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Plan

1. Hyperkahler manifolds. Twistor spaces.

2. Holography principle

3. Moishezon twistor spaces. Applications of the holography principle to the
local structure of twistor spaces.

4. Proof of holography principle.

5. Hyperkahler reduction.
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Twistor spaces (and hyperkahler geometry)

DEFINITION: A hyperkahler structure on a manifold M is a Riemannian
structure g and a triple of complex structures I, J, K, satisfying quaternionic
relations T oJ = —J ol = K, such that g is Kahler for I, J, K.

DEFINITION: Induced complex structures on a hyperkahler manifold are
complex structures of form L := al +bJ + cK. It is a sphere: 52 = {[ :=
al +bJ4+cK, a?+b2+c2=1.)

DEFINITION: A twistor space Tw(M) of a hyperkahler manifold is a com-
plex manifold obtained by gluing these complex structures into a holo-
morphic family over CPl. More formally:

Let Tw(M) := M x S2. Consider the complex structure I, : TrmM — Ty M on
M induced by J € $2 C H. Let I; denote the complex structure on S2 = CP1.

The operator Ity = Im ® I; : To Tw(M) — T, Tw(M) satisfies 12, = —Id.
It defines an almost complex structure on Tw(M). This almost complex
structure is known to be integrable (Obata)
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Geometry of twistor spaces

EXAMPLE: If M = H", Tw(M) = Tot(0O(1)%"?) =& cp2rt\cp2n—1 (total
space of a vector bundle (O(1)%7).

REMARK: (Deligne, Simpson)
The quaternionic structure on a hyperkahler manifold can be reconstructed
from the complex geometry of its twistor space.

CLAIM: When M is compact, Tw(M) never admits a Kahler structure.

Proof: Let w be the standard Hermitian form of Tw(M). Then dd‘w is a
positive (2,2)-form (a calculation due to Kaledin-V.) For any Kahler form wp,
this would imply

dime M—1

d (wo A dcw) = dime M—1

/ / W A ddw > 0,
Tw(M) Tw(M)

which is impossible by Stokes’ theorem. =
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Rational curves on Tw(M).

DEFINITION: An ample rational curve on a complex manifold M is a
smooth curve S =2 CPl ¢ M such that NS = EBZ;% O(ig), with 4, > 0. It is
called a quasiline if all 7, = 1.

CLAIM: Let M be a compact complex manifold containing a an ample ra-
tional line. Then any N points zq,...,zxy can be connected by an ample
rational curve.

CLAIM: Let M be a hyperkidhler manifold, Tw(M) -2 M its twistor space,
m € M a point, and S;; = CPl x {m} the corresponding rational curve in
Tw(M). Then S,, is a quasiline.

Proof: Since the claim is essentially infinitesimal, it suffices to check it when
M is flat. Then Tw(M) = Tot(0(1)%?P) = cp2rtI\CcP?,~1, and S,, is a
section of O(1)%2P, m
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Holography principle

THEOREM: Let S C M be an ample curve in a simply connected com-
plex manifold, which is covered by deformations of S. Consider a tubular
neighbourhnood U D S. Then, for any holomorphic line bundle L on M,
the space HO(U, L) is independent from the choice of U and S in its
deformation class.

REMARK: In these assumptions, HO(U, L) is always finite-dimensional
(Hartshorne).

DEFINITION: Given a complex manifold Z, denote by Mer(Z) the field of
global meromorphic functions on Z, and let the algebraic dimension a(Z%)
be the transcendence degree of Mer(Z2).

REMARK: It could be infinite!

COROLLARY: a(Tw(M)) = a(U) for any tubular neighbourhood U of
a quasiline satisfying the assumptions of the holography principle.
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Moishezon twistor spaces

DEFINITION: A compact complex variety Z is called Moishezon if the ring
of meromorphic functions on Z has algebraic dimension dim Z, or, equivalently,
if Z is bimeromorphic to a projective manifold.

CLAIM: Let M be a simply connected hyperkaahler manifold, and Tw(M)
its twistor space. Then a(Tw(M)) < dimg Tw(M).

DEFINITION: A twistor space satisfying a(Tw(M)) = dim¢ Tw(M) is called
Moishezon.

CLAIM: All Moishezon twistor spaces are bimeromorphic to open sub-
sets of projective manifolds.

