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Calabi-Yau theorem

Definition 1: A hyperkahler structure on a manifold M is a Riemannian
structure g and a triple of complex structures I, J, K, satisfying quaternionic
relations ToJ = —J ol = K, such that g is Kahler for I, J, K.

REMARK: A hyperkahler manifold is holomorphically symplectic: wj+
vV—1wg is a holomorphic symplectic form on (M, I).

Definition 2: A hyperkahler manifold is a complex, Kahler, holomorphically
symplectic manifold.

THEOREM: (Calabi-Yau) A compact, Kahler, holomorphically symplectic
manifold admits a unique hyperkahler metric in any Kahler class.

REMARK: This means that Definition 1 is equivalent to Definition 2,
but only for compact manifold.

REMARK: Twistors are used to give a complex-analytic definition which
works for non-compact and/or singular varieties.
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Twistor spaces for hyperkahler manifolds

DEFINITION: Induced complex structures on a hyperkahler manifold are
complex structures of form S2 = {L ;= al +bJ +cK, a?+b2+c%2 =1}
They are usually non-algebraic. Indeed, if M is compact, for generic a,b, c,
(M, L) has no divisors (Fujiki).

DEFINITION: A twistor space Tw(M) of a hyperkahler manifold is a com-
plex manifold obtained by gluing these complex structures into a holo-
morphic family over CPl. More formally:

Let TwW(M) := M x S2. Consider the complex structure I, : TonM — T, M 0ON
M induced by J & S2 C H. Let I ; denote the complex structure on S2 = cpl.

The operator Iy = I;m® 15 : Ty TW(M) — T, Tw(M) satisfies I%W = —1Id.
It defines an almost complex structure on Tw(M). This almost complex
structure is known to be integrable (Obata, Salamon)

EXAMPLE: If M = H*, Tw(M) = Tot(O(1)®") & cp2nt+l\cp2n-1

REMARK: For M compact, Tw(M) never admits a Kahler structure.
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Twistor spaces for quaternionic-Kahler manifolds

DEFINITION: A almost quaternionic-Kahler manifold is a Riemannian
manifold M equipped with a rank 3 sub-bundle E C so(TM) C End(M)
which is pointwise isomorphic to su(2) acting on T'M as on a direct sum
of d'mL{RM of its fundamental representations (which have real dimension 4).
This manifold is called quaternionic-Kahler if V(E) ¢ E ® A1M, where

V: End(M) — End(M) ® A1 M is the Levi-Civita connection.

DEFINITION: A twistor space Tw(M) of a quaternionic-Kahler manifold
(M, g, F) is a total space of a unit sphere bundle on E, equipped with a complex
structure Ity =Im @1y : T Tw(M) — T, Tw(M) as in the hyperkahler case.

EXAMPLE: If M = HP", then Tw(M) = CP2"t1 In particular, Tw(S%) =
CP3.

REMARK: Consider a compact quaternionic-Kahler manifold (M, g) with
Ric(M) = Ag, A > 0. Then Tw(M) is a holomorphically contact Fano
manifold. Conversely, any Kahler-Einstein holomorphically contact Fano
manifold is a twistor space of a compact quaternionic-Kahler manifold
(M, g) with Ric(M) = \g, A > 0.

One can say that hyperkahler geometry is holomorphic symplectic ge-
ometry, and quaternionic-Kahler is holomorphic contact geometry
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Twistor spaces for 4-dimensional Riemannian manifolds

DEFINITION: Let M be a Riemannian 4-manifold. Consider the action of
the Hodge x-operator: * : A2M — A2M. Since %2 = 1, the eigenvalues
are =1, and one has a decomposition A2M = ATM @ A~ M onto autodual
(xn = n) and anti-autodual (xn = —n) forms.

REMARK: If one changes the orientation of M, leaving metric the same,
ATM and A~ M are exchanged. Therefore, dim A2M = 6 implies dim AT (M) =

3.

REMARK: Using the isomorphism N2M = so(T M), we interpret n € /\?nM as
an endomorphisms of 1), M. Then the unit vectors n € /\,‘J;M correspond
to oriented, orthogonal complex structures on 71;,M.

