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Calabi-Yau theorem

Definition 1: A hyperkähler structure on a manifold M is a Riemannian

structure g and a triple of complex structures I, J,K, satisfying quaternionic

relations I ◦ J = −J ◦ I = K, such that g is Kähler for I, J,K.

REMARK: A hyperkähler manifold is holomorphically symplectic: ωJ +√
−1 ωK is a holomorphic symplectic form on (M, I).

Definition 2: A hyperkähler manifold is a complex, Kähler, holomorphically

symplectic manifold.

THEOREM: (Calabi-Yau) A compact, Kähler, holomorphically symplectic

manifold admits a unique hyperkähler metric in any Kähler class.

REMARK: This means that Definition 1 is equivalent to Definition 2,

but only for compact manifold.

REMARK: Twistors are used to give a complex-analytic definition which

works for non-compact and/or singular varieties.
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Twistor spaces for hyperkähler manifolds

DEFINITION: Induced complex structures on a hyperkähler manifold are

complex structures of form S2 ∼= {L := aI + bJ + cK, a2 + b2 + c2 = 1.}
They are usually non-algebraic. Indeed, if M is compact, for generic a, b, c,

(M,L) has no divisors (Fujiki).

DEFINITION: A twistor space Tw(M) of a hyperkähler manifold is a com-

plex manifold obtained by gluing these complex structures into a holo-

morphic family over CP1. More formally:

Let Tw(M) := M ×S2. Consider the complex structure Im : TmM → TmM on

M induced by J ∈ S2 ⊂ H. Let IJ denote the complex structure on S2 = CP1.

The operator ITw = Im ⊕ IJ : TxTw(M) → TxTw(M) satisfies I2
Tw = − Id.

It defines an almost complex structure on Tw(M). This almost complex

structure is known to be integrable (Obata, Salamon)

EXAMPLE: If M = Hn, Tw(M) = Tot(O(1)⊕n) ∼= CP2n+1\CP2n−1

REMARK: For M compact, Tw(M) never admits a Kähler structure.
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Twistor spaces for quaternionic-Kähler manifolds

DEFINITION: A almost quaternionic-Kähler manifold is a Riemannian
manifold M equipped with a rank 3 sub-bundle E ⊂ so(TM) ⊂ End(M)
which is pointwise isomorphic to su(2) acting on TM as on a direct sum
of dimRM

4 of its fundamental representations (which have real dimension 4).
This manifold is called quaternionic-Kähler if ∇(E) ⊂ E ⊗ Λ1M , where
∇ : End(M)−→ End(M)⊗ Λ1M is the Levi-Civita connection.

DEFINITION: A twistor space Tw(M) of a quaternionic-Kähler manifold
(M, g,E) is a total space of a unit sphere bundle on E, equipped with a complex
structure ITw = Im ⊕ IJ : TxTw(M)→ TxTw(M) as in the hyperkähler case.

EXAMPLE: If M = HPn, then Tw(M) = CP2n+1. In particular, Tw(S4) =
CP3.

REMARK: Consider a compact quaternionic-Kähler manifold (M, g) with
Ric(M) = λg, λ > 0. Then Tw(M) is a holomorphically contact Fano
manifold. Conversely, any Kähler-Einstein holomorphically contact Fano
manifold is a twistor space of a compact quaternionic-Kähler manifold
(M, g) with Ric(M) = λg, λ > 0.

One can say that hyperkähler geometry is holomorphic symplectic ge-
ometry, and quaternionic-Kähler is holomorphic contact geometry
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Twistor spaces for 4-dimensional Riemannian manifolds

DEFINITION: Let M be a Riemannian 4-manifold. Consider the action of
the Hodge ∗-operator: ∗ : Λ2M −→ Λ2M . Since ∗2 = 1, the eigenvalues
are ±1, and one has a decomposition Λ2M = Λ+M ⊕ Λ−M onto autodual
(∗η = η) and anti-autodual (∗η = −η) forms.

REMARK: If one changes the orientation of M , leaving metric the same,
Λ+M and Λ−M are exchanged. Therefore, dim Λ2M = 6 implies dim Λ±(M) =
3.

REMARK: Using the isomorphism Λ2M = so(TM), we interpret η ∈ Λ2
mM as

an endomorphisms of TmM . Then the unit vectors η ∈ Λ+
mM correspond

to oriented, orthogonal complex structures on TmM.

