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LCK manifolds

DEFINITION: A complex Hermitian manifold (M, I, g, ω) is called locally

conformally Kähler (LCK) if there exists a closed 1-form θ such that dω =

θ ∧ ω. The 1-form θ is called the Lee form and the g-dual vector field θ] is

called the Lee field.

REMARK: This definition is equivalent with the existence of a Kähler

cover (M̃, ω̃)→M such that the deck group Γ acts on (M, ω̃) by holo-

morphic homotheties. Indeed, suppose that θ is exact, df = θ. Then e−fω
is a Kähler form.

THEOREM: (Vaisman)

A compact LCK manifold with non-exact Lee form does not admit a Kähler

structure.

REMARK: Such manifold are called strict LCK. Further on, we shall con-

sider only strict LCK manifolds.
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Vaisman manifolds

DEFINITION: The LCK manifold (M, I, g, ω) is a Vaisman manifold if the
Lee form is parallel with respect to the Levi-Civita connection.

THEOREM: A compact (strictly) LCK manifold M is Vaisman if and only
if it admits a non-trivial action of a complex Lie group of positive
dimension, acting by holomorphic isometries.

DEFINITION: A linear Hopf manifold is a quotient M := Cn\0
〈A〉 where A is

a linear contraction. When A is diagonalizable, M is called diagonal Hopf.

CLAIM: All diagonal Hopf manifolds are Vaisman, and all non-diagonal
Hopf manifolds are LCK and not Vaisman.

THEOREM: A compact complex manifold admits a Vaisman structure if
and only if it admits a holomorphic embedding to a diagonal Hopf
manifold.

THE MAIN QUESTION TODAY: Fix a Vaisman manifold M . What
is the smallest dimension d of a Hopf manifold H such that M can
be holomorphically embedded to H? We want to bound d by some
polynomial of dimM.
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Algebraic cones

DEFINITION: Let P be a projective orbifold, and L an ample line bundle

on P . Assume that the total space Tot◦(L) of all non-zero vectors in L is

smooth. An open algebraic cone is Tot◦(L).

EXAMPLE: Let P ⊂ CPn, and L = O(1)|P . Then the open algebraic cone

Tot◦(L) can be identified with the set π−1(P ) of all v ∈ Cn+1\0 projected

to P under the standard map π : Cn+1\0 → CPn. The closed algebraic

cone is its closure in Cn+1.

REMARK: The closed algebraic cone is obtained by adding one point,

called “the apex”, or “the origin”, to Tot◦(L).

THEOREM: Let M be a Vaisman manifold. Then M admits a Z-cover M̃

which is isomorphic to an open algebraic cone Tot◦(L), associated with

an ample line bundle L over a projective orbifold X. Moreover, the Z-action

on M̃ is obtained from an automorphism f ∈ Aut(X) and an equivariant

action of f on L.
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Embedding of Vaisman manifolds to Hopf

THEOREM: Let M be a Vaisman manifold, and M̃ = Tot◦(L) the cor-

responding algebraic cone, associated with an ample line bundle L over a

projective orbifold X. Assume that the the Z-action on M̃ is obtained from

the linearized automorphism f ∈ Aut(X). Then any embedding of M to a

Hopf manifold is obtained from the following data:

(a) a projective embedding of X
j→ CPm such that j∗O(1) ∼= L

(b) An automorphism f̃ of CPm preserving X and acting on X as f.
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Whitney theorem

THEOREM: (Whitney) Let M be a compact smooth manifold, dimM = n.
Then M admits an immersion to R2n and a smooth embedding to R2n+1.

Let us prove a projective version of this theorem.
THEOREM: (Whitney) Let M be a projective manifold over C, dimCM = n.
Then M admits an immersion to CP2n and a projective embedding to
CP2n+1.

Proof. Step 1: Since M is projective, it can be realized as a subspace in
CPm. It would suffice to show that there is a projection CPm→CPm−1 which
induces an injective map on M when m > 2n + 1 and an immersion when
m > 2n.

