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Plan

1. Hyperkähler manifolds. Twistor spaces.

2. Holography principle

3. Moishezon twistor spaces. Applications of the holography principle to the

local structure of twistor spaces.

4. Proof of holography principle.

5. Hyperkähler reduction.
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Twistor spaces (and hyperkähler geometry)

DEFINITION: A hyperkähler structure on a manifold M is a Riemannian

structure g and a triple of complex structures I, J,K, satisfying quaternionic

relations I ◦ J = −J ◦ I = K, such that g is Kähler for I, J,K.

DEFINITION: Induced complex structures on a hyperkähler manifold are

complex structures of form L := aI + bJ + cK. It is a sphere: S2 ∼= {L :=

aI + bJ + cK, a2 + b2 + c2 = 1.}

DEFINITION: A twistor space Tw(M) of a hyperkähler manifold is a com-

plex manifold obtained by gluing these complex structures into a holo-

morphic family over CP1. More formally:

Let Tw(M) := M ×S2. Consider the complex structure Im : TmM → TmM on

M induced by J ∈ S2 ⊂ H. Let IJ denote the complex structure on S2 = CP1.

The operator ITw = Im ⊕ IJ : TxTw(M) → TxTw(M) satisfies I2
Tw = − Id.

It defines an almost complex structure on Tw(M). This almost complex

structure is known to be integrable (Obata)
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Geometry of twistor spaces

EXAMPLE: If M = Hn, Tw(M) = Tot(O(1)⊕n) ∼= CP2n+1\CP2n−1 (total

space of a vector bundle (O(1)⊕n).

REMARK: (Deligne, Simpson)

The quaternionic structure on a hyperkähler manifold can be reconstructed

from the complex geometry of its twistor space.

CLAIM: When M is compact, Tw(M) never admits a Kähler structure.

Proof: Let ω be the standard Hermitian form of Tw(M). Then ddcω is a

positive (2,2)-form (a calculation due to Kaledin-V.) For any Kähler form ω0,

this would imply∫
Tw(M)

d
(
ω

dimCM−1
0 ∧ dcω

)
=
∫

Tw(M)
ω

dimCM−1
0 ∧ ddcω > 0,

which is impossible by Stokes’ theorem.
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Rational curves on Tw(M).

DEFINITION: An ample rational curve on a complex manifold M is a

smooth curve S ∼= CP1 ⊂ M such that NS =
⊕n−1
k=1O(ik), with ik > 0. It is

called a quasiline if all ik = 1.

CLAIM: Let M be a compact complex manifold containing a an ample ra-

tional line. Then any N points z1, ..., zN can be connected by an ample

rational curve.

CLAIM: Let M be a hyperkähler manifold, Tw(M)
σ−→ M its twistor space,

m ∈ M a point, and Sm = CP1 × {m} the corresponding rational curve in

Tw(M). Then Sm is a quasiline.

Proof: Since the claim is essentially infinitesimal, it suffices to check it when

M is flat. Then Tw(M) = Tot(O(1)⊕2p) ∼= CP2p+1\CP2p−1, and Sm is a

section of O(1)⊕2p.
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Holography principle

THEOREM: Let S ⊂ M be an ample curve in a simply connected com-

plex manifold, which is covered by deformations of S. Consider a tubular

neighbourhood U ⊃ S. Then, for any holomorphic line bundle L on M,

the space H0(U,L) is independent from the choice of U and S in its

deformation class.

REMARK: In these assumptions, H0(U,L) is always finite-dimensional

(Hartshorne).

DEFINITION: Given a complex manifold Z, denote by Mer(Z) the field of

global meromorphic functions on Z, and let the algebraic dimension a(Z)

be the transcendence degree of Mer(Z).

REMARK: It could be infinite!

COROLLARY: a(Tw(M)) = a(U) for any tubular neighbourhood U of

a quasiline satisfying the assumptions of the holography principle.
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Moishezon twistor spaces

DEFINITION: A compact complex variety Z is called Moishezon if the ring

of meromorphic functions on Z has algebraic dimension dimZ, or, equivalently,

if Z is bimeromorphic to a projective manifold.

CLAIM: Let M be a simply connected hyperkaähler manifold, and Tw(M)

its twistor space. Then a(Tw(M)) 6 dimC Tw(M).

DEFINITION: A twistor space satisfying a(Tw(M)) = dimC Tw(M) is called

Moishezon.

CLAIM: All Moishezon twistor spaces are bimeromorphic to open sub-

sets of projective manifolds.

THEOREM: Let V be a quaterionic Hermitian vector space, and G ⊂ Sp(V )

a compact Lie group acting on V by quaternionic isometries. Denote by M

the hyperkähler reduction of V . Then Tw(M) is Moishezon.
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Local structure of hyperkähler manifolds

THEOREM: (Fujiki, 1987) Let M be a compact hyperkähler manifold, and

L ∈ S2 ⊂ H a generic induced complex structure. Then M contains no

divisors.

