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Solvmanifolds

DEFINITION: Let M be a smooth manifold equipped with a transitive action
of solvable Lie group. Then M is called a solvmanifold.

REMARK: All solvmanifolds are obtained as quotient spaces, M = G/H.

DEFINITION: An integrable complex structure on a real Lie algebra g is
a subalgebra g0 ¢ g ®p C such that gl9 @ gl0 =g C

REMARK: Right-invariant complex structures on a connected real Lie group
are in 1 to 1 correspondence with integrable complex structures on its
Lie algebra.

DEFINITION: A complex solvmanifold is a solvmanifold M = G/H equipped
with a complex structure, in such a way that G has a right-invariant complex
structure, and the projection G — M is holomorphic.

REMARK: Solvmanifolds are usually non-homogeneous (as complex
manifolds).
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Inoue surfaces

DEFINITION: ("Bogomolov's theorem”) Inoue surface is a complex sur-
face without curves and with b, = 0.

REMARK: Original definiton of Inoue was constructive, in terms of explicit
action by matrices, and the above result is a theorem proven by Bogomolov
in 1976.

Bogomolov, F. A. (Classification of surfaces of class VIl with b, = 0. Izv.
Akad. Nauk SSSR Ser. Mat. 40 (1976), no. 2, 273-288, 469.

CEPMA
MATEMATHMUECKAS
Tom 40, N2 2, 1976

YK 513.6

®. A. BOTOMOJIOB

KJACCH®UKALLUSA MOBEPXHOCTEN KJIACCA VIlpc b:=0

Bsenenune

Knacc nosepxunocreit VII, — nosepxHocTell, KOTOpble 110 CBOMM TOTIOJIO-
TMYECKHM CBOKCTBAM OT/JIHMUAIOTCS OT K3JEpPOBBIX, OB BIEDPBBIE BBEJIEH
K. Kodaira. VIm ke Oblia noctaBsena npobjeMa K/JIacCHPHKAIHH TaKHX
[IOBEPXHOCTEH.
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History of Inoue surfaces

In 1991, a new proof appeared, based on Yang-Mills theory:
Li, J.; Yau, S.-T.; Zheng, F. A simple proof of Bogomolov's theorem on class
VIl surfaces with b = 0. Illinois J. Math. 34 (1990), no. 2, 217-220.

This proof was incorrect.
Finally, correct proofs were also obtained.

Teleman, Andrei Dumitru Projectively flat surfaces and Bogomolov’'s theorem
on class VIl surfaces. Internat. J. Math. 5 (1994), no. 2, 253-264.

Li, Jun; Yau, Shing-Tung; Zheng, Fangyang On projectively flat Hermitian
manifolds. Comm. Anal. Geom. 2 (1994), no. 1, 103-109.
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Complex solvmanifolds of dimension 2

THEOREM: (Hasegawa) Let M be a complex surface which is diffeomorphic
to a solvmanifold. Then M is (up to a finite unramified quotient) isomorpic
to one the following.

1. Compact complex torus

2. Kodaira surface

3. Inoue surface.

This theorem directly follows from Bogomolov’s theorem, Hasegawa’s
result on Kahler solvmanifolds, and Kodaira’s classification.

To define the Inoue surfaces explicitly, we use the number theory.



Generalized Oeljeklaus-Toma manifolds Misha Verbitsky

Dirichlet unit theorem

DEFINITION: Let K:Q be a number field of degree n. The ring of integers
O C K is an integral closure of Z in K, that is, the set of all roots in K
of monic polynomials P(t) = t" 4+ a,,_1t" 1 4 a,,_-t" 2 4+ ... + ag with integer
coefficients a; € Z.

CLAIM: An additive group O[Jg IS a finitely generated abelian group of
rank n.

DEFINITION: A unit of a ring O is an element u € O, such that u~1!
also belongs to O.

Dirichlet’s unit theorem: Let K be a number field which has s real em-
beddings and 2t complex ones. Then the group of units O}( IS iIsomorphic
to G x Ztts—1 where G is a finite group of roots of unity contained in K.
Moreover, if s > 0, one has G = =£1.

REMARK: For an imaginary quadratic field, the group of units is a group
of solutions of Pell’s equation.
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Cubic fields and complex surfaces

Let K:Q be a cubic extension of Q which has 2 complex embeddings r, 7 and
one real one o (such an extension is obtained by adding all roots of a cubic
polynomial which has exactly one real root).

REMARK: Due to Dirichlet theorem, O3 is isomorphic to Z x {£1}. Let
O}”L = o 1(R”Y) N O%. Then the group (’)}}”L is isomorphic to Z.