DEFINITION: Let Tw(M) := SΛ+M be the set of unit vectors in Λ+M .
At each point (m, s) ∈ Tw(M), consider the decoposition Tm,sTw(M) =
TmM⊕TsSΛ+

mM , induced by the Levi-Civita connection. Let Is be the complex
structure on TmM induced by s, I

SΛ+
mM

the complex structure on SΛ+
mM = S2

induced by the metrics and orientation, and I : Tm,sTw(M)−→ Tm,sTw(M)
be equal to Is ⊕ ISΛ+

mM
. An almost complex manifold (Tw(M), I) is called

the twistor space of M .
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Properties of twistor spaces for 4-dimensional manifolds

1. The almost complex structure I on Tw(M) is a conformal invariant
of M . Moreover, one can reconstruct the conformal structure on M

from the almost complex structure on Tw(M) and its anticomplex involution
(m, s)−→ (m,−s).

2. Tw(M) is a complex manifold if and only if W+ = 0, where W+ (“self-
dual conformal curvature”) is an autodual component of the curvature tensor.
Such manifolds are called conformally semi-flat or ASD (anti-selfdual).

3. For a hyperkähler manifold of real dimension 4, the two definitions of
twistor spaces coincide.

4. Let M be a compact ASD manifold. Then Tw(M) does not admit a
Kähler structure, unless M is S4 or CP2 (Hitchin). However, M is often
Moishezon.

QUESTION: The twistor spaces are rationally connected. What else
can one say about algebraic geometry of the Moishezon twistor spaces?

CONJECTURE: They are all rational.
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Rational curves on Tw(M).

DEFINITION: An ample rational curve on a complex manifold M is a

smooth curve S ∼= CP1 ⊂ M such that NS =
⊕n−1
k=1O(ik), with ik > 0. It is

called a quasiline if all ik = 1.

THEOREM: (“twistor spaces are rationally connected”)

Let M be a compact complex manifold containing a an ample rational line.

red any N points z1, ..., zN can be connected by an ample rational curve.

CLAIM: Let M be a hyperkähler manifold, Tw(M)
σ−→ M its twistor space,

m ∈ M a point, and Sm = CP1 × {m} the corresponding rational curve in

Tw(M). Then Sm is a quasiline.

Proof: Since the claim is essentially infinitesimal, it suffices to check it when

M is flat. Then Tw(M) = Tot(O(1)⊕2p) ∼= CP2p+1\CP2p−1, and Sm is a

section of O(1)⊕2p.
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Hypercomplex structures and twistor sections

DEFINITION: A hypercomplex structure on a manifold M is a triple of

complex structures I, J,K, satisfying quaternionic relations I ◦J = −J ◦I = K.

REMARK: Twistor spaces for hypercomplex manifolds are defined in the

same way as for hyperkähler.

REMARK: The twistor space has many rational curves. In fact, it is

rationally connected (Campana).

DEFINITION: Denote by Sec(M) the space of holomorphic sections of

the twistor fibration Tw(M)
π−→ CP1.

DEFINITION: For each point m ∈ M , the horizontal section of π is a

rational curve Cm := {m}×CP1. The space of horizontal sections is denoted

Sechor(M) ⊂ Sec(M)

REMARK: The space of horizontal sections of π is identified with M . The

normal bundle NCm = O(1)dimM . Therefore, some neighbourhood of

Sechor(M) ⊂ Sec(M) is a smooth manifold of dimension 2 dimM.
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Hypercomplex structures defined in terms of quasilines

DEFINITION: Twistor data is the following collection of structures.

(i) A complex analytic variety Tw, equipped with a morphism π : Tw −→ CP1.

(ii) An anticomplex involution ι : Tw −→ Tw such that ι ◦ π = π ◦ ι0.

(iii) A choice of connected component Hor of Secι ⊂ Sec.

Theorem 1: (Hitchin-Karlhede-Lindström-Roček)

Twistor data define a hypercomplex structure on M = Hor if all curves

in Hor are quasilines.

REMARK: Define a hypercomplex variety as a normal real analytic variety

equipped with three complex structures I, J,K satisfying the quaternionic rela-

tions. Then it is defined by the twistor data, and, conversely, Theorem

1 is true in this setting.
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Explicit formulas for hyperkähler structures

QUESTION: Let (M, I, J,K) be a hyperkähler manifold. Define when

(M, I, J,K) is “algebraic”.

REMARK: “Algebraic” in this context means “can be written explicitly in

polynomial terms”, “non-algebraic” – “no explicit polynomial formula (even

locally)”.

QUESTION: Can an open ball in a K3 surface (or some other compact

hyperkähler manifold) with its hyperkähler structure be equivalent to an

open ball in a manifold with explicitly known hyperkähler structure,

such as a quiver space?