THEOREM: Let V be a quaterionic Hermitian vector space, and G C Sp(V)
a compact Lie group acting on V by quaternionic isometries. Denote by M
the hyperkahler reduction of V. Then Tw(M) is Moishezon.
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Local structure of hyperkahler manifolds

THEOREM: (Fujiki, 1987) Let M be a compact hyperkahler manifold, and
L eS?2CHa generic induced complex structure. Then M contains no
divisors.

COROLLARY: Let M be a compact hyperkahler manifold, and D C Tw(M)
a divisor. Then D is a union of several fibers of the projection = :
Tw(M) — CPL.

Proof: Suppose that D contains a component which intersects generic fiber
of m. By transversality, this intersection is a divisor, contradicting Fujiki's
theorem. m

COROLLARY: Let M be a compact, simply connected hyperkahler mani-
fold, M’ a hyperkdhler manifold obtained by hyperkdhler reduction (such as
Nakajima quiver variety), and U Cc M, U’ ¢ M’ open subsets. Then U is
never equivalent to U’ as a hyperkahler manifold.

Proof: a(Tw(U)) =a(Tw(M)) =1, and
a(Tw(U")) = a(Tw(M")) =dim(Tw(M")). =
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Complex manifolds and quasilines

REMARK: Let S C M be a quasiline. Then, for an appropriate tubular
neighbourhood U C M of S, “for every two points x,y € U close to S and
far from each other, there is a unique deformation of S containing X
and Y.”

More precisely:

CLAIM: Let S C M be a quasi-line. Then, for any sufficiently small tubular
neighbourhood U C M of S, there exists a smaller tubular neighbourhood W C
U, satisfying the following condition. Let Ag be the image of the diagonal
embedding Ag: S— W x W. Then there exists an open neighbourhood V
of Ag, properly contained in W x W, such that for any pair (xz,y) € W xW\V,
there exists a unique deformation S’ C U of S containing =z and .

COROLLARY: For any quasilinein M, its deformation space is 2(dim M —1)-
dimensional.
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Proof of holography principle

THEOREM: (holography principle) Let S C M be a quasiline in a simply
connected complex manifold, which is covered by deformations of S. Assume
that M is equipped with a projection = : M — S inducing identity on S.
Consider a tubular neighbourhood U O §, and assume that = : U — S
has connected fibers. Then, for any holomorphic line bundle L on M,
the space HO(U, L) is independent from the choice of U and S in its
deformation class.

A (slighly) weaker statement.

THEOREM 1: Let S C M be a quasiline, and L a holomorphic bundle
on M. Assume that M is equipped with a projection = : M — S inducing
identity on S. Consider a sufficiently small tubular neighbourhood U DO S,
and a smaller tubular neighbournood V C U. Then the restriction map
HO(U,L) — HO(V, L) is an isomorphism.

We deduce the ‘“Holography principle” from Theorem 1.
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Deducing the holography principle from Theorem 1

Step 1: Choose a continuous, connected family Sy of quasilines parametrized
by B such that Upep Sp = M Find a tubular neighbourhood U, for each S in
such a way that an intersection U,NU, for sufficiently close b, b’ always contains
Sy and Sy. By Theorem 1, HO(U, N Uy, L) = HO(Uy, L) = HO(Uy, L).

Step 2: Since B is connected, all the spaces H°(U,, L) are isomorphic, and
these isomorphisms are compatible with the restrictions to the intersections
Ub M Ub"

Step 3: Let now f € HO(Uy, L), and let M be the domain of holomorphy
for f, that is, a maximal domain (non-ramified over M) such that f admits a
holomorphic extension to Mf. Since UU, = M, and f can be holomorphically
extended to any U, the domain Mf is a covering of M. Now, *‘“holography
principle’ follows, because M is simply connected. =
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Proof of Theorem 1

THEOREM 1: Let S C M be a quasiline, and L a holomorphic bundle
on M. Assume that M is equipped with a projection = : M — S inducing
identity on S. Consider a sufficiently small tubular neighbourhood U DO S,
and a smaller tubular neighbourhood V C U. Then the restriction map
HO(U,L) — HO(V, L) is an isomorphism.

Proof. Step 1: Fix a point xg = oo in CPl. A section of L‘CPl = O(d) is
the same as meromorphic function having a pole of degree < d at 7~ 1(0).

Step 2: For each section Sy : CPl — M of n, a degree d meromorphic
function on S1 is uniquely determined by its values at any d+4 1 points of 57.

Step 3: Given a meromorphic function f € HO(V,L) and a quasiline S
intersecting V in an open set, we can extend f to a meromorphic function f
on 51 by computing its values at d 4+ 1 distinct points z1,...,24471 Of 51 NV.
Whenever 54 is~in V', this procedure gives f|51. By analytic continuation,
the values of f(z) at any z € S; are independent from the choice of z;
and 51.