DEFINITION: Let Tw(M) := SATM be the set of unit vectors in ATM.
At each point (m,s) € Tw(M), consider the decoposition Ty s TW(M) =
TmM@TSS/\$M, induced by the Levi-Civita connection. Let I be the complex
structure on 1;,M induced by s, IS/%M the complex structure on S/\;';M = 52

induced by the metrics and orientation, and Z : Ty s TW(M) — Tim,s TW(M)

be equal to Z; @ISA+M. An almost complex manifold (Tw(M),Z) is called
the twistor space of M.
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Properties of twistor spaces for 4-dimensional manifolds

1. The almost complex structure Z on Tw(M) is a conformal invariant
of M. Moreover, one can reconstruct the conformal structure on M
from the almost complex structure on Tw(M) and its anticomplex involution
(m,s) — (m,—s).

2. Tw(M) is a complex manifold if and only if W1 = 0, where W1 (“self-
dual conformal curvature” ) is an autodual component of the curvature tensor.
Such manifolds are called conformally semi-flat or ASD (anti-selfdual).

3. For a hyperkahler manifold of real dimension 4, the two definitions of
twistor spaces coincide.

4. Let M be a compact ASD manifold. Then Tw(M) does not admit a
Kahler structure, unless M is S* or CP? (Hitchin). However, M is often
Moishezon.

QUESTION: The twistor spaces are rationally connected. What else
can one say about algebraic geometry of the Moishezon twistor spaces?

CONJECTURE: They are all rational.
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Rational curves on Tw(M).

DEFINITION: An ample rational curve on a complex manifold M is a
smooth curve S =2 CPl ¢ M such that NS = @Z;ﬁ O(ig), with 4, > 0. It is
called a quasiline if all 7, = 1.

THEOREM: (“twistor spaces are rationally connected”)
Let M be a compact complex manifold containing a an ample rational line.
red any N points zq, ...,z can be connected by an ample rational curve.

CLAIM: Let M be a hyperkidhler manifold, Tw(M) -2 M its twistor space,
m € M a point, and S;;, = CPl x {m} the corresponding rational curve in
Tw(M). Then S,, is a quasiline.

Proof: Since the claim is essentially infinitesimal, it suffices to check it when
M is flat. Then Tw(M) = Tot(0O(1)®2pr) = cp2r+I\Ccp2r-1, and S, is a
section of O(1)%2P, m
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Hypercomplex structures and twistor sections

DEFINITION: A hypercomplex structure on a manifold M is a triple of
complex structures I, J, K, satisfying quaternionic relations IoJ = —Jol = K.

REMARK: Twistor spaces for hypercomplex manifolds are defined in the
same way as for hyperkahler.

REMARK: The twistor space has many rational curves. In fact, it is
rationally connected (Campana).

DEFINITION: Denote by Sec(M) the space of holomorphic sections of
the twistor fibration Tw(M) — CP1.

DEFINITION: For each point m € M, the horizontal section of 7 is a
rational curve Cp, := {m} x CPl. The space of horizontal sections is denoted
Secy, (M) C Sec(M)

REMARK: The space of horizontal sections of =« is identified with M. The
normal bundle NC,, = O(1)dMM_  Therefore, some neighbourhood of

Secy, (M) C Sec(M) is a smooth manifold of dimension 2dim M.
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Hypercomplex structures defined in terms of quasilines

DEFINITION: Twistor data is the following collection of structures.
(i) A complex analytic variety Tw, equipped with a morphism 7 : Tw — cprl.
(ii) An anticomplex involution ¢ : Tw — Tw such that tom = 7o .
(iii) A choice of connected component Hor of Sec’ C Sec.

Theorem 1: (Hitchin-Karlhede-Lindstrom-Rocek)
Twistor data define a hypercomplex structure on M = Hor if all curves
INn Hor are quasilines.

REMARK: Define a hypercomplex variety as a normal real analytic variety
equipped with three complex structures I, J, K satisfying the quaternionic rela-
tions. Then it is defined by the twistor data, and, conversely, Theorem
1 is true in this setting.



Holography principle M. Verbitsky

Explicit formulas for hyperkahler structures

QUESTION: Let (M,1I,J,K) be a hyperkahler manifold. Define when
(M,I,J,K) is “algebraic”.

REMARK: "“Algebraic’ in this context means ‘“can be written explicitly in
polynomial terms”, “non-algebraic” — “no explicit polynomial formula (even
locally)” .

QUESTION: Can an open ball in a K3 surface (or some other compact
hyperkahler manifold) with its hyperkahler structure be equivalent to an
open ball in a manifold with explicitly known hyperkahler structure,

such as a quiver space?

