Formality

dd^c-lemma for manifolds with parallel differential forms

"Geometric structures on manifolds", HSE

Misha Verbitsky, August 26, 2021

Formality

Massey products

Let $a, b, c \in \Lambda^*(M)$ be closed forms on a manifold M with cohomology classes [a], [b], [c] satisfying [a][b] = [b][c] = 0, and $\alpha, \gamma \in \Lambda^*(M)$ forms which satisfy $d(\alpha) = a \wedge b$, $d(\gamma) = b \wedge c$. Denote by $L_{[a]}, L_{[c]} : H^*(M) \longrightarrow H^*(M)$ the operation of multiplication by the cohomology classes [a], [c].

Then $\alpha \wedge c - (-1)^{\tilde{a}} a \wedge \gamma$ is a closed form, and its cohomology class is well-defined modulo im $L_{[a]} + \operatorname{im} L_{[c]}$.

DEFINITION: Cohomology class $\alpha \wedge c - (-1)^{\tilde{a}} a \wedge \gamma$ is called **Massey product** of a, b, c.

Formality

Heisenberg group

DEFINITION: The **Heisenberg group** G group of strictly upper triangular matrices (3x3),

$$\begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{pmatrix}$$

The integer Heisenberg group $G_{\mathbb{Z}}$ is the same group with integer entries. The Heisenberg nilmanifold is $G/G_{\mathbb{Z}}$. The Heisenberg nilmanifold is fibered over the torus T^2 with the fiber S^1 (it is a non-trivial principal S^1 -bundle). This fibration corresponds to the exact sequence

$$\{e\} \longrightarrow \mathbb{Z} \longrightarrow G_{\mathbb{Z}} \longrightarrow \mathbb{Z}^2 \longrightarrow \{e\}$$

where \mathbb{Z} is the center.

Massey products in Heisenberg nilmanifold

CLAIM: Masey products on $G/G_{\mathbb{Z}}$ are non-zero.

Proof. Step 1: *G* acts on $\Lambda^*(G)$ from the right. It is not hard to see that the all cohomology classes on $G/G_{\mathbb{Z}}$ can be represented by right *G*-invariant forms, and, moreover, the cohomology of $G/G_{\mathbb{Z}}$ is equal to the cohomology of the complex of right-*G*-invariant forms on *G*.

Step 2: This is the same complex as **the Chevalley-Eilenberg complex** for the Lie algebra \mathfrak{g} of $G: 0 \longrightarrow \Lambda^1(\mathfrak{g}^*) \xrightarrow{d} \Lambda^2(\mathfrak{g}^*) \xrightarrow{d} \dots$ with the differential in the first term $d: \mathfrak{g}^* \longrightarrow \Lambda^2(\mathfrak{g}^*)$ dual to the commutator. We extend this differential to $\Lambda^*(\mathfrak{g}^*)$ by the Leibniz rule. The corresponding cohomology is called **the Lie algebra cohomology** and denoted by $H^*(\mathfrak{g})$.

Step 3: Let a, b, t be the basis in \mathfrak{g} , with the only non-trivial commutator [a, b] = t, and α , β , τ the dual basis in \mathfrak{g}^* , with the only non-trivial differential $d\tau = \alpha \wedge \beta$. This gives a basis $\alpha \wedge \beta$, $\alpha \wedge \tau$, $\beta \wedge \tau$ in $\Lambda^2(\mathfrak{g}^*)$, with $d|_{\Lambda^2 \mathfrak{g}^*} = 0$, giving rk $H^1(G/G_{\mathbb{Z}}) = 2$ and rk $H^2(G/G_{\mathbb{Z}}) = 2$.

Step 4: Let $M(\alpha, \beta, \alpha)$ denote the Massey product of α, β, α . Since $\alpha \wedge \beta = d\tau$, $M(\alpha, \beta, \alpha) = \tau \wedge \alpha - \alpha \wedge \tau = 2\tau \wedge \alpha$. The image of L_{α} : $H^{1}(\mathfrak{g}) \longrightarrow H^{2}(\mathfrak{g})$ is generated by $\alpha \wedge \beta$, hence $M(\alpha, \beta, \alpha)$ is non-zero modulo im L_{α} .

