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Solvmanifolds

DEFINITION: Let M be a smooth manifold equipped with a transitive action

of solvable Lie group. Then M is called a solvmanifold.

REMARK: All solvmanifolds are obtained as quotient spaces, M = G/H.

DEFINITION: An integrable complex structure on a real Lie algebra g is

a subalgebra g1,0 ⊂ g⊗R C such that g1,0 ⊕ g1,0 = g⊗R C

REMARK: Right-invariant complex structures on a connected real Lie group

are in 1 to 1 correspondence with integrable complex structures on its

Lie algebra.

DEFINITION: A complex solvmanifold is a solvmanifold M = G/H equipped

with a complex structure, in such a way that G has a right-invariant complex

structure, and the projection G−→M is holomorphic.

REMARK: Solvmanifolds are usually non-homogeneous (as complex

manifolds).
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Inoue surfaces

DEFINITION: (”Bogomolov’s theorem”) Inoue surface is a complex sur-
face without curves and with b2 = 0.

REMARK: Original definiton of Inoue was constructive, in terms of explicit
action by matrices, and the above result is a theorem proven by Bogomolov
in 1976.

Bogomolov, F. A. Classification of surfaces of class VII0 with b2 = 0. Izv.
Akad. Nauk SSSR Ser. Mat. 40 (1976), no. 2, 273-288, 469.
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History of Inoue surfaces

In 1991, a new proof appeared, based on Yang-Mills theory:

Li, J.; Yau, S.-T.; Zheng, F. A simple proof of Bogomolov’s theorem on class

VII0 surfaces with b2 = 0. Illinois J. Math. 34 (1990), no. 2, 217-220.

This proof was incorrect.

Finally, correct proofs were also obtained.

Teleman, Andrei Dumitru Projectively flat surfaces and Bogomolov’s theorem

on class VII0 surfaces. Internat. J. Math. 5 (1994), no. 2, 253-264.

Li, Jun; Yau, Shing-Tung; Zheng, Fangyang On projectively flat Hermitian

manifolds. Comm. Anal. Geom. 2 (1994), no. 1, 103-109.
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Complex solvmanifolds of dimension 2

THEOREM: (Hasegawa) Let M be a complex surface which is diffeomorphic

to a solvmanifold. Then M is (up to a finite unramified quotient) isomorpic

to one the following.

1. Compact complex torus

2. Kodaira surface

3. Inoue surface.

This theorem directly follows from Bogomolov’s theorem, Hasegawa’s

result on Kähler solvmanifolds, and Kodaira’s classification.

To define the Inoue surfaces explicitly, we use the number theory.
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Dirichlet unit theorem

DEFINITION: Let K :Q be a number field of degree n. The ring of integers

OK ⊂ K is an integral closure of Z in K, that is, the set of all roots in K

of monic polynomials P (t) = tn + an−1t
n−1 + an−2t

n−2 + ...+ a0 with integer

coefficients ai ∈ Z.

CLAIM: An additive group O+
K is a finitely generated abelian group of

rank n.

DEFINITION: A unit of a ring OK is an element u ∈ OK, such that u−1

also belongs to OK.

Dirichlet’s unit theorem: Let K be a number field which has s real em-

beddings and 2t complex ones. Then the group of units O∗K is isomorphic

to G × Zt+s−1, where G is a finite group of roots of unity contained in K.

Moreover, if s > 0, one has G = ±1.

REMARK: For an imaginary quadratic field, the group of units is a group

of solutions of Pell’s equation.
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Cubic fields and complex surfaces

Let K :Q be a cubic extension of Q which has 2 complex embeddings τ , τ and

one real one σ (such an extension is obtained by adding all roots of a cubic

polynomial which has exactly one real root).

REMARK: Due to Dirichlet theorem, O∗K is isomorphic to Z × {±1}. Let

O∗,+K := σ−1(R>0) ∩ O∗K. Then the group O∗,+K is isomorphic to Z.

Consider the action of O+
K
∼= Z3 on R3 = C× R

ρ+(x)(z, t) := (z + τ(x), t+ σ(x)).

Let Γ be a semidirect product O+
K o O∗,+K , defined from the natural action

of O∗,+K on O+
K . Define an action of Γ on C × H, where H is an upper

halfplane, as follows.

The subgroup O+
K ⊂ Γ acts on C×H = C× R× R>0 by translations as above

(trivially on the last argument), and O∗,+K acts multiplicatively as

ρ∗(ξ)(z, z′) := (τ(ξ)z, σ(ξ)z′).
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Inue surfaces of type S0

DEFINITION: The Inoue surface of type S0 is a quotient (C×H)/Γ.

Its properties: 1. It is a compact, complex solvmanifold

2. Inoue surface admits a flat connection preserving the complex struc-

ture (by construction).