Consider the action of (’)} ~2730onR3=CxR

pT(2)(2,t) = (z + 7(x),t + o(x)).
Let ' be a semidirect product O?E X O}{", defined from the natural action

of (”)’;{F on (”)["g. Define an action of I on C x H, where H IS an upper
halfplane, as follows.

The subgroup (’)} C T actson Cx H=C xR x R>9 by translations as above

(trivially on the last argument), and (’)}QL acts multiplicatively as

p (&) (2, 2") == (1(§)z,0(£)7).
3
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Inue surfaces of type S°
DEFINITION: The Inoue surface of type SO is a quotient (C x H)/I.
Its properties: 1. It is a compact, complex solvmanifold

2. Inoue surface admits a flat connection preserving the complex struc-
ture (by construction).

3. Its cohomology are the same as of S3 x S1.

4. The Inoue surface M := (C x H)/I" has no complex curves
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Oeljeklaus-Toma manifolds

Let K be a number field which has 2t complex embedding denoted 7;,7; and
s real ones denoted o;, s > 0, t > 0.

Let (9}"' = 0% NN;o; *(R>0). Choose in (9;{" a free abelian subgroup O}’U
of rank s such that the quotient RS/O}U is compact, where O}’U is mapped
to R! as € — (Iog(al(g)), - Iog(at(g))). Let [ := O} X (’)}U.

DEFINITION: An Oeljeklaus-Toma manifold is a quotient C! x H5/I,
where OI‘E acts on C! x H? as

C(xla ey Lty Y1, ”'7y8) — <$1 + Tl(C)a ey Lt + Tt(C)7y1 + Jl(C): s Ys + JS(C)))

and O}’U as

5(5517 vy Lty Y1y -ee yS) — (2131, ceey Lt Ul(g)yla RXP Ut(f)yt>

THEOREM: (Oeljeklaus-Toma) The OT-manifold M := C! x H5/I is a
compact complex manifold, without any non-constant meromorphic func-
tions. When s=1,t =1, it is an Inoue surface of class S0,

10
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Complex geometry of Oeljeklaus-Toma manifolds

THEOREM: (Ornea-V.) Let K be a number field which has s real em-
beddings and 2t complex ones, t = 1, s > 0. Then the corresponding
Oeceljeklaus-Toma manifold has no non-trivial complex subvarieties.

THEOREM: (Sima Verbitsky) OT-manifold has no curves.

THEOREM: (Sima Verbitsky) Any complex surfaces which can be immersed
to an O T-manifold is isomorphic to an Inoue surface.

THEOREM: (Battisti-Oeljeklaus) OT-manifold has no divisors which are
cohomologous to 0.

Today’s theorem is a work in progress with Liviu Ornea and Victor
Vuletescu.

THEOREM: (Liviu Ornea, V., Victor Vuletescu)

Let X C M be a complex subvariety in an O T-manifold. Then X is flat affine
(that is, geodesically complete with respect to the flat affine connection on
M). Moreover, X is ‘“‘generalized OT"” in the sense defined below.

11
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Cousin groups

REMARK: Cousin groups were studied in 1960-ies by Akihiko Morimoto,
who named them “(H.C) groups”, and Klaus Kopfermann, who called them
“toroidal”’ . The term “Cousin group” most likely originated in the paper of
Huckleberry and Margulis (1983).

DEFINITION: A complex, connected Lie group G is called Cousin group if
all holomorphic functions on G are constant.

REMARK: Cousin groups are abelian. Indeed, suppose that G is a non-
abelian, connected Lie group. Then its adjoint action on its Lie algebra g is
non-trivial. However, this action defines a holomorphic functions from ¢
to End(yg).

This implies the following observation.

COROLLARY: A Cousin group is a quotient of C" by a discrete sub-
group.

12
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Structure theorem for Cousin groups
A stronger result can be proven.

THEOREM: Let G be a Cousin group. Then G is isomorphic to (C*)"/I,
for some discrete subgroup I.

THEOREM: A quotient (C*)™/I" is a Cousin group if and only if " is
Zariski dense in (C*)™,

Proof: Akhiezer, Dmitri N. Lie group actions in complex analysis, Aspects of
Mathematics, E27. Friedr. Vieweg and Sohn, Braunschweig, 1995.

13
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Cousin groups and Hodge structures

DEFINITION: Let Vp be a real vector space. A (real) Hodge structure
of weight w on a vector space Vo = Vr Qr C is a decomposition Vg =
Dp+g=w VP4 satisfying VP4 = V&P, It is called integer Hodge structure if
one fixes an integer lattice Vg or Vz such that Vg = VgQgR or Vg = Vz®zR. A
Hodge structure is equipped with U(1)-action, with v € U(1) acting as vP~? on
VP4 Morphism of integer Hodge structures is a map which is U(1)-invariant
and preserves the lattice.