Answer: No.
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Twistor spaces are non-Kähler

CLAIM: Suppose that (M, I, J,K) is a hyperkähler manifold such that (M, I)

contains a compact, odd-dimensional complex subvariety Z. Then Tw(M)

is non-Kähler.

Proof: Consider the fundamental class [ZI] ∈ H∗(M) of Z in (M, I) ⊂ Tw(M).

Then [ZI] + [Z−I] = 0, giving
∫
ZI∪Z−I α = 0 for each closed form α ∈ H2(M).

This is impossible if α is a Kähler form, because this integral is Riemannian

volume of ZI ∪ Z−I.

CLAIM: When M is compact and hyperkähler, Tw(M) never admits a

Kähler structure.

Proof: Let ω be the standard Hermitian form of Tw(M). Then ddcω =

π∗(ωCP1) ∧ ω, where ωCP1 is the Fubini-Study form on CP1 (Kaledin-V.).

Therefore, ddcω is a positive (2,2)-form. For any Kähler form ω0, this

would imply∫
Tw(M)

d
(
ω

dimCM−1
0 ∧ dcω

)
=
∫

Tw(M)
ω

dimCM−1
0 ∧ ddcω > 0,

which is impossible by Stokes’ theorem.
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Holography principle

Theorem 1: (Holography principle for line bundles)
Let S ⊂ M be an ample curve in a simply connected, connected complex
manifold, which is covered by deformations of S. Consider a tubular neigh-
bourhood U ⊃ S. Then, for any holomorphic line bundle L on M, the
space H0(U,L) is independent from the choice of U and S in its defor-
mation class.

REMARK: In these assumptions, H0(U,L) is always finite-dimensional
(Hartshorne).

THEOREM: (Holography principle for meromorphic functions)
In assumptions of Theorem 1, the space of meromorphic functions on U
is equal to the space of meromorphic functions on M.

DEFINITION: Given a complex manifold Z, denote by Mer(Z) the field of
global meromorphic functions on Z, and let the algebraic dimension a(Z)
be the transcendence degree of Mer(Z).

REMARK: It could be infinite!

COROLLARY: a(Tw(M)) = a(U) for any connected neighbourhood U
of a quasiline in a connected, simply connected M .
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Domain of holomorphy

DEFINITION: Let M be a complex manifold. Domain over M is a holo-
morphic map M ′ −→M which is a local diffeomorphism.

DEFINITION: Let f be a holomorphic function on an open subset U ⊂ M .
Domain of holomorphy for f is a domain Mf −→M such that f can be
extended to a holomorphic function on Mf , but cannot be extended to any
domain strictly containing Mf .

THEOREM: Domain of holomorphy Mf exists and is unique for any
function f ∈ H0(OU).

Proof: Clearly, the etale space E of the sheaf of holomorphic functions on M

is Hausdorff, and the projection of E to M is a local diffeomorphism. Then
Mf is the connected component of E containing a germ of f .

DEFINITION: A complex manifold is holomorphically convex if it admits
a proper holomorphic map to a Stein variety.

REMARK: By Cartan-Oka theorem, a domain of holomorphy of f is
always holomorphically convex if M is holomorphically convex.
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Moishezon twistor spaces

DEFINITION: A compact complex variety Z is called Moishezon if the ring

of meromorphic functions on Z has algebraic dimension dimZ, or, equivalently,

if Z is bimeromorphic to a projective manifold.

CLAIM: Let M be a simply connected hyperkaähler manifold, and Tw(M)

its twistor space. Then a(Tw(M)) 6 dimC Tw(M).

DEFINITION: A twistor space satisfying a(Tw(M)) = dimC Tw(M) is called

Moishezon.

CLAIM: All Moishezon twistor spaces admit a rational, generically finite

morphism to an open subset of a projective manifold.

THEOREM: Let V be a quaterionic Hermitian vector space, and G ⊂ Sp(V )

a compact Lie group acting on V by quaternionic isometries. Denote by M

the hyperkähler reduction of V . Then Tw(M) is Moishezon.
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Local structure of hyperkähler manifolds

THEOREM: (Fujiki, 1987) Let M be a compact hyperkähler manifold, and
L ∈ S2 ⊂ H a generic induced complex structure. Then M contains no
divisors.

COROLLARY: Let M be a compact hyperkähler manifold, and D ⊂ Tw(M)
a divisor. Then D is a union of several fibers of the projection π :
Tw(M)−→ CP1.

Proof: Suppose that D contains a component which intersects generic fiber
of π. By transversality, this intersection is a divisor, contradicting Fujiki’s
theorem.

REMARK: Algebraic dimension of Tw(M) is a local invariant of a hy-
perkähler manifold.