3. Its cohomology are the same as of S3 × S1.

4. The Inoue surface M := (C×H)/Γ has no complex curves
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Oeljeklaus-Toma manifolds

Let K be a number field which has 2t complex embedding denoted τi, τ i and
s real ones denoted σi, s > 0, t > 0.

Let O∗,+K := O∗K ∩
⋂
i σ
−1
i (R>0). Choose in O∗,+K a free abelian subgroup O∗,UK

of rank s such that the quotient Rs/O∗,UK is compact, where O∗,UK is mapped

to Rt as ξ −→
(

log(σ1(ξ)), ..., log(σt(ξ))
)
. Let Γ := O+

K oO∗,UK .

DEFINITION: An Oeljeklaus-Toma manifold is a quotient Ct × Hs/Γ,
where O+

K acts on Ct ×Ht as

ζ(x1, ..., xt, y1, ..., ys) =

(
x1 + τ1(ζ), ..., xt + τt(ζ), y1 + σ1(ζ), ..., ys + σs(ζ)

)
,

and O∗,UK as

ξ(x1, ..., xt, y1, ..., ys) =

(
x1, ..., xt, σ1(ξ)y1, ..., σt(ξ)yt

)

THEOREM: (Oeljeklaus-Toma) The OT-manifold M := Ct × Hs/Γ is a
compact complex manifold, without any non-constant meromorphic func-
tions. When s = 1, t = 1, it is an Inoue surface of class S0.
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Complex geometry of Oeljeklaus-Toma manifolds

THEOREM: (Ornea-V.) Let K be a number field which has s real em-

beddings and 2t complex ones, t = 1, s > 0. Then the corresponding

Oeljeklaus-Toma manifold has no non-trivial complex subvarieties.

THEOREM: (Sima Verbitsky) OT-manifold has no curves.

THEOREM: (Sima Verbitsky) Any complex surfaces which can be immersed

to an OT-manifold is isomorphic to an Inoue surface.

THEOREM: (Battisti-Oeljeklaus) OT-manifold has no divisors which are

cohomologous to 0.

Today’s theorem is a work in progress with Liviu Ornea and Victor

Vuletescu.

THEOREM: (Liviu Ornea, V., Victor Vuletescu)

Let X ⊂M be a complex subvariety in an OT-manifold. Then X is flat affine

(that is, geodesically complete with respect to the flat affine connection on

M). Moreover, X is “generalized OT” in the sense defined below.
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Cousin groups

REMARK: Cousin groups were studied in 1960-ies by Akihiko Morimoto,

who named them “(H.C) groups”, and Klaus Kopfermann, who called them

“toroidal”. The term “Cousin group” most likely originated in the paper of

Huckleberry and Margulis (1983).

DEFINITION: A complex, connected Lie group G is called Cousin group if

all holomorphic functions on G are constant.

REMARK: Cousin groups are abelian. Indeed, suppose that G is a non-

abelian, connected Lie group. Then its adjoint action on its Lie algebra g is

non-trivial. However, this action defines a holomorphic functions from G

to End(g).

This implies the following observation.

COROLLARY: A Cousin group is a quotient of Cn by a discrete sub-

group.
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Structure theorem for Cousin groups

A stronger result can be proven.

THEOREM: Let G be a Cousin group. Then G is isomorphic to (C∗)n/Γ,

for some discrete subgroup Γ.

THEOREM: A quotient (C∗)n/Γ is a Cousin group if and only if Γ is

Zariski dense in (C∗)n.

Proof: Akhiezer, Dmitri N. Lie group actions in complex analysis, Aspects of

Mathematics, E27. Friedr. Vieweg and Sohn, Braunschweig, 1995.
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Cousin groups and Hodge structures

DEFINITION: Let VR be a real vector space. A (real) Hodge structure

of weight w on a vector space VC = VR ⊗R C is a decomposition VC =⊕
p+q=w V

p,q, satisfying V p,q = V q,p. It is called integer Hodge structure if

one fixes an integer lattice VQ or VZ such that VR = VQ⊗QR or VR = VZ⊗ZR. A

Hodge structure is equipped with U(1)-action, with u ∈ U(1) acting as up−q on

V p,q. Morphism of integer Hodge structures is a map which is U(1)-invariant

and preserves the lattice.

PROPOSITION: Let V = (VZ, VC =
⊕
p+q=w V

p,q) be an integer Hodge

structure of even weight. Denote by Ψ the projection of VC to
⊕
p6q V

p,q

along
⊕
p<q V

p,q, and let WZ := Ψ(VZ). Assume that V has no Hodge structure

subquotients of weight 0. Then
⊕
p6q V

p,q/WZ is a Cousin group.
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Number fields and Hodge structures

EXAMPLE: Let K be a number field, n = s+ r, where 2s is the number of
complex embeddings of K and r > 0 the number of real ones. We are going
to equip VC := K ⊗Q C with a Hodge structure as follows.