Quasi-isomorphism of DG-algebras

DEFINITION: Graded commutative algebra, or super-commutative algebra is a graded algebra $A^* = \bigoplus_{i \ge 0} A^i$, with the multiplication $A^i \cdot A^j \longrightarrow A^{i+j}$ and graded (super-) commutativity relation $x \cdot y = (-1)^{\tilde{x}\tilde{y}}y \cdot x$, where $x \in A^{\tilde{x}}, y \in A^{\tilde{y}}$. A DG-algebra (differential graded algebra) is a graded commutative algebra equipped with a differential $d : A^i \longrightarrow A^{i+1}$ which satisfies $d(x \cdot y) = dx \cdot y + (-1)^{\tilde{x}}x \cdot dy$. A homomorphism of DG-algebras is called a quasi-isomorphism if it induces an isomorphism on cohomology. Two DG-algebras are called quasi-isomorphic if they can be connected by a chain of quasi-isomorphisms.

DEFINITION: A DG-algebra is called **formal** if it is quasi-isomorphic to its cohomology algebra (with zero differential). A manifold is called **formal** if its de Rham algebra is formal.

REMARK: A formal algebra has vanishing Massey products, hence the Heisenbern nil-manifold is not formal.

REMARK: The converse is not true, however, there exists a way to define **"the generalized Massey products"** in terms of Maurer-Cartan equation, and their vanishing is equivalent to formality.

Hodge theory

DEFINITION: Let (M, I) be a complex manifold, $\{U_i\}$ its covering, and and $z_1, ..., z_n$ holomorphic coordinate system on each covering patch. The bundle $\wedge^{p,q}(M, I)$ of (p,q)-forms on (M, I) is generated locally on each coordinate patch by monomials $dz_{i_1} \wedge dz_{i_2} \wedge ... \wedge dz_{i_p} \wedge d\overline{z}_{i_{p+1}} \wedge ... \wedge dz_{i_{p+q}}$. The Hodge decomposition is a decomposition of vector bundles:

 $\Lambda^d_{\mathbb{C}}(M) = \bigoplus_{p+q=d} \Lambda^{p,q}(M).$

DEFINITION: A manifold is called Kähler if it equipped with a closed real (1,1)-form ω such that $\omega(Ix, x) > 0$ for any non-zero vector x.

THEOREM: ("Hodge decomposition on cohomology") Let M be a compact Kähler manifold. Then any cohomology class can be represented as a sum of closed (p,q)-forms.

dd^c-lemma

DEFINITION: Let M be a complex manifold, and $I : TM \longrightarrow TM$ its complex structure operator. The twisted differential of M is IdI^{-1} : $\Lambda^*(M) \longrightarrow \Lambda^{*+1}(M)$, where I acts on 1-forms as an operator dual to I: $TM \longrightarrow TM$, and on the rest of differential forms multiplicatively.

THEOREM: Let η be a form on a compact Kähler manifold, satisfying one of the following conditions. (1). η is an exact (p,q)-form. (2). η is *d*-exact, d^c -closed.

Then $\eta \in \operatorname{im} dd^c$.

COROLLARY 1: Let $(\Lambda_{d^c-cl}^*(M), d)$ be the algebra of d^c -closed forms on a compact Kähler manifold M, considered as a DG-algebra. Then the natural embedding Ψ : $(\Lambda_{d^c}^*(M), d) \longrightarrow (\Lambda^*(M), d)$ is a quasi-isomorphism.

Proof: Any closed (p,q)-form is d^c -closed. Since any cohomology class can be represented as a sum of closed (p,q)-forms, it can be represented by d^c -closed form. Therefore Ψ is surjective on cohomology.

Suppose that Ψ maps a *d*-closed form $\alpha \in \Lambda^*_{d^c}(M)$ to an exact form. By dd^c -lemma, $\alpha = dd^c\beta$, hence $\alpha \in d\left(\Lambda^*_{d^c}(M)\right)$.

Formality

Formality for Kähler manifolds

THEOREM: A compact Kähler manifold is formal.

Proof. Step 1: The natural embedding $(\Lambda_{d^c}^*(M), d) \longrightarrow (\Lambda^*(M), d)$ is a quasiisomorphism (Corollary 1).