COROLLARY: Let M be a compact hyperkähler manifold, and D ⊂ Tw(M)

a divisor. Then D is a union of several fibers of the projection π :

Tw(M)−→ CP1.

Proof: Suppose that D contains a component which intersects generic fiber

of π. By transversality, this intersection is a divisor, contradicting Fujiki’s

theorem.

COROLLARY: Let M be a compact, simply connected hyperkähler mani-

fold, M ′ a hyperkähler manifold obtained by hyperkähler reduction (such as

Nakajima quiver variety), and U ⊂ M , U ′ ⊂ M ′ open subsets. Then U is

never equivalent to U ′ as a hyperkähler manifold.

Proof: a(Tw(U)) = a(Tw(M)) = 1, and

a(Tw(U ′)) = a(Tw(M ′)) = dim(Tw(M ′)).
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Complex manifolds and quasilines

REMARK: Let S ⊂ M be a quasiline. Then, for an appropriate tubular

neighbourhood U ⊂M of S, “for every two points x, y ∈ U close to S and

far from each other, there is a unique deformation of S containing X

and Y .”

More precisely:

CLAIM: Let S ⊂ M be a quasi-line. Then, for any sufficiently small tubular

neighbourhood U ⊂M of S, there exists a smaller tubular neighbourhood W ⊂
U , satisfying the following condition. Let ∆S be the image of the diagonal

embedding ∆S : S −→W ×W . Then there exists an open neighbourhood V

of ∆S, properly contained in W×W , such that for any pair (x, y) ∈W×W\V ,

there exists a unique deformation S′ ⊂ U of S containing x and y.

COROLLARY: For any quasiline in M , its deformation space is 2(dimM−1)-

dimensional.
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Proof of holography principle

THEOREM: (holography principle) Let S ⊂ M be a quasiline in a simply

connected complex manifold, which is covered by deformations of S. Assume

that M is equipped with a projection π : M −→ S inducing identity on S.

Consider a tubular neighbourhood U ⊃ S, and assume that π : U −→ S

has connected fibers. Then, for any holomorphic line bundle L on M,

the space H0(U,L) is independent from the choice of U and S in its

deformation class.

A (slighly) weaker statement.

THEOREM 1: Let S ⊂ M be a quasiline, and L a holomorphic bundle

on M . Assume that M is equipped with a projection π : M −→ S inducing

identity on S. Consider a sufficiently small tubular neighbourhood U ⊃ S,

and a smaller tubular neighbourhood V ⊂ U . Then the restriction map

H0(U,L)−→H0(V, L) is an isomorphism.

We deduce the “Holography principle” from Theorem 1.
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Deducing the holography principle from Theorem 1

Step 1: Choose a continuous, connected family Sb of quasilines parametrized

by B such that
⋃
b∈B Sb = M Find a tubular neighbourhood Ub for each Sb in

such a way that an intersection Ub∩Ub′ for sufficiently close b, b′ always contains

Sb and Sb′. By Theorem 1, H0(Ub ∩ Ub′, L) = H0(Ub, L) = H0(Ub′, L).

Step 2: Since B is connected, all the spaces H0(Ub, L) are isomorphic, and

these isomorphisms are compatible with the restrictions to the intersections

Ub ∩ Ub′.

Step 3: Let now f ∈ H0(Ub, L), and let M̃f be the domain of holomorphy

for f , that is, a maximal domain (non-ramified over M) such that f admits a

holomorphic extension to M̃f . Since ∪Ub = M , and f can be holomorphically

extended to any Ub, the domain M̃f is a covering of M . Now, “holography

principle” follows, because M is simply connected.
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Proof of Theorem 1

THEOREM 1: Let S ⊂ M be a quasiline, and L a holomorphic bundle
on M . Assume that M is equipped with a projection π : M −→ S inducing
identity on S. Consider a sufficiently small tubular neighbourhood U ⊃ S,
and a smaller tubular neighbourhood V ⊂ U . Then the restriction map
H0(U,L)−→H0(V, L) is an isomorphism.

Proof. Step 1: Fix a point x0 = ∞ in CP1. A section of L
∣∣∣CP1 = O(d) is

the same as meromorphic function having a pole of degree 6 d at π−1(∞).

Step 2: For each section S1 : CP1 −→M of π, a degree d meromorphic
function on S1 is uniquely determined by its values at any d+ 1 points of S1.

Step 3: Given a meromorphic function f ∈ H0(V, L) and a quasiline S1
intersecting V in an open set, we can extend f to a meromorphic function f̃
on S1 by computing its values at d + 1 distinct points z1, ..., zd+1 of S1 ∩ V .
Whenever S1 is in V , this procedure gives f

∣∣∣S1
. By analytic continuation,

the values of f̃(z) at any z ∈ S1 are independent from the choice of zi
and S1.