COROLLARY: Let M be a compact, simply connected hyperkähler mani-
fold, M ′ a hyperkähler manifold obtained by hyperkähler reduction (such as
Nakajima quiver variety), and U ⊂ M , U ′ ⊂ M ′ open subsets. Then U is
never equivalent to U ′ as a hyperkähler manifold.

Proof: a(Tw(U)) = a(Tw(M)) = 1, and
a(Tw(U ′)) = a(Tw(M ′)) = dim(Tw(M ′)).
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Complex manifolds and quasilines

REMARK: Let S ⊂ M be a quasiline. Then, for an appropriate tubular

neighbourhood U ⊂M of S, “for every two points x, y ∈ U close to S and

far from each other, there is a unique deformation of S containing X

and Y .”

More precisely:

CLAIM: Let S ⊂ M be a quasi-line. Then, for any sufficiently small tubular

neighbourhood U ⊂M of S, there exists a smaller tubular neighbourhood W ⊂
U , satisfying the following condition. Let ∆S be the image of the diagonal

embedding ∆S : S −→W ×W . Then there exists an open neighbourhood V

of ∆S, properly contained in W×W , such that for any pair (x, y) ∈W×W\V ,

there exists a unique deformation S′ ⊂ U of S containing x and y.

COROLLARY: For any quasiline in M , its deformation space is 2(dimM−1)-

dimensional.
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Proof of holography principle

THEOREM: (Holography Principle)

Let S ⊂ M be a quasiline in a simply connected complex manifold, which is

covered by deformations of S. Assume that M is equipped with a projection π :

M −→ S inducing identity on S. Consider a tubular neighbourhood U ⊃ S, and

assume that π : U −→ S has connected fibers. Then, for any holomorphic

line bundle L on M, the space H0(U,L) is independent from the choice

of U and S in its deformation class.

A (slighly) weaker statement.

THEOREM 1: Let S ⊂ M be a quasiline, and L a holomorphic bundle

on M . Assume that M is equipped with a projection π : M −→ S inducing

identity on S. Consider a sufficiently small tubular neighbourhood U ⊃ S,

and a smaller tubular neighbourhood V ⊂ U . Then the restriction map

H0(U,L)−→H0(V, L) is an isomorphism.

We deduce the “Holography principle” from Theorem 1.
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Deducing the holography principle from Theorem 1

Step 1: Choose a continuous, connected family Sb of quasilines parametrized

by B such that
⋃
b∈B Sb = M . Find a tubular neighbourhood Ub for each

Sb in such a way that an intersection Ub ∩ Ub′ for sufficiently close b, b′ always

contains Sb and Sb′. By Theorem 1, H0(Ub∩Ub′, L) = H0(Ub, L) = H0(Ub′, L).

Step 2: Since B is connected, all the spaces H0(Ub, L) are isomorphic, and

these isomorphisms are compatible with the restrictions to the intersections

Ub ∩ Ub′.

Step 3: Let now f ∈ H0(Ub, L), and let M̃f be the domain of holomorphy

for f , that is, a maximal domain (non-ramified over M) such that f admits a

holomorphic extension to M̃f . Since ∪Ub = M , and f can be holomorphically

extended to any Ub, the domain M̃f is a covering of M . Now, “holography

principle” follows, because M is simply connected.

18



Holography principle M. Verbitsky

Proof of Theorem 1

THEOREM 1: Let S ⊂ M be a quasiline, and L a holomorphic bundle
on M . Assume that M is equipped with a projection π : M −→ S inducing
identity on S. Consider a sufficiently small tubular neighbourhood U ⊃ S,
and a smaller tubular neighbourhood V ⊂ U . Then the restriction map
H0(U,L)−→H0(V, L) is an isomorphism.

Proof. Step 1: Fix a point x0 = ∞ in CP1. A section of L
∣∣∣CP1 = O(d) is

the same as meromorphic function having a pole of degree 6 d at π−1(∞).

Step 2: For each section S1 : CP1 −→M of π, a degree d meromorphic
function on S1 is uniquely determined by its values at any d+ 1 points of S1.

Step 3: Given a meromorphic function f ∈ H0(V, L) and a quasiline S1
intersecting V in an open set, we can extend f to a meromorphic function f̃
on S1 by computing its values at d + 1 distinct points z1, ..., zd+1 of S1 ∩ V .
Whenever S1 is in V , this procedure gives f

∣∣∣S1
. By analytic continuation,

the values of f̃(z) at any z ∈ S1 are independent from the choice of zi
and S1.