Answer: No.
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Twistor spaces are non-Kahler

CLAIM: Suppose that (M, 1I,J, K) is a hyperkahler manifold such that (M, I)
contains a compact, odd-dimensional complex subvariety Z. Then Tw(M)
IS non-Kahler.

Proof: Consider the fundamental class [Z;] € H«(M) of Z in (M,I) C Tw(M).
Then [Z;] + [Z_;] =0, giving [,z ,a =0 for each closed form o € H(M).
This is impossible if o is a Kahler form, because this integral is Riemannian
volume of Z;UZ_ ;. =

CLAIM: When M is compact and hyperkahler, Tw(M) never admits a
Kahler structure.

Proof: Let w be the standard Hermitian form of Tw(M). Then dd‘w =
m™(wep1) A w, where wep1 is the Fubini-Study form on CP! (Kaledin-V.).
Therefore, dd“w is a positive (2,2)-form. For any Kahler form wg, this
would imply

dime M—1

d (wo A dcw) = dime M—1

/ / W A ddw > 0,
Tw(M) Tw(M)
which is impossible by Stokes’ theorem. m
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Holography principle

Theorem 1: (Holography principle for line bundles)

Let S C M be an ample curve in a simply connected, connected complex
manifold, which is covered by deformations of S. Consider a tubular neigh-
bourhood U D S§. Then, for any holomorphic line bundle L on M, the
space HO(U, L) is independent from the choice of U and S in its defor-
mation class.

REMARK: In these assumptions, HO(U,L) is always finite-dimensional
(Hartshorne).

THEOREM: (Holography principle for meromorphic functions)
In assumptions of Theorem 1, the space of meromorphic functions on U
IS equal to the space of meromorphic functions on M.

DEFINITION: Given a complex manifold Z, denote by Mer(Z) the field of
global meromorphic functions on Z, and let the algebraic dimension a(Z%)
be the transcendence degree of Mer(Z%).

REMARK: It could be infinite!

COROLLARY: a(Tw(M)) = a(U) for any connected neighbourhood U
of a quasiline in a connected, simply connected M.
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Domain of holomorphy

DEFINITION: Let M be a complex manifold. Domain over M is a holo-
morphic map M’ — M which is a local diffeomorphism.

DEFINITION: Let f be a holomorphic function on an open subset U C M.
Domain of holomorphy for f is a domain Mf—>M such that f can be
extended to a holomorphic function on My, but cannot be extended to any
domain strictly containing My.

THEOREM: Domain of holomorphy Mf exists and is unique for any
function f € HO(Op).

Proof: Clearly, the etale space E of the sheaf of holomorphic functions on M
iIs Hausdorff, and the projection of E to M is a local diffeomorphism. Then
Mf is the connected component of £ containing a germ of f. m

DEFINITION: A complex manifold is holomorphically convex if it admits
a proper holomorphic map to a Stein variety.

REMARK: By Cartan-Oka theorem, a domain of holomorphy of f is
always holomorphically convex if M is holomorphically convex.
13



Holography principle M. Verbitsky

Moishezon twistor spaces

DEFINITION: A compact complex variety Z is called Moishezon if the ring
of meromorphic functions on Z has algebraic dimension dim Z, or, equivalently,
if Z is bimeromorphic to a projective manifold.

CLAIM: Let M be a simply connected hyperkaahler manifold, and Tw(M)
its twistor space. Then a(Tw(M)) <dimg Tw(M).

DEFINITION: A twistor space satisfying a(Tw(M)) = dim¢ Tw(M) is called
Moishezon.

CLAIM: All Moishezon twistor spaces admit a rational, generically finite
morphism to an open subset of a projective manifold.

THEOREM: Let V be a quaterionic Hermitian vector space, and G C Sp(V)

a compact Lie group acting on V by quaternionic isometries. Denote by M
the hyperkahler reduction of V. Then Tw(M) is Moishezon.
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Local structure of hyperkahler manifolds

THEOREM: (Fujiki, 1987) Let M be a compact hyperkahler manifold, and
L €S2 CHa generic induced complex structure. Then M contains no
divisors.

COROLLARY: Let M be a compact hyperkahler manifold, and D C Tw(M)
a divisor. Then D is a union of several fibers of the projection =« :
Tw(M) — CP1L.