Step 2: Consider a point x ∈ CPm\M , and let πx : CPm\{x}→CPm−1 be
the projection. It is constructed as follows: we identify CPm−1 with the
space of lines passing through x, and take z ∈ CPm\{x} to the unique line
lx,z connecting x and x. Clearly, πx : M→CPm−1 is an immersion if and
only if lx,z is not tangent to M for any z ∈ M , and injective if and only
if lx,z ∩M = {z} (that is, πx : M→CPm−1 is injective if any line passing
through x intersects M in at most one point).
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Whitney theorem (2)

Step 3: Consider the set T of all lines tangent to some z ∈ M , and the

set S of all lines connecting two distinct points z1 6= z2 ∈ M . Denote by

L(T ), L(S) ⊂ CPm the union of all lines in T , S. From Step 2 it is clear that

πx : M→CPm−1 is injective if x /∈ L(S), and is immersion if x /∈ L(T).

Step 4: The dimension of T is 6 2n−1, because it is an image of PTM , and

dimS 6 2n, because it is an image of M ×M\∆, where ∆ is diagonal. On

the other hand, L(Z) 6 dimZ + 1, because it is an image of a family of lines

parametrized by Z. This implies that dimL(S) 6 2n + 1 and dimL(T ) 6 2n,

hence CPm\L(T ) is non-empty when m > 2n and CPm\L(S) is non-empty

when m > 2n + 1. Choosing x ∈ CPm\L(T ) or x ∈ CPm\L(S) and using

Step 3, we obtain that πx : M→CPm−1 is an immersion (embedding).
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Equivariant projective embeddings

DEFINITION: Let f be an automorphism of a projective manifold X. The
automorphism is called linearizable if it acts equivariantly on an ample bundle.
EXERCISE: Prove that f is linearizable if and only if there exists a
projective embedding X ↪→ CPm and f̃ ∈ PGL(m+ 1,C) = Aut(CPm) such
that f̃ preserves X and f̃ |X = f.

DEFINITION: Let f ∈ Aut(X), where X is a projective variety A projective
embedding X ↪→ CPm is called f-equivariant if f can be extended to f̃ ∈
PGL(m+ 1,C) = Aut(CPm).

We are interested in the following problem.
QUESTION: Consider an n-dimensional projective manifold X. What is
the minimal m such that f-equivariant embedding exists? We want m
to be a function of n, like in Whitney’s theorem.

REMARK: Define a projection as a composition of a sequence of projections
with a center in a point. Consider all projections π : CPm→CPm1 such that
π : X→π(X) is an isomorphism. Following the same logic as in the proof
of Whitney’s theorem, we want to find the smallest m1 such that there
exists f1 ∈ PGL(m1 +1,C) preserving the image π(X) of X and acting on
π(X) as f. This problem can be understood as “the equivariant Whitney
embedding problem”.
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Projections with centers of any dimension

REMARK 1: Let U, V ⊂W be non-intersecting subspaces of a vector space,

dimU + dimV = dimW . Clearly, for any point x ∈ W , there exists unique

u ∈ U, v ∈ V such that x = u+ v. Therefore, for any x ∈ PW\(PU ∩PV ) there

exists a unique line lx which intersects PU and PV .

DEFINITION: Let X,Y ⊂ Pm be projective subspaces, dimX+dimY = m−1.

For any z ∈ Pm\(Y ∪X), consider the line lz connecting z,X and Y ; it is unique,

as follows from Remark 1. Projection πY with center in Y takes z to the

point lz ∩X. When z ∈ X, we take πY (z) = z;

REMARK: It is not hard to see that the map πY : Pm\Y→X, defined this

way, is holomorphic. Also, πY can be obtained by taking a composition of

projections from points y1, ..., yk, such that Y = P〈y1, ..., yk〉, and dimY =

k − 1.
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Linear systems and projective embeddings

DEFINITION: Let L be a holomorphic line bundle on a projective variety

X. A linear system of divisors is a subspace W ⊂ H0(X,L). For any

w ∈ P(H0(X,L)), denote by Dv the zero divisor of v. The line system is the

family Dv of divisors, where v runs through H0(X,L).