Step 4: Therefore, f̃ is a well-defined meromorphic function on the
union V1 of all quasilines intersecting V . For U sufficiently small, V1
contains U . Therefore, any f ∈ H0(V, L) can be extended to U .
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Hamiltonians

Let’s define the hyperkähler reduction.

We denote the Lie derivative along a vector field as Liex : ΛiM −→ ΛiM , and

contraction with a vector field by ix : ΛiM −→ Λi−1M .

Cartan’s formula: d ◦ ix + ix ◦ d = Liex.

REMARK: Let (M,ω) be a symplectic manifold, G a Lie group acting on M

by symplectomorphisms, and g its Lie algebra. For any g ∈ g, denote by ρg

the corresponding vector field. Then Lieρg ω = 0, giving d(iρg(ω)) = 0. We

obtain that iρg(ω) is closed, for any g ∈ g.

DEFINITION: A Hamiltonian of g ∈ g is a function h on M such that

dh = iρg(ω).
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Moment maps

DEFINITION: (M,ω) be a symplectic manifold, G a Lie group acting on M
by symplectomorphisms. A moment map µ of this action is a linear map
g−→ C∞M associating to each g ∈ G its Hamiltonian.

REMARK: It is more convenient to consider µ as an element of g∗⊗RC
∞M ,

or (and this is most standard) as a function with values in g∗.

REMARK: Moment map always exists if M is simply connected.

DEFINITION: A moment map M −→ g∗ is called equivariant if it is equiv-
ariant with respect to the coadjoint action of G on g∗.

REMARK: M
µ−→ g∗ is a moment map iff for all g ∈ g, 〈dµ, g〉 = iρg(ω).

Therefore, a moment map is defined up to a constant g∗-valued func-
tion. An equivariant moment map is is defined up to a constant g∗-valued
function which is G-invariant.

DEFINITION: A G-invariant c ∈ g∗ is called central.

CLAIM: An equivariant moment map exists whenever H1(G, g∗) = 0.
In particular, when G is reductive and M is simply connected, an equivariant
moment map exists.
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Hyperkähler reduction

DEFINITION: Let G be a compact Lie group, ρ its action on a hyperkähler

manifold M by hyperkähler isometries, and g∗ a dual space to its Lie algebra. A

hyperkähler moment map is a G-equivariant smooth map µ : M → g∗ ⊗ R3

such that 〈µi(v), g〉 = ωi(v, dρ(g)), for every v ∈ TM , g ∈ g and i = 1,2,3,

where ωi is one three Kähler forms associated with the hyperkähler structure.

DEFINITION: Let ξ1, ξ2, ξ3 be three G-invariant vectors in g∗. The quotient

manifold M///G := µ−1(ξ1, ξ2, ξ3)/G is called the hyperkähler quotient of M .

THEOREM: (Hitchin, Karlhede, Lindström, Roček)

The quotient M///G is hyperkaehler.
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Holomorphic moment map

Let Ω := ωJ+
√
−1ωK. This is a holomorphic symplectic (2,0)-form on (M, I).

The proof of HKLR theorem. Step 1: Let µJ , µK be the moment map

associated with ωJ , ωK, and µC := µJ +
√
−1 µK. Then 〈dµC, g〉 = iρg(Ω)

Therefore, dµC ∈ Λ1,0(M, I)⊗ g∗.

Step 2: This implies that the map µC is holomorphic. It is called the

holomorphic moment map.

Step 3: By definition, M///G = µ−1
C (c)//G, where c ∈ g∗ ⊗R C is a central

element. This is a Kähler manifold, because it is a Kähler quotient of a

Kähler manifold.

Step 4: We obtain 3 complex structures I, J,K on the hyperkähler quotient

M///G. They are compatible in the usual way (an easy exercise).
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Twistor spaces and hyperkähler reduction

THEOREM: Let V be a quaterionic Hermitian vector space, and G ⊂ Sp(V )

a compact Lie group acting on V by quaternionic isometries. Denote by M

the hyperkähler reduction of V . Then Tw(M) is Moishezon.

Proof: Tw(M) is obtained as the space of stable GC-orbits in µ−1
C (0) ⊂

Tw(V ). The space Tw(V ) = CP2n+1\CP2n−1 is algebraic. Averaging over

G, we obtain that the field GC-invariant rational functions on Tw(M) has

dimension dim Tw(M), and Tw(M) is Moishezon.

COROLLARY: Let U be an open subset of a compact, simply connected

hyperkähler manifold, and U ′ an open subset of a hyperkähler manifold ob-

tained as V ///G, where V is flat and G reductive. Then U is not isomorphic

to U ′ as hyperkähler manifold.

Proof: Tw(U ′) has many meromorphic functions, and a(Tw(U)) = 1.
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