Step 4: Therefore, f̃ is a well-defined meromorphic function on the
union V1 of all quasilines intersecting V . For U sufficiently small, V1
contains U . Therefore, any f ∈ H0(V, L) can be extended to U .
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Hamiltonians

Let’s define the hyperkähler reduction.

We denote the Lie derivative along a vector field as Liex : ΛiM −→ ΛiM , and

contraction with a vector field by ix : ΛiM −→ Λi−1M .

Cartan’s formula: d ◦ ix + ix ◦ d = Liex.

REMARK: Let (M,ω) be a symplectic manifold, G a Lie group acting on M

by symplectomorphisms, and g its Lie algebra. For any g ∈ g, denote by ρg

the corresponding vector field. Then Lieρg ω = 0, giving d(iρg(ω)) = 0. We

obtain that iρg(ω) is closed, for any g ∈ g.

DEFINITION: A Hamiltonian of g ∈ g is a function h on M such that

dh = iρg(ω).
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Moment maps

DEFINITION: (M,ω) be a symplectic manifold, G a Lie group acting on M
by symplectomorphisms. A moment map µ of this action is a linear map
g−→ C∞M associating to each g ∈ G its Hamiltonian.

REMARK: It is more convenient to consider µ as an element of g∗⊗RC
∞M ,

or (and this is most standard) as a function with values in g∗.

REMARK: Moment map always exists if M is simply connected.

DEFINITION: A moment map M −→ g∗ is called equivariant if it is equiv-
ariant with respect to the coadjoint action of G on g∗.

REMARK: M
µ−→ g∗ is a moment map iff for all g ∈ g, 〈dµ, g〉 = iρg(ω).

Therefore, a moment map is defined up to a constant g∗-valued func-
tion. An equivariant moment map is is defined up to a constant g∗-valued
function which is G-invariant.

DEFINITION: A G-invariant c ∈ g∗ is called central.

CLAIM: An equivariant moment map exists whenever H1(G, g∗) = 0.
In particular, when G is reductive and M is simply connected, an equivariant
moment map exists.
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Hyperkähler reduction

DEFINITION: Let G be a compact Lie group, ρ its action on a hyperkähler

manifold M by hyperkähler isometries, and g∗ a dual space to its Lie algebra. A

hyperkähler moment map is a G-equivariant smooth map µ : M → g∗ ⊗ R3

such that 〈µi(v), g〉 = ωi(v, dρ(g)), for every v ∈ TM , g ∈ g and i = 1,2,3,

where ωi is one three Kähler forms associated with the hyperkähler structure.

DEFINITION: Let ξ1, ξ2, ξ3 be three G-invariant vectors in g∗. The quotient

manifold M///G := µ−1(ξ1, ξ2, ξ3)/G is called the hyperkähler quotient of M .

THEOREM: (Hitchin, Karlhede, Lindström, Roček)

The quotient M///G is hyperkaehler.
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Holomorphic moment map

Let Ω := ωJ+
√
−1ωK. This is a holomorphic symplectic (2,0)-form on (M, I).

The proof of HKLR theorem. Step 1: Let µJ , µK be the moment map

associated with ωJ , ωK, and µC := µJ +
√
−1 µK. Then 〈dµC, g〉 = iρg(Ω)

Therefore, dµC ∈ Λ1,0(M, I)⊗ g∗.

Step 2: This implies that the map µC is holomorphic. It is called the

holomorphic moment map.

Step 3: By definition, M///G = µ−1
C (c)//G, where c ∈ g∗ ⊗R C is a central

element. This is a Kähler manifold, because it is a Kähler quotient of a

Kähler manifold.

Step 4: We obtain 3 complex structures I, J,K on the hyperkähler quotient

M///G. They are compatible in the usual way (an easy exercise).
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Twistor spaces and hyperkähler reduction

THEOREM: Let V be a quaterionic Hermitian vector space, and G ⊂ Sp(V )

a compact Lie group acting on V by quaternionic isometries. Denote by M

the hyperkähler reduction of V . Then Tw(M) is Moishezon.

Proof: Tw(M) is obtained as the space of stable GC-orbits in µ−1
C (0) ⊂

Tw(V ). The space Tw(V ) = CP2n+1\CP2n−1 is algebraic. Averaging over

G, we obtain that the field GC-invariant rational functions on Tw(M) has

dimension dim Tw(M), and Tw(M) is Moishezon.

COROLLARY: Let U be an open subset of a compact, simply connected

hyperkähler manifold, and U ′ an open subset of a hyperkähler manifold ob-

tained as V ///G, where V is flat and G reductive. Then U is not isomorphic

to U ′ as hyperkähler manifold.

Proof: Tw(U ′) has many meromorphic functions, and Tw(U) has very few.
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