Step 2: Let Φ : $(\Lambda_{d^c}^*(M), d) \longrightarrow (H_{d^c}^*(M), 0)$ map a d^c -closed form to its cohomology class in $\frac{\ker d^c}{\operatorname{im} d^c} =: H_{d^c}^*(M)$. Representing cohomology classes by closed (p,q)-forms, we find that $d\Big|_{H_{d^c}^*(M)} = 0$. Therefore, Φ is a homomorphism of DG-algebras.

It is surjective on cohomology because each class in $H^*_{d^c}(M)$ can be represented by a d, d^c -closed form, and injective because each d^c -closed, d-exact form is dd^c -exact.

Formality

M. Verbitsky

Holonomy group

DEFINITION: (Cartan, 1923) Let (B, ∇) be a vector bundle with connection over M. For each loop γ based in $x \in M$, let $V_{\gamma,\nabla} : B|_x \longrightarrow B|_x$ be the corresponding parallel transport along the connection. The holonomy group of (B, ∇) is a group generated by $V_{\gamma,\nabla}$, for all loops γ . If one takes all contractible loops instead, $V_{\gamma,\nabla}$ generates the local holonomy, or the restricted holonomy group.

REMARK: A bundle is **flat** (has vanishing curvature) **if and only if its restricted holonomy vanishes.**

REMARK: If $\nabla(\varphi) = 0$ for some tensor $\varphi \in B^{\otimes i} \otimes (B^*)^{\otimes j}$, the holonomy group preserves φ .

DEFINITION: Holonomy of a Riemannian manifold is holonomy of its Levi-Civita connection.

EXAMPLE: Holonomy of a Riemannian manifold lies in $O(T_x M, g|_x) = O(n)$.

EXAMPLE: Holonomy of a Kähler manifold lies in $U(T_xM, g|_x, I|_x) = U(n)$.

REMARK: The holonomy group does not depend on the choice of a point $x \in M$.

Berger's list

THEOREM: (Berger's theorem, 1955)

Let G be an irreducible holonomy group of a Riemannian manifold which is not locally symmetric. Then G belongs to the Berger's list:

Berger's list	
Holonomy	Geometry
$SO(n)$ acting on \mathbb{R}^n	Riemannian manifolds
$U(n)$ acting on \mathbb{R}^{2n}	Kähler manifolds
$SU(n)$ acting on \mathbb{R}^{2n} , $n>2$	Calabi-Yau manifolds
$Sp(n)$ acting on \mathbb{R}^{4n}	hyperkähler manifolds
$Sp(n) \times Sp(1)/\{\pm 1\}$	quaternionic-Kähler
acting on \mathbb{R}^{4n} , $n>1$	manifolds
G_2 acting on \mathbb{R}^7	G ₂ -manifolds
$Spin(7)$ acting on \mathbb{R}^8	Spin(7)-manifolds

REMARK: If the holonomy group is not irreducible, the manifold *M* locally splits onto a product of Riemannian manifolds with irreducible holonomy (de Rham). This splitting is global, if *M* is complete and simply connected.

Formality

The structure operator

A C^{∞} -linear map $\Lambda^1(M) \xrightarrow{p} \Lambda^i(M)$ can be uniquely extended to a C^{∞} -linear derivation ρ on $\Lambda^*(M)$, using the rule

$$\rho|_{\Lambda^{1}(M)} = p, \quad \rho|_{\Lambda^{0}(M)} = 0, \quad \rho(\alpha \wedge \beta) = \rho(\alpha) \wedge \beta + (-1)^{(i-1)\tilde{\alpha}} \alpha \wedge \rho(\beta).$$

Then, ρ is an even for odd p and odd for even p differentiation of the graded commutative algebra $\Lambda^*(M)$.

DEFINITION: Let M be a Riemannian manifold, and $\omega \in \Lambda^k(M)$ a differential form. Consider an operator $C : \Lambda^1(M) \longrightarrow \Lambda^{k-1}(M)$ mapping $\nu \in \Lambda^1(M)$ to $\omega \lrcorner \nu^{\sharp}$, where ν^{\sharp} is the vector field dual to ν . Alternatively, $C(\nu)$ can be written as $C(\nu) = *(*\omega \land \nu)$. The corresponding differentiation

$$C: \Lambda^*(M) \longrightarrow \Lambda^{*+k-2}(M)$$

is called **the structure operator of** (M, ω) . Parity of C is equal to that of ω .