In each pair of complex conjugate complex embeddings of K to C choose
one. Let V 2,0 ⊂ K ⊗Q C be the direct sum of the chosen C-components of
K ⊗Q C, and V 1,1 be the direct sum of all summands of V corresponding to
real embeddings. Then VZ := OK, VC := V 0,2⊕V 1,1⊕V 0,2 is an integer Hodge
structure on V . The corresponding Cousin group

⊕
p6q V

p,q/VZ is called the
Cousin precursor of the OT-manifold. OT-manifold is obtained as its
Zr-quotient.

REMARK: Hodge structures are not enough! Any exact sequence of
abelian varieties 0 → A → B → C → 0, splits (after taking a finite covering).
However, not any exact sequence of compact complex tori splits. Similarly,
not any exact sequence of Cousin groups splits (even after taking the finite
covers).

We want subgroups of our Cousing groups to be also Cousin. For this, split-
ting of exact sequences is necessary! This would not work without additional
assumptions. We need a Cousin analogue of “polarized Abelian variety”.
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Polarized Hodge structures

DEFINITION: Polarization on a Hodge structrure of weight w is a U(1)-
invariant non-degenerate 2-form h ∈ V ∗Q ⊗ V ∗Q (symmetric or antisymmetric
depending on parity of w) which satisfies

−(
√
−1 )p−qh(x, x) > 0 (1)

(“Riemann-Hodge relations”) for each non-zero x ∈ V p,q.

PROPOSITION: Let VZ := OK, V := V 0,2 ⊕ V 1,1 ⊕ V 0,2 be the Hodge
structure constructed above. Then it is polarized.

Proof: Consider V = K⊗QC as an algebra and let h(x, y) := Tr(LxLy), where
Lx(a) = xa.

DEFINITION: Let G be a Cousin group obtained from a Hodge structure as
above. Then G is called a Hodge-Cousin group, and its subgroup obtained
from a Hodge substructure – a Hodge-Cousin subgroup. A Hodge-Cousin
group is called polarized if the corresponding Hodge structure is polarized.

THEOREM: Category of polarized Hodge-Cousin groups is abelian.

Proof: Easy.

16



Generalized Oeljeklaus-Toma manifolds Misha Verbitsky

Generalized OT-manifolds

DEFINITION: Let G be a polarized Hodge-Cousin group, G = V/Γ, with V =

Cn and A ∼= Zr a free abelian group acting on G by automorphisms. Assume

that V is decomposed as V = Cs × Cr, and A preserves the subset Cs × Hr,
where Hr is the product of upper half-planes, and acts on each component

H by a (real) homothety, in such a way that the quotient Cs × Hr/(Γ o A) is

a smooth, compact complex manifold. Assume, moreover, that G contains

no non-trivial compact complex tori. The quotient Cs × Hr/(Γ o A) is called

generalized OT-manifold if the following additional condition is satisfied.

Consider the linearized action of A on V , ρ :

A−→ End(V ). Since A is commutative, V is decom-

posed as V ∼=
⊕
i Vi, with all Vi be A-invariant and

1-dimensional. Then for any non-zero element a ∈ A,

the action of ρ(a) on the product of first s components

Cs ⊂ V has no real eigenvalues.

(O)

REMARK: This bizarre set of assumptions is necessary, because the proof

of flatness of subvarieties Z ⊂M is done by induction on dimZ, and we need

the “generalized OT”-property to be inherited by all subvarieties.
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Generalized OT-manifolds (2)

REMARK: Clearly, an OT-manifold associated with a number field K is

a special case of a generalized OT-manifold. In this case, the decom-

position V =
⊕
i Vi is identical to the standard splitting V = Cn, with each

component C corresponding to an embedding σ : K −→ C. The correspond-

ing action of a ∈ A = O∗,uK is equal to a multiplication by σ(a), and this is why

the condition (O) holds.

THEOREM: (OVV: the main result of today’s talk)

A complex subvariety of a generalized OT-manifold is also a generalized

OT-manifold.

REMARK: It is not hard to see that a closed Lie subgroup of a Hodge-

Cousin subgroup is again a Hodge-Cousin group. Therefore, it suffices

to show that Z ⊂M is flat and hence corresponds to a Cousin subgroup.
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Structure of tangent bundle for OT-manifolds

CLAIM: Let M be a generalized OT-manifold, and ∇ its flat affine connec-

tion. Then TM is a direct sum of flat line bundles.