Proof: Suppose that D contains a component which intersects generic fiber
of w. By transversality, this intersection is a divisor, contradicting Fujiki's
theorem. m

REMARK: Algebraic dimension of Tw(M) is a local invariant of a hy-
perkahler manifold.

COROLLARY: Let M be a compact, simply connected hyperkahler mani-
fold, M’ a hyperkdhler manifold obtained by hyperkadhler reduction (such as
Nakajima quiver variety), and U C M, U’ ¢ M’ open subsets. Then U is
never equivalent to U’ as a hyperkahler manifold.

Proof: a(Tw(U)) =a(Tw(M)) =1, and
a(Tw(U")) = a(Tw(M")) =dim(Tw(M")). =
15
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Complex manifolds and quasilines

REMARK: Let S C M be a quasiline. Then, for an appropriate tubular
neighbourhood U C M of S, “for every two points x,y € U close to S and
far from each other, there is a unique deformation of S containing X
and Y.”

More precisely:

CLAIM: Let S C M be a quasi-line. Then, for any sufficiently small tubular
neighbourhood U C M of S, there exists a smaller tubular neighbourhood W C
U, satisfying the following condition. Let Ag be the image of the diagonal
embedding Ag: S— W x W. Then there exists an open neighbourhood V
of Ag, properly contained in W x W, such that for any pair (xz,y) € W xW\V,
there exists a unique deformation S’ C U of S containing =z and .

COROLLARY: For any quasilinein M, its deformation space is 2(dim M —1)-
dimensional.
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Proof of holography principle

THEOREM: (Holography Principle)

Let S C M be a quasiline in a simply connected complex manifold, which is
covered by deformations of S. Assume that M is equipped with a projection = :
M — S inducing identity on S. Consider a tubular neighbourhood U D S, and
assume that = : U — S has connected fibers. Then, for any holomorphic
line bundle L on M, the space HO(U, L) is independent from the choice
of U and S in its deformation class.

A (slighly) weaker statement.

THEOREM 1: Let S C M be a quasiline, and L a holomorphic bundle
on M. Assume that M is equipped with a projection = : M — S inducing
identity on S. Consider a sufficiently small tubular neighbourhood U DO S,
and a smaller tubular neighbourhood V C U. Then the restriction map
HO(U,L) — HO(V, L) is an isomorphism.

We deduce the “Holography principle” from Theorem 1.
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Deducing the holography principle from Theorem 1

Step 1: Choose a continuous, connected family Sy of quasilines parametrized
by B such that UpcpSy = M. Find a tubular neighbourhood U, for each
Sp in such a way that an intersection U, N Uy for sufficiently close b,b" always
contains S and Sy. By Theorem 1, HO(U,NU,, L) = HO(U,, L) = H°(Uy, L).

Step 2: Since B is connected, all the spaces H°(U;, L) are isomorphic, and
these isomorphisms are compatible with the restrictions to the intersections
Ub M Ub"

Step 3: Let now f € HO(U, L), and let Mf be the domain of holomorphy
for f, that is, a maximal domain (non-ramified over M) such that f admits a
holomorphic extension to Mf. Since UU, = M, and f can be holomorphically
extended to any U, the domain Mf is a covering of M. Now, ‘“holography
principle” follows, because M is simply connected. =
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Proof of Theorem 1

THEOREM 1: Let S C M be a quasiline, and L a holomorphic bundle
on M. Assume that M is equipped with a projection = : M — S inducing
identity on S. Consider a sufficiently small tubular neighbourhood U DO S,
and a smaller tubular neighbourhood V C U. Then the restriction map
HO(U,L) — HO(V, L) is an isomorphism.

Proof. Step 1: Fix a point zg = co in CPl. A section of L‘CPl = O(d) is
the same as meromorphic function having a pole of degree < d at 77_1(00).

Step 2: For each section Sy : cPl — M of 7, a degree d meromorphic
function on S1 is uniquely determined by its values at any d+4 1 points of S7.

Step 3: Given a meromorphic function f € HO(V,L) and a quasiline S
intersecting V in an open set, we can extend f to a meromorphic function f
on S1 by computing its values at d + 1 distinct points 2150y Zd4-1 of S1NV.
Whenever Sq is~in V', this procedure gives f|51. By analytic continuation,
the values of f(z) at any z € S; are independent from the choice of z;
and 51.