PROPOSITION: Let V = (Vz,Vg = @ptq=w V??) be an integer Hodge
structure of even weight. Denote by W the projection of V¢ to DPp<q VP4
along @,, VP4, and let Wy := W (V7). Assume that V has no Hodge structure
subquotients of weight 0. Then @,, V?9/Wy is a Cousin group.

14
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Number fields and Hodge structures

EXAMPLE: Let K be a number field, n = s+ r, where 2s is the number of
complex embeddings of K and » > 0 the number of real ones. We are going
to equip V¢ := K ®g C with a Hodge structure as follows.

In each pair of complex conjugate complex embeddings of K to C choose
one. Let V29 C K ®gC be the direct sum of the chosen C-components of
K ®g C, and V11 be the direct sum of all summands of V' corresponding to
real embeddings. Then Vy := O, Vo 1= V021V Llgpv02is an integer Hodge
structure on V. The corresponding Cousin group ©,«, VP4/Vv, is called the
Cousin precursor of the OT-manifold. OT-manifold is obtained as its
Z"-quotient.

REMARK: Hodge structures are not enough! Any exact sequence of
abelian varieties 0 - A — B — C — 0, splits (after taking a finite covering).
However, not any exact sequence of compact complex tori splits. Similarly,
not any exact sequence of Cousin groups splits (even after taking the finite
covers).

We want subgroups of our Cousing groups to be also Cousin. For this, split-
ting of exact sequences is necessary! This would not work without additional
assumptions. We need a Cousin analogue of “polarized Abelian variety’.

15
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Polarized Hodge structures

DEFINITION: Polarization on a Hodge structrure of weight w is a U(1)-
invariant non-degenerate 2-form h &€ VQ"5 ® V@ (symmetric or antisymmetric
depending on parity of w) which satisfies

—(v/=1)P " 9h(x,7) >0 (1)

(“Riemann-Hodge relations” ) for each non-zero x € VP4,

PROPOSITION: Let V; = O,V = V02 g vl ¢ v02 pe the Hodge
structure constructed above. Then it is polarized.

Proof: Consider V = K®qC as an algebra and let h(z,y) := Tr(LzLy), where
Ly(a) =za. =

DEFINITION: Let G be a Cousin group obtained from a Hodge structure as
above. Then G is called a Hodge-Cousin group, and its subgroup obtained
from a Hodge substructure — a Hodge-Cousin subgroup. A Hodge-Cousin
group is called polarized if the corresponding Hodge structure is polarized.

THEOREM: Category of polarized Hodge-Cousin groups is abelian.

Proof:. Easy. m
16



Generalized Oeljeklaus-Toma manifolds Misha Verbitsky

Generalized OT-manifolds

DEFINITION: Let G be a polarized Hodge-Cousin group, G = V/I", with V =
C" and A = 7Z" a free abelian group acting on G by automorphisms. Assume
that V is decomposed as V = C° x C", and A preserves the subset C° x H",
where H" is the product of upper half-planes, and acts on each component
H by a (real) homothety, in such a way that the quotient C% x H"/(I" x A) is
a smooth, compact complex manifold. Assume, moreover, that G contains
no non-trivial compact complex tori. The quotient C5 x H"/(I" x A) is called
generalized OT-manifold if the following additional condition is satisfied.

Consider the linearized action of A on V, p : (O)
A — End(V). Since A is commutative, V is decom-
posed as V = @;V;, with all V; be A-invariant and
1-dimensional. Then for any non-zero element a € A,

the action of p(a) on the product of first s components

C% C V has no real eigenvalues.

REMARK: This bizarre set of assumptions is necessary, because the proof
of flatness of subvarieties Z C M is done by induction on dim Z, and we need
the “generalized OT"”-property to be inherited by all subvarieties.

17
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Generalized OT-manifolds (2)

REMARK: Clearly, an OT-manifold associated with a number field K is
a special case of a generalized OT-manifold. In this case, the decom-
position V = @, V; is identical to the standard splitting V = C", with each
component C corresponding to an embedding o : K — C. The correspond-
ing action of a € A = (’)}’“ is equal to a multiplication by o(a), and this is why
the condition (O) holds.

THEOREM: (OVV: the main result of today’s talk)
A complex subvariety of a generalized O T-manifold is also a generalized
O T-manifold.

REMARK: It is not hard to see that a closed Lie subgroup of a Hodge-
Cousin subgroup is again a Hodge-Cousin group. T herefore, it suffices
to show that Z C M is flat and hence corresponds to a Cousin subgroup.

18
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Structure of tangent bundle for O T-manifolds

CLAIM: Let M be a generalized OT-manifold, and V its flat affine connec-
tion. Then T'M is a direct sum of flat line bundles.

