Holography principle and Moishezon twistor spaces

Misha Verbitsky

Conference on The Geometry, Topology and Physics of Moduli Spaces of Higgs Bundles

National University of Singapore, 4-8 Aug 2014

Plan

- 1. Hyperkähler manifolds. Twistor spaces.
- 2. Holography principle
- 3. Moishezon twistor spaces. Applications of the holography principle to the local structure of twistor spaces.
- 4. Proof of holography principle.
- * 5. Hyperkähler reduction.

Questions

DEFINITION: A hyperkähler structure on a manifold M is a Riemannian structure g and a triple of complex structures I, J, K, satisfying quaternionic relations $I \circ J = -J \circ I = K$, such that g is Kähler for I, J, K.

REMARK: Any compact, Kähler, holomorphically symplectic manifold, such as a K3 surface, admits a hyperkähler metric, which is unique in is Kähler class.

QUESTION: Let (M, I, J, K) be a hyperkähler manifold. Define when (M, I, J, K) is "algebraic".

REMARK: This question is motivated by [HKLR] definition of hyperkähler manifolds in terms of twistor spaces, which makes it possible to define a general "hyperkähler space" with singularities and nilpotents.

QUESTION: Can an open ball in a K3 surface (or some other compact hyperkähler manifold) with its hyperkähler structure be equivalent to an open ball in a quiver space or a Hitchin moduli space with its hyperkähler structure?

Twistor spaces

DEFINITION: Induced complex structures on a hyperkähler manifold are complex structures of form L := aI + bJ + cK. It is a sphere: $S^2 \cong \{L := aI + bJ + cK, \quad a^2 + b^2 + c^2 = 1.\}$

DEFINITION: A twistor space Tw(M) of a hyperkähler manifold is a complex manifold obtained by gluing these complex structures into a holomorphic family over $\mathbb{C}P^1$. More formally:

Let $\mathsf{Tw}(M) := M \times S^2$. Consider the complex structure $I_m : T_m M \to T_m M$ on M induced by $J \in S^2 \subset \mathbb{H}$. Let I_J denote the complex structure on $S^2 = \mathbb{C}P^1$.

The operator $I_{\mathsf{TW}} = I_m \oplus I_J : T_x \, \mathsf{TW}(M) \to T_x \, \mathsf{TW}(M)$ satisfies $I_{\mathsf{TW}}^2 = - \, \mathsf{Id}$. It defines an almost complex structure on $\mathsf{TW}(M)$. This almost complex structure is known to be integrable (Obata)

Geometry of twistor spaces

EXAMPLE: If $M = \mathbb{H}^n$, $\mathsf{Tw}(M) = \mathsf{Tot}(\mathcal{O}(1)^{\oplus n}) \cong \mathbb{C}P^{2n+1} \backslash \mathbb{C}P^{2n-1}$ (total space of a vector bundle $(\mathcal{O}(1)^{\oplus n})$.

REMARK: (Deligne, Simpson)

The quaternionic structure on a hyperkähler manifold can be reconstructed from the geometry of rational lines on its twistor space.

REMARK: Twistor spaces can be defined for any conformally semiflat 4-dimensional Riemannian manifold M. These twistor space are often Moishezon (birational to projective). Results of today's talk ("holography principle") are true for such twistor spaces.

THEOREM: (Hitchin) For compact 4-dimensional M, its twistor space is Kähler only if $M = S^4$ or $M = \mathbb{C}P^2$.

Twistor spaces are non-Kähler

CLAIM: Suppose that (M, I, J, K) is a hyperkähler manifold such that (M, I) contains a compact, odd-dimensional complex subvariety Z. Then $\mathsf{Tw}(M)$ is non-Kähler.

Proof: Consider the fundamental class $[Z_I] \in H_*(M)$ of Z in $(M,I) \subset \mathsf{Tw}(M)$. Then $[Z_I] + [Z_{-I}] = 0$, giving $\int_{Z_I \cup Z_{-I}} \alpha = 0$ for each closed form $\alpha \in H^2(M)$. This is impossible if α is a Kähler form, because this integral is Riemannian volume of $Z_I \cup Z_{-I}$.

CLAIM: When M is compact and hyperkähler, Tw(M) never admits a Kähler structure.

Proof: Let ω be the standard Hermitian form of $\mathsf{Tw}(M)$. Then $dd^c\omega$ is a positive (2,2)-form (a calculation due to Kaledin-V.) For any Kähler form ω_0 , this would imply

$$\int_{\mathsf{TW}(M)} d\left(\omega_0^{\dim_{\mathbb{C}} M - 1} \wedge d^c \omega\right) = \int_{\mathsf{TW}(M)} \omega_0^{\dim_{\mathbb{C}} M - 1} \wedge dd^c \omega > 0,$$

which is impossible by Stokes' theorem. ■

Rational curves on Tw(M).

DEFINITION: An ample rational curve on a complex manifold M is a smooth curve $S \cong \mathbb{C}P^1 \subset M$ such that $NS = \bigoplus_{k=1}^{n-1} \mathcal{O}(i_k)$, with $i_k > 0$. It is called a quasiline if all $i_k = 1$.