Step 4: Therefore, f is a well-defined meromorphic function on the
union V7 of all quasilines intersecting V. For U sufficiently small, V;
contains U. Therefore, any f € HO(V, L) can be extended to U. m
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Hamiltonians
Let’s define the hyperkahler reduction.

We denote the Lie derivative along a vector field as Lie, : A'M — A*M, and
contraction with a vector field by iy : A'M —» a7

Cartan’s formula: doi; + iy, od = Lie,.
REMARK: Let (M,w) be a symplectic manifold, G a Lie group acting on M
by symplectomorphisms, and g its Lie algebra. For any g € g, denote by pq

the corresponding vector field. Then Lie,,w = 0, giving d(ip,(w)) = 0. We
obtain that i, (w) is closed, for any g c g.

DEFINITION: A Hamiltonian of g € g is a function A on M such that
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Moment maps

DEFINITION: (M,w) be a symplectic manifold, G a Lie group acting on M
by symplectomorphisms. A moment map p of this action is a linear map
g — C°°M associating to each g € G its Hamiltonian.

REMARK: It is more convenient to consider p as an element of g* ®r C°M,
or (and this is most standard) as a function with values in g*.

REMARK: Moment map always exists if M is simply connected.

DEFINITION: A moment map M — g* is called equivariant if it is equiv-
ariant with respect to the coadjoint action of G on g*.

REMARK: M -5 g* is a moment map iff for all g € g, {(du,g) = ip,(w).

Therefore, a moment map is defined up to a constant g*-valued func-
tion. An equivariant moment map is is defined up to a constant g*-valued
function which is G-invariant.

DEFINITION: A G-invariant c € g* is called central.

CLAIM: An equivariant moment map exists whenever H!(G,g*) = 0.
In particular, when G is reductive and M is simply connected, an equivariant
moment map exists.
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Hyperkahler reduction

DEFINITION: Let G be a compact Lie group, p its action on a hyperkahler
manifold M by hyperkdhler isometries, and g* a dual space to its Lie algebra. A
hyperkahler moment map is a G-equivariant smooth map p: M — g* @ R3
such that (u;(v),9) = w;(v,dp(g)), for every v € TM, g € g and i = 1,2,3,
where w; is one three Kahler forms associated with the hyperkahler structure.

DEFINITION: Let &1,&0,&3 be three G-invariant vectors in g*. The quotient
manifold M /G := pn~1(&1,65,£3) /G is called the hyperkahler quotient of M.

THEOREM: (Hitchin, Karlhede, Lindstrom, RocCek)
The quotient M //G is hyperkaehler.
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Holomorphic moment map

Let Q :=wj++v—1wg. Thisis a holomorphic symplectic (2,0)-form on (M, I).
The proof of HKLR theorem. Step 1: Let pj,ur be the moment map
associated with wj,wg, and uc ‘= py + V=1 pg. Then (duc,g) = ip,(£2)

Therefore, duc € ALO(M,T) ® g*.

Step 2: This implies that the map pc is holomorphic. It is called the
holomorphic moment map.

Step 3: By definition, M /)/G = uél(c)//G, where ¢ € g* g C is a central
element. This is a Kahler manifold, because it is a Kahler quotient of a
Kahler manifold.

Step 4: We obtain 3 complex structures I,J, K on the hyperkahler quotient
M //G. They are compatible in the usual way (an easy exercise). =
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Twistor spaces and hyperkahler reduction

THEOREM: Let V be a quaterionic Hermitian vector space, and G C Sp(V)
a compact Lie group acting on V by quaternionic isometries. Denote by M
the hyperkahler reduction of V. Then Tw(M) is Moishezon.

Proof: Tw(M) is obtained as the space of stable Gg-orbits in M(El(O) C
Tw(V). The space Tw(V) = CcpP2nTI\CP2"—1 is algebraic. Averaging over
G, we obtain that the field Ge-invariant rational functions on Tw(M) has
dimension dim Tw(M), and Tw(M) is Moishezon. =

COROLLARY: Let U be an open subset of a compact, simply connected
hyperkdhler manifold, and U’ an open subset of a hyperkdahler manifold ob-
tained as V /G, where V is flat and G reductive. Then U is not isomorphic
to U’ as hyperkahler manifold.

Proof: Tw(U") has many meromorphic functions, and a(Tw(U)) =1. =
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