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LCK manifolds

DEFINITION: A complex Hermitian manifold (M,1I,g,w) is called locally
conformally Kahler (LCK) if there exists a closed 1-form 6 such that dw =
O ANw. The 1-form 6 is called the Lee form and the g-dual vector field 6! is
called the Lee field.

REMARK: This definition is equivalent with the existence of a Kahler
cover (M,o)—M such that the deck group I acts on (M,%) by holo-
morphic homotheties. Indeed, suppose that 6 is exact, df = 6. Then e /w
iIs a Kahler form.

THEOREM: (Vaisman)
A compact LCK manifold with non-exact Lee form does not admit a Kahler

structure.

REMARK: Such manifold are called strict LCK. Further on, we shall con-
sider only strict LCK manifolds.
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Vaisman manifolds

DEFINITION: The LCK manifold (M, I,g,w) is a Vaisman manifold if the
Lee form is parallel with respect to the Levi-Civita connection.

THEOREM: A compact (strictly) LCK manifold M is Vaisman if and only
If it admits a non-trivial action of a complex Lie group of positive
dimension, acting by holomorphic isometries.

C™\0

DEFINITION: A linear Hopf manifold is a quotient M = Ay where A is

a linear contraction. When A is diagonalizable, M is called diagonal Hopf.

CLAIM: All diagonal Hopf manifolds are Vaisman, and all non-diagonal
Hopf manifolds are LCK and not Vaisman.

THEOREM: A compact complex manifold admits a Vaisman structure if
and only if it admits a holomorphic embedding to a diagonal Hopf
manifold.

THE MAIN QUESTION TODAY: Fix a Vaisman manifold M. What
IS the smallest dimension d of a Hopf manifold H such that M can
be holomorphically embedded to H? We want to bound d by some
polynomial of dim M.
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Algebraic cones

DEFINITION: Let P be a projective orbifold, and L an ample line bundle
on P. Assume that the total space Tot°(L) of all non-zero vectors in L is
smooth. An open algebraic cone is Tot°(L).

EXAMPLE: Let P C CP™, and L = O(1)|p. Then the open algebraic cone
Tot°(L) can be identified with the set =~ 1(P) of all v € C*T1\0 projected
to P under the standard map = : C*T1\0 — CP"”. The closed algebraic
cone is its closure in C* 1.

REMARK: The closed algebraic cone is obtained by adding one point,
called “the apex”, or “the origin”, to Tot°(L).

THEOREM: Let M be a Vaisman manifold. Then M admits a Z-cover I
which is isomorphic to an open algebraic cone Tot°(L), associated with
an ample line bundle L over a projective orbifold X. Moreover, the Z-action
on M is obtained from an automorphism f € Aut(X) and an equivariant
action of f on L.
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Embedding of Vaisman manifolds to Hopf

THEOREM: Let M be a Vaisman manifold, and M = Tot°(L) the cor-
responding algebraic cone, associated with an ample line bundle L over a
projective orbifold X. Assume that the the Z-action on M is obtained from
the linearized automorphism f € Aut(X). Then any embedding of M to a
Hopf manifold is obtained from the following data:

(a) a projective embedding of X % CP™ such that j*O(1) £ L

(b) An automorphism f of CP™ preserving X and acting on X as f.
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Whitney theorem

THEOREM: (Whitney) Let M be a compact smooth manifold, dim M = n.
Then M admits an immersion to R2"” and a smooth embedding to R27t1,

et us prove a projective version of this theorem.
THEOREM: (Whitney) Let M be a projective manifold over C, dim¢g M = n.

Then M admits an immersion to CP2" and a projective embedding to
cp2n+1.

Proof. Step 1: Since M is projective, it can be realized as a subspace in
CP™. It would suffice to show that there is a projection CP™—CP™1 which
induces an injective map on M when m > 2n + 1 and an immersion when
m > 2n.

