linear systems is given as follows. Let $W \subset H^{0}\left(\mathbb{C} P^{m}, \mathcal{O}(1)\right)$ be the subspace consisting of all sections vanishing in $\mathbb{P} U$, and $X \subset \mathbb{C} P^{m}$ a projective subvariety disjoint from $\mathbb{P} U$. Then π_{U} : $X \rightarrow \mathbb{C} P^{r}=\mathbb{P} W^{*}$ is the projective embedding associated with the linear system $W \subset H^{0}\left(\mathbb{C} P^{m}, \mathcal{O}(1)\right)$.

COROLLARY: Let $f \in \operatorname{Aut}(X)$ be an automorphism of a projective manifold, and $j: X \hookrightarrow \mathbb{C} P^{m}=\mathbb{P} V$ a projective embedding. We assume that j is f-equivariant, that is, there exists $\tilde{f} \in P G L(m+1, \mathbb{C})$ preserving X and acting on X as f. Consider a projection $\pi: \mathbb{C} P^{m} \backslash \mathbb{P} U \rightarrow \mathbb{C} P^{r}$ with center in $\mathbb{P} U$ inducing an embedding $\pi_{U}: X \rightarrow \mathbb{C} P^{r}$. Let $W \subset H^{0}\left(\mathbb{C} P^{m}, \mathcal{O}(1)\right)$ be a subspace consisting of all sections vanishing in $\mathbb{P} U \subset \mathbb{P} V$, and $W_{f} \subset H^{0}\left(\mathbb{C} P^{m}, \mathcal{O}(1)\right)$ any \tilde{f}-invariant space containing W. Then the projection $\pi: X \rightarrow \mathbb{C} P^{r}=\mathbb{P} W_{f}^{*}$ associated with this linear system is f-equivariant.

In other words, to construct an optimal f-equivariant projective embedding, we need to bound the dimension of the smallest \tilde{f}-invariant space W_{f} containing W. Here, the dimension of W can be chosen as low as $\operatorname{dim} W=2 \operatorname{dim} X+2$ by the projective Whitney theorem.

Equivariant Whitney theorem

CONJECTURE: After passing to a finite quotient of X, and replacing f by its finite power, we would have an estimate $\operatorname{dim} W_{f} \leqslant d \operatorname{dim} W$, where d is the dimension of the Zariski closure of the group $\langle f\rangle$.

REMARK: It is not hard to prove that $d \leqslant n$.

If this conjecture is true, we can conclude with the following theorem.

Theorem (modulo the conjecture above):
Let X be an n-dimensional projective manifold, and $f \in \operatorname{Aut}(X)$ a linearizable automorphism. Denote by G_{f} the Zariski closure of $\langle f\rangle$, and let $\operatorname{dim} G_{f}=d$. Then there exists an integer $k>0$ and a finite group Γ acting on X and commuting with f^{k}, such that X / Γ admits an f^{k}-equivariant projective embedding to $\mathbb{C} P^{r}$, where $r \leqslant d(2 n+2)-1$.