REMARK: If ω is the Kähler form on a Kähler manifold, we have C = I.

Formality

M. Verbitsky

Twisted de Rham operator

DEFINITION: Let M be a Riemannian manifold, and $\omega \in \Lambda^k(M)$ a differential form, which is parallel with respect to the Levi-Civita connection. Denote by d_c the supercommutator

$$\{d,C\} := dC - (-1)^{\tilde{C}}Cd$$

This operator is called the twisted de Rham operator of (M, ω) . Being a graded commutator of two graded differentiations, d_c is also a graded differentiation of $\Lambda^*(M)$.

REMARK: On a Kähler manifold (M, ω) , d_c is the usual twisted de Rham operator $d^c = IdI^{-1}$. However, for a general form ω , d_c^2 can be non-zero.

PROPOSITION: Let (M, ω) be a Riemannian manifold equipped with a parallel form ω , and L_{ω} the operator $\eta \longrightarrow \eta \land \omega$. Then $d_c = \{L_{\omega}, d^*\}$, where $\{\cdot, \cdot\}$ denotes the supercommutator,

$$\{L_{\omega}, d^*\} = L_{\omega}d^* - (-1)^{\tilde{\omega}}d^*L_{\omega},$$

and $d^* = - * d*$ is the adjoint to d.

Proof: Using the standard arguments, we check that both d_c and $\{L_{\omega}, d^*\}$ are derivations on the de Rham algebra, and then check the equality $d_c = \{L_{\omega}, d^*\}$ on 1-forms.

Harmonic forms

COROLLARY: The twisted de Rham operator and formality **commutes** with d and d^* .

Proof: Use "the basic lemma": Let δ be an odd element in a graded Lie superalgebra A satisfying $\{\delta, \delta\} = 0$. Then $\{\delta, \{\delta, x\}\} = 0$ for all $x \in A$, assuming that the base field is not of characteristic 2. Indeed, the graded Jacobi identity gives

 $\{\delta, \{\delta, x\}\} = -\{\delta, \{\delta, x\}\} + \{\{\delta, \delta\}, x\},\$

hence $2\{\delta, \{\delta, x\}\} = 0.$

Let M be a compact Riemannian manifold. Using the Hodge theory, we obtain the following direct sum decomposition: ker $d = \operatorname{im} d \oplus \operatorname{ker} d \cap \operatorname{ker} d^*$. Indeed, ker $d^* = (\operatorname{im} d)^{\perp}$ (this is true whenether im d is closed, for $\Lambda^*(M)$ the closedness of im d is implied the Hodge theory).

DEFINITION: A form on a compact Riemannian manifold is called harmonic if it lies in ker $d \cap$ ker d^* ; the space of harmonic forms is identified with the cohomology.

Twisted de Rham operator and formality

LEMMA: The twisted differential d_c vanishes on harmonic forms.

Proof: L_{ω} maps harmonic form to harmonic forms (this is a non-trivial theorem), hence $\{d^*, L_{\omega}\}$ acts on harmonic forms trivially.

PROPOSITION: Let (M, ω) be a compact Riemannian manifold equipped with a parallel form. Then the natural embedding Ψ : $(\ker d_c, d) \hookrightarrow (\Lambda^*(M), d)$. is a quasi-isomorphism.

Proof: Since d_c vanishes on harmonic forms, and they represent the cohomology, Ψ is surjective on cohomology.

To prove injectivity, assume that $\Psi(\alpha)$ is exact for a d_c , d-closed form. This means that α is d_c -closed and d-exact. We need to show that $\alpha = d(d^c$ -closed form).

Let G_{Δ} be the Green operator inverting the Laplacian $\Delta = dd^* + d^*d$ on forms which are orthogonal to its kernel. Then $\alpha = dd^*G_{\Delta}(\alpha)$. However, $d_c(d^*G_{\Delta}\alpha) = 0$ because d_c commutes with G_{δ} and with d^* .