Proof: The monodromy group of M = Cs × Hr/Γ is an image of Γ = O+
K o

A. However, OK acts by parallel transport, hence it does not contribute to

monodromy. Therefore, monodromy group of TM is identified with A. Since

it is abelian, its action on TxM is semisimple, and TxM splits to a direct sum

of monodromy-invariant line bundles. Using holonomy of the flat connection,

we obtain that this decomposition is extended to a parallel decomposition of

TM to a direct sum of flat line bunles.
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Subvarieties in flat manifolds

DEFINITION: Recall that the algebraic dimension of a complex mani-

fold, denoted by a(M), is the transcendental dimension of its field of global

meromorphic functions.

Proposition 1: Let (M,∇) be a complex flat affine manifold with (TM,∇)

decomposed as a direct sum of flat line bundles, and Z ⊂ M an irreducible

complex subvariety with a(Z) = 0. Then Z is a flat affine submanifold of

M. Moreover, TZ ⊂ TM |Z is also a direct sum of line bundles.

Proof. Step 1: Let k = dimCZ. Consider the line bundle K∗Z ⊂ ΛkTZ ⊂
ΛkTM |Z . To prove that TZ is preserved by the connection ∇, it suffices to

show that K∗Z is preserved by ∇.

Step 2: Since Z satisfies a(Z) = 0, any non-degenerate morphism be-

tween line bundles on Z is an isomorphism.

Step 3: Since ΛkTM |Z is a direct sum of line bundles, the map ΛkTZ ⊂
ΛkTM |Z is an isomorphism of ΛkTZ and the direct sum of some line bunlde

components of ΛkTM |Z , hence it is preserved by ∇.

20



Generalized Oeljeklaus-Toma manifolds Misha Verbitsky

Curves in generalized OT-manifolds

PROPOSITION: Let M be a generalized OT-manifold. Then M contains

no non-trivial subvarieties of dimension 1.

Proof. Step 1: Let M̃ = Cs×Hr be the universal cover of M , z1, ..., zs be the

coordinates corresponding to C components and zs+1, ..., zr+s the coordinates

on H components. The 1-form d
(∑s+r

i=s+1 log(Im(zi))
)

is clearly A-invariant,

and the corresponding (1,1)-form ω0 := ddc
(∑s+r

i=s+1 log(Im(zi))
)

is semi-

positive.

Step 2: Let C ⊂M be a 1-dimensional complex subvariety. Since ω0 is exact,

one has
∫
C ω0 = 0, hence C is tangent to the null-foliation Σ of ω0.

Step 3: Clearly, Σ is the foliation tangent to the Cs-component of M̃ =

Cs × Hr. Since A acts faithfully on leaves of Σ, it exchanges copies of C.

Therefore, C can be lifted to the A-covering of M , which is a Cousin group,

denoted as G. The Albanese map on G is identity, hence Alb(C) is a complex

torus in G, which is impossible, because G contains no compact complex tori.

This gives a contradiction.
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Subvarieties in generalized OT-manifolds

Lemma 1: All generalized OT-subvarieties in a generalized OT-manifold

are rigid (have no complex deformations).

Proof: See below.

THEOREM: Let Z ⊂M be an irreducible complex subvariety of a generalized

OT-manifold. Then Z is a flat subvariety of M.

Proof. Step 1: To obtain flatness, it would suffice to prove that a(Z) = 0

(Proposition 1).

Step 2: Let d be the smallest dimension for which there exists Z ⊂ M of

positive algebraic dimension. Since M has no curves, we have d > 1. Then all

proper subvarieties of a d-dimensional subvariety Z ⊂M are generalized OT-

submanifolds of M . By Lemma 1, they are rigid. However, if a(Z) > 0, there

exists a non-constant meromorphic function f on Z. Then the zero divisor of

the function f − λ, for λ ∈ C, is not rigid, which brings a contradiction.
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Rigidity of generalized OT-subvarieties

Lemma 1: All generalized OT-subvarieties in a generalized OT-manifold

are rigid (have no complex deformations).

Proof: As shown above, TM = TZ ⊕ NZ, with NZ a direct sum of line

bundles: NZ =
⊕
Li. The condition “O” of the definition of generalized OT-

manifold implies that all Li are non-trivial. To prove Lemma 1, it remains

to show that H0(Li) = 0. This is implied by the following lemma.

LEMMA: Let M = P/A be a generalized OT-manifold, where P ⊂ G is a

convex subset of a Cousin group and A ∼= Zn. Consider a non-trivial flat

line bundle L on M with monodromy factorized through A, considered as a

quotient group of π1(M). Then L has no non-trivial holomorphic sections.

Proof: By Battisti-Oeljeklaus, P has no global holomorphic functions. How-

ever, any section of Li gives a rise to a holomorphic function on P which is

(non-trivially) automorphic under the action of A, hence non-constant.
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HAPPY

BIRTHDAY!
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