Step 4: Therefore, f is a well-defined meromorphic function on the
union V7 of all quasilines intersecting V. For U sufficiently small, V;
contains U. Therefore, any f € H9(V, L) can be extended to U. m
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Hamiltonians
Let’s define the hyperkahler reduction.

We denote the Lie derivative along a vector field as Liey : A*M —s A*M, and
contraction with a vector field by iy : A'M — AN—Lpr,

Cartan’s formula: doi; + iy, od = Lie,.
REMARK: Let (M,w) be a symplectic manifold, G a Lie group acting on M
by symplectomorphisms, and g its Lie algebra. For any g € g, denote by pq

the corresponding vector field. Then Liey,,w = 0, giving d(ip,(w)) = 0. We
obtain that i, (w) is closed, for any g c g.

DEFINITION: A Hamiltonian of g € g is a function A on M such that
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Moment maps

DEFINITION: (M,w) be a symplectic manifold, G a Lie group acting on M
by symplectomorphisms. A moment map p of this action is a linear map
g — C°°M associating to each g € G its Hamiltonian.

REMARK: It is more convenient to consider p as an element of g* ®r C°M,
or (and this is most standard) as a function with values in g*.

REMARK: Moment map always exists if M is simply connected.

DEFINITION: A moment map M — g* is called equivariant if it is equiv-
ariant with respect to the coadjoint action of G on g*.

REMARK: M -5 g* is a moment map iff for all g € g, (A, g) = ip,(w).

Therefore, a moment map is defined up to a constant g*-valued func-
tion. An equivariant moment map is is defined up to a constant g*-valued
function which is G-invariant.

DEFINITION: A G-invariant ¢ € g* is called central.

CLAIM: An equivariant moment map exists whenever Hl(G,g*) = 0.
In particular, when G is reductive and M is simply connected, an equivariant
moment map exists.
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Hyperkahler reduction

DEFINITION: Let G be a compact Lie group, p its action on a hyperkahler
manifold M by hyperkdhler isometries, and g* a dual space to its Lie algebra. A
hyperkahler moment map is a G-equivariant smooth map p: M — g* @ R3
such that (u;(v),g9) = w;(v,dp(g)), for every v € TM, g € g and ¢ = 1,2,3,
where w; is one three Kahler forms associated with the hyperkahler structure.

DEFINITION: Let &1,&2,&3 be three G-invariant vectors in g*. The quotient
manifold M J/G := p~1(&1,65,€3) /G is called the hyperkahler quotient of M.

THEOREM: (Hitchin, Karlhede, Lindstrom, RocCek)
The quotient M //G is hyperkaehler.
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Holomorphic moment map

Let Q ;= w;++v—1wg. Thisis a holomorphic symplectic (2,0)-form on (M, I).
The proof of HKLR theorem. Step 1: Let uj,ux be the moment map
associated with wj,wg, and uc = py + V-1 pg. Then (duc,g) = ip,(£2)

Therefore, duc € ALO(M,T) ® g*.

Step 2: This implies that the map pc is holomorphic. It is called the
holomorphic moment map.

Step 3: By definition, M/G = uz'(c)/G, where ¢ € g* ®g C is a central
element. This is a Kahler manifold, because it is a Kahler quotient of a
Kahler manifold.

Step 4: We obtain 3 complex structures I,J, K on the hyperkahler quotient
M //G. They are compatible in the usual way (an easy exercise). =
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Twistor spaces and hyperkahler reduction

THEOREM: Let V be a quaterionic Hermitian vector space, and G C Sp(V)
a compact Lie group acting on V by quaternionic isometries. Denote by M
the hyperkahler reduction of V. Then Tw(M) is Moishezon.

Proof: Tw(M) is obtained as the space of stable Gg¢-orbits in ,u(_jl(O) C
Tw(V). The space Tw(V) = Ccp2nTI\CcpP2"—1 is algebraic. Averaging over
(GG, we obtain that the field Ge-invariant rational functions on Tw(M) has
dimension dim Tw(M), and Tw(M) is Moishezon. =

COROLLARY: Let U be an open subset of a compact, simply connected
hyperkdhler manifold, and U’ an open subset of a hyperkahler manifold ob-
tained as V /G, where V is flat and G reductive. Then U is not isomorphic
to U’ as hyperkahler manifold.

Proof: Tw(U’) has many meromorphic functions, and Tw(U) has very few.
u
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