CLAIM: Let M be a compact complex manifold containing a an ample rational line. Then any N points $z_1,...,z_N$ can be connected by an ample rational curve.

CLAIM: Let M be a hyperkähler manifold, $\mathsf{Tw}(M) \stackrel{\sigma}{\longrightarrow} M$ its twistor space, $m \in M$ a point, and $S_m = \mathbb{C}P^1 \times \{m\}$ the corresponding rational curve in $\mathsf{Tw}(M)$. Then S_m is a quasiline.

Proof: Since the claim is essentially infinitesimal, it suffices to check it when M is flat. Then $\mathsf{Tw}(M) = \mathsf{Tot}(\mathcal{O}(1)^{\oplus 2p}) \cong \mathbb{C}P^{2p+1} \backslash \mathbb{C}P^{2p-1}$, and S_m is a section of $\mathcal{O}(1)^{\oplus 2p}$.

Holography principle

Theorem 1: (Holography principle for line bundles)

Let $S \subset M$ be an ample curve in a simply connected, connected complex manifold, which is covered by deformations of S. Consider a tubular neighbourhood $U \supset S$. Then, for any holomorphic line bundle L on M, the space $H^0(U,L)$ is independent from the choice of U and S in its deformation class.

REMARK: In these assumptions, $H^0(U,L)$ is always finite-dimensional (Hartshorne).

THEOREM: (Holography principle for meromorphic functions) In assumptions of Theorem 1, the space of meromorphic functions on U is equal to the space of meromorphic functions on M.

DEFINITION: Given a complex manifold Z, denote by Mer(Z) the field of global meromorphic functions on Z, and let **the algebraic dimension** a(Z) be the transcendence degree of Mer(Z).

REMARK: It could be infinite!

COROLLARY: $a(\mathsf{Tw}(M)) = a(U)$ for any connected neighbourhood U of a quasiline in a connected, simply connected M.

Moishezon twistor spaces

DEFINITION: A compact complex variety Z is called **Moishezon** if the ring of meromorphic functions on Z has algebraic dimension dim Z, or, equivalently, if Z is bimeromorphic to a projective manifold.

CLAIM: Let M be a simply connected hyperkaähler manifold, and $\mathsf{Tw}(M)$ its twistor space. Then $a(\mathsf{Tw}(M)) \leqslant \mathsf{dim}_{\mathbb{C}} \mathsf{Tw}(M)$.

DEFINITION: A twistor space satisfying $a(\mathsf{Tw}(M)) = \dim_{\mathbb{C}} \mathsf{Tw}(M)$ is called **Moishezon**.

CLAIM: All Moishezon twistor spaces are bimeromorphic to open subsets of projective manifolds.

THEOREM: Let V be a quaterionic Hermitian vector space, and $G \subset \operatorname{Sp}(V)$ a compact Lie group acting on V by quaternionic isometries. Denote by M the hyperkähler reduction of V. Then $\operatorname{Tw}(M)$ is Moishezon.

Local structure of hyperkähler manifolds

THEOREM: (Fujiki, 1987) Let M be a compact hyperkähler manifold, and $L \in S^2 \subset \mathbb{H}$ a generic induced complex structure. Then M contains no divisors.

COROLLARY: Let M be a compact hyperkähler manifold, and $D \subset \mathsf{Tw}(M)$ a divisor. Then D is a union of several fibers of the projection $\pi : \mathsf{Tw}(M) \longrightarrow \mathbb{C}P^1$.

Proof: Suppose that D contains a component which intersects generic fiber of π . By transversality, this intersection is a divisor, contradicting Fujiki's theorem.

COROLLARY: Let M be a compact, simply connected hyperkähler manifold, M' a hyperkähler manifold obtained by hyperkähler reduction (such as Nakajima quiver variety), and $U \subset M$, $U' \subset M'$ open subsets. Then U is never equivalent to U' as a hyperkähler manifold.

Proof:
$$a(\mathsf{Tw}(U)) = a(\mathsf{Tw}(M)) = 1$$
, and $a(\mathsf{Tw}(U')) = a(\mathsf{Tw}(M')) = \dim(\mathsf{Tw}(M'))$.

Complex manifolds and quasilines

REMARK: Let $S \subset M$ be a quasiline. Then, for an appropriate tubular neighbourhood $U \subset M$ of S, "for every two points $x,y \in U$ close to S and far from each other, there is a unique deformation of S containing X and Y."

More precisely:

CLAIM: Let $S \subset M$ be a quasi-line. Then, for any sufficiently small tubular neighbourhood $U \subset M$ of S, there exists a smaller tubular neighbourhood $W \subset U$, satisfying the following condition. Let Δ_S be the image of the diagonal embedding $\Delta_S: S \longrightarrow W \times W$. Then there exists an open neighbourhood V of Δ_S , properly contained in $W \times W$, such that for any pair $(x,y) \in W \times W \setminus V$, there exists a unique deformation $S' \subset U$ of S containing X and Y.

COROLLARY: For any quasiline in M, its deformation space is $2(\dim M - 1)$ -dimensional.

Proof of holography principle

THEOREM: (Holography Principle)

Let $S \subset M$ be a quasiline in a simply connected complex manifold, which