PROPOSITION: Projective embeddings X ⊂ CPm are in bijective corre-

spondence with line systems W ⊂ H0(X,L), where L is a very ample line

bundle on X, and the following two conditions are satisfied.

(a) “Sections separate points”: for every two points x 6= y ∈ X, there

exists a, b ∈W such that a|x = b|y = 0 and a|y 6= 0, b|x 6= 0.

(b) For every x ∈ X, there exists a collaction ai ∈ W such that each ai
has a simple zero in x (that is, a|x = 0 and da|x 6= 0), and the differentials

dai generate T ∗xX.

Proof: Next slide.

REMARK: These are the same conditions which guarantee that a very

ample bundle L defines a projective embedding.
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Linear systems and projective embeddings (2)

PROPOSITION: Projective embeddings X ⊂ CPm are in bijective corre-
spondence with line systems W ⊂ H0(X,L), where L is a very ample line
bundle on X, and the following two conditions are satisfied.

(a) “Sections separate points”: for every two points x 6= y ∈ X, there
exists a, b ∈W such that a|x = b|y = 0 and a|y 6= 0, b|x 6= 0.

(b) For every x ∈ X, there exists a collaction ai ∈ W such that each ai
has a simple zero in x (that is, a|x = 0 and da|x 6= 0), and the differentials
dai generate T ∗xX.

Proof. Step 1: For any x ∈ X, consider the restriction map λx : W→L|x,
which is a complex linear map from a vector space to a line. Condition (a)
implies that λx 6= 0, hence this map defines a point in PW ∗. We obtain a
holomorphic map ϕ : X→PW ∗. Condition (a) implies that ϕ is injec-
tive, condition (b) that its derivative is non-zero, hence ϕ is also an
immersion.

Step 2: Conversely, consider an embedding j : X ↪→ PW ∗. Then L :=
j∗(O(1)) is very ample, and the map j∗ : H0(O(1))→H0(X,L) is surjective;
its image is a linear system of divisors, which satisfy (a) and (b) because
j is injective and immersive.
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Linear systems and projective embeddings (3)

REMARK: The correspondence between the projection πU : CPm→CP r
with the center in PU ⊂ CPm and the linear systems is given as follows.
Let W ⊂ H0(CPm,O(1)) be the subspace consisting of all sections vanishing
in PU , and X ⊂ CPm a projective subvariety disjoint from PU . Then πU :
X→CP r = PW ∗ is the projective embedding associated with the linear
system W ⊂ H0(CPm,O(1)).

COROLLARY: Let f ∈ Aut(X) be an automorphism of a projective man-
ifold, and j : X ↪→ CPm = PV a projective embedding. We assume that
j is f-equivariant, that is, there exists f̃ ∈ PGL(m + 1,C) preserving X and
acting on X as f . Consider a projection π : CPm\PU→CP r with center in PU
inducing an embedding πU : X→CP r. Let W ⊂ H0(CPm,O(1)) be a subspace
consisting of all sections vanishing in PU ⊂ PV , and Wf ⊂ H0(CPm,O(1)) any
f̃-invariant space containing W . Then the projection π : X→CP r = PW ∗f
associated with this linear system is f-equivariant.

In other words, to construct an optimal f-equivariant projective embedding,
we need to bound the dimension of the smallest f̃-invariant space Wf

containing W . Here, the dimension of W can be chosen as low as
dimW = 2 dimX + 2 by the projective Whitney theorem.
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Equivariant Whitney theorem

CONJECTURE: After passing to a finite quotient of X, and replacing

f by its finite power, we would have an estimate dimWf 6 ddimW , where

d is the dimension of the Zariski closure of the group 〈f〉.

REMARK: It is not hard to prove that d 6 n.

If this conjecture is true, we can conclude with the following theorem.

Theorem (modulo the conjecture above):

Let X be an n-dimensional projective manifold, and f ∈ Aut(X) a linearizable

automorphism. Denote by Gf the Zariski closure of 〈f〉, and let dimGf = d.

Then there exists an integer k > 0 and a finite group Γ acting on X and

commuting with fk, such that X/Γ admits an fk-equivariant projective

embedding to CP r, where r 6 d(2n+ 2)− 1.
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