Step 2: Consider a point x € CP™\M, and let 7, : CP™\{z}—=CP™ 1 be
the projection. It is constructed as follows: we identify CP™~1 with the
space of lines passing through z, and take z € CP™\{x} to the unique line
lz,» connecting = and z. Clearly, 7 : M—CP™ 1 js an immersion if and
only if i; . is not tangent to M for any z € M, and injective if and only
if Iz, M = {z} (that is, ny : M—CP™~! is injective if any line passing
through z intersects M in at most one point).
6
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Whitney theorem (2)

Step 3: Consider the set 7 of all lines tangent to some z € M, and the
set § of all lines connecting two distinct points z1 # 2o € M. Denote by
L(T),L(&) C CP™ the union of all lines in 7, &. From Step 2 it is clear that
e . M—CP™ 1 is injective if = ¢ L(&), and is immersion if z ¢ L(%).

Step 4: The dimension of 7 is < 2n — 1, because it is an image of PT'M, and
dimS < 2n, because it is an image of M x M\A, where A is diagonal. On
the other hand, L(Z) <dimZ + 1, because it is an image of a family of lines
parametrized by Z. This implies that dimL(S) <2n+ 1 and dim L(7) < 2n,
hence CP™\L(T) is non-empty when m > 2n and CP™\L(S) is non-empty
when m > 2n 4+ 1. Choosing x € CP™\L(7) or x € CP™\L(S) and using
Step 3, we obtain that =, : M—CP™ 1 is an immersion (embedding). =
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Equivariant projective embeddings

DEFINITION: Let f be an automorphism of a projective manifold X. The
automorphism is called linearizable if it acts equivariantly on an ample bundle.
EXERCISE: Prove that f is linearizable if and only if there exists a
projective embedding X — CP™ and f € PGL(m+1,C) = Aut(CP™) such
that f preserves X and f|x = f.

DEFINITION: Let f € Aut(X), where X is a projective variety A projective
embedding X — CP™ is called f-equivariant if f can be extended to f €
PGL(m + 1,C) = Aut(CP™).

We are interested in the following problem.

QUESTION: Consider an n-dimensional projective manifold X. What is
the minimal m such that f-equivariant embedding exists? We want m
to be a function of n, like in Whitnhey's theorem.

REMARK: Define a projection as a composition of a sequence of projections
with a center in a point. Consider all projections = : CP™—CP™1 such that
7. X—w(X) is an isomorphism. Following the same logic as in the proof
of Whitney’s theorem, we want to find the smallest mq, such that there
exists f1 €¢ PGL(m1+1,C) preserving the image n(X) of X and acting on
7w(X) as f. This problem can be understood as “the equivariant Whitney
embedding problem”.
3
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Projections with centers of any dimension

REMARK 1: Let U,V C W be non-intersecting subspaces of a vector space,
dimU 4+ dimV = dimW. Clearly, for any point x € W, there exists unique
u € U,v € V such that = u+v. Therefore, for any z € PW\(PUNPV) there
exists a unique line [, which intersects PU and PV.

DEFINITION: Let X,Y C P™ be projective subspaces, dimX+4+dmY = m—1.
For any z € P"™\(YUX), consider the line [, connecting z, X and Y’; it is unique,
as follows from Remark 1. Projection 7y with center in Y takes z to the
point I, N X. When z € X, we take ny(z) = z;

REMARK: It is not hard to see that the map ny : P"\Y—X, defined this
way, is holomorphic. Also, my can be obtained by taking a composition of
projections from points yq,...,y;, such that Y = P(y{,...,y), and dimY =
kE— 1.
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Linear systems and projective embeddings

DEFINITION: Let L be a holomorphic line bundle on a projective variety
X. A linear system of divisors is a subspace W C HO(X, L). For any
w € P(HO(X, L)), denote by D, the zero divisor of v. The line system is the
family D, of divisors, where v runs through HO(X, L).