Proof: The monodromy group of M = C% x H"/I" is an image of ' = OI‘E X
A. However, Oy acts by parallel transport, hence it does not contribute to
monodromy. Therefore, monodromy group of T'M is identified with A. Since
it is abelian, its action on T, M is semisimple, and T,.M splits to a direct sum
of monodromy-invariant line bundles. Using holonomy of the flat connection,
we obtain that this decomposition is extended to a parallel decomposition of
TM to a direct sum of flat line bunles. m

19
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Subvarieties in flat manifolds

DEFINITION: Recall that the algebraic dimension of a complex mani-
fold, denoted by a(M), is the transcendental dimension of its field of global
meromorphic functions.

Proposition 1: Let (M,V) be a complex flat affine manifold with (T M, V)
decomposed as a direct sum of flat line bundles, and Z C M an irreducible
complex subvariety with a(Z) = 0. Then Z is a flat affine submanifold of
M. Moreover, TZ C TM|, is also a direct sum of line bundles.

Proof. Step 1: Let k = dim¢ Z. Consider the line bundle K*Z C AFTZ C
AkTM|Z. To prove that T'Z is preserved by the connection V, it suffices to
show that K*Z is preserved by V.

Step 2: Since Z satisfies a(Z) = 0, any non-degenerate morphism be-
tween line bundles on Z is an isomorphism.

Step 3: Since AFT'M|, is a direct sum of line bundles, the map A*TZ C
AFT M|, is an isomorphism of AT Z and the direct sum of some line bunlde
components of /\kTM|Z, hence It IS preserved by V. =

20
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Curves in generalized OT-manifolds

PROPOSITION: Let M be a generalized OT-manifold. Then M contains
Nno non-trivial subvarieties of dimension 1.

Proof. Step 1: Let M = C® xH" be the universal cover of M, z1,...,zs be the
coordinates corresponding to C components and z¢4 1, ..., 2,4 the coordinates
on H components. The 1-form d(ZfI§+1 Iog(Im(zi))) is clearly A-invariant,

and the corresponding (1,1)-form wg := dd° (Zfi§+1 Iog(Im(zz-))) is semi-
positive.

Step 2: Let C C M be a 1-dimensional complex subvariety. Since wqg is exact,
one has [rwg = 0, hence C' is tangent to the null-foliation > of wq.

Step 3: Clearly, ~ is the foliation tangent to the C5-component of M =
C% x H". Since A acts faithfully on leaves of 3, it exchanges copies of C.
Therefore, C' can be lifted to the A-covering of M, which is a Cousin group,
denoted as G. The Albanese map on G is identity, hence Alb(C) is a complex
torus in GG, which is impossible, because G contains no compact complex tori.

This gives a contradiction. m
21
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Subvarieties in generalized OT-manifolds

Lemma 1: All generalized OT-subvarieties in a generalized O T-manifold
are rigid (have no complex deformations).

Proof: See below.

THEOREM: Let Z C M be an irreducible complex subvariety of a generalized
OT-manifold. Then Z is a flat subvariety of M.

Proof. Step 1: To obtain flatness, it would suffice to prove that a(Z) =0
(Proposition 1).

Step 2: Let d be the smallest dimension for which there exists Z C M of
positive algebraic dimension. Since M has no curves, we haved > 1. Then all
proper subvarieties of a d-dimensional subvariety Z C M are generalized OT-
submanifolds of M. By Lemma 1, they are rigid. However, if a(Z) > 0, there
exists a non-constant meromorphic function f on Z. Then the zero divisor of
the function f — X, for A € C, is not rigid, which brings a contradiction. m

22
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Rigidity of generalized OT-subvarieties

Lemma 1: All generalized OT-subvarieties in a generalized O T-manifold
are rigid (have no complex deformations).

Proof: As shown above, TTM = TZ & Nz, with NZ a direct sum of line
bundles: NZ =& L;. The condition “O” of the definition of generalized OT-
manifold implies that all L; are non-trivial. To prove Lemma 1, it remains
to show that H9(L;) = 0. This is implied by the following lemma.

LEMMA: Let M = P/A be a generalized OT-manifold, where P C G is a
convex subset of a Cousin group and A = Z". Consider a non-trivial flat
line bundle L on M with monodromy factorized through A, considered as a
quotient group of 71(M). Then L has no non-trivial holomorphic sections.

Proof: By Battisti-Oeljeklaus, P has no global holomorphic functions. How-
ever, any section of L; gives a rise to a holomorphic function on P which is
(non-trivially) automorphic under the action of A, hence non-constant. =

23
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HAPPY
BIRTHDAY!
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