PROPOSITION: Projective embeddings X C CP™ are in bijective corre-
spondence with line systems W ¢ H9(X, L), where L is a very ample line
bundle on X, and the following two conditions are satisfied.

(a) “Sections separate points”: for every two points ¢ # y € X, there
exists a,b € W such that al, =bly =0 and al|y # 0,b|z # 0.

(b) For every x € X, there exists a collaction a; € W such that each q;

has a simple zero in =z (that is, a|l = 0 and dal; # 0), and the differentials
da; generate T7 X.

Proof: Next slide.
REMARK: These are the same conditions which guarantee that a very

ample bundle L defines a projective embedding.
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Linear systems and projective embeddings (2)

PROPOSITION: Projective embeddings X ¢ CP™ are in bijective corre-
spondence with line systems W ¢ H9(X, L), where L is a very ample line
bundle on X, and the following two conditions are satisfied.

(a) “Sections separate points’”: for every two points z =y € X, there
exists a,b € W such that a|s = by = 0 and a|y # 0,b|+ # 0.

(b) For every x € X, there exists a collaction a; € W such that each q;

has a simple zero in = (that is, al = 0 and dal; # 0), and the differentials
da; generate T7 X.

Proof. Step 1: For any z € X, consider the restriction map A\ : W—L|;,
which is a complex linear map from a vector space to a line. Condition (a)
implies that Ay #%= 0, hence this map defines a point in PW*. We obtain a
holomorphic map ¢ : X—PW=*. Condition (a) implies that ¢ is injec-
tive, condition (b) that its derivative is non-zero, hence ¢ is also an
immersion.

Step 2: Conversely, consider an embedding 5 : X — PW*. Then L =
7*(O(1)) is very ample, and the map j*: H9(O(1))—HO(X, L) is surjective;
its image is a linear system of divisors, which satisfy (a) and (b) because

7 1s injective and immersive. =
11
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Linear systems and projective embeddings (3)

REMARK: The correspondence between the projection ny;; : CPM™—CP"
with the center in PU C CP™ and the linear systems is given as follows.
Let W C HO(CP™,O(1)) be the subspace consisting of all sections vanishing
in PU, and X C CP™ a projective subvariety disjoint from PU. Then 7 :
X—CP" = PW™* is the projective embedding associated with the linear
system W c HO(CP™, O(1)).

COROLLARY: Let f € Aut(X) be an automorphism of a projective man-
ifold, and 5 : X — CP™ = PV a projective embedding. We assume that
j is f-equivariant, that is, there exists f € PGL(m + 1,C) preserving X and
acting on X as f. Consider a projection «w : CP™\PU—CP" with center in PU
inducing an embedding ny : X—CP". Let W c HO(CP™, (1)) be a subspace
consisting of all sections vanishing in PU C PV, and W C HO(CP™, O(1)) any
f-invariant space containing W. Then the projection = : X—CP" = IPWJT?
associated with this linear system is f-equivariant. =

In other words, to construct an optimal f-equivariant projective embedding,
we need to bound the dimension of the smallest f-invariant space Wy
containing W. Here, the dimension of W can be chosen as low as
dmW =2dimX + 2 by the projective Whitney theorem.
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Equivariant Whitney theorem

CONJECTURE: After passing to a finite quotient of X, and replacing
/ by its finite power, we would have an estimate dim W, < ddim W, where
d is the dimension of the Zariski closure of the group (f).

REMARK: It is not hard to prove that d < n.
If this conjecture is true, we can conclude with the following theorem.

Theorem (modulo the conjecture above):
Let X be an n-dimensional projective manifold, and f € Aut(X) a linearizable
automorphism. Denote by G the Zariski closure of (f), and let dimG; = d.
Then there exists an integer £ > 0 and a finite group I acting on X and
commuting with f*, such that X/I admits an f¥-equivariant projective
embedding to CP", where » <d(2n+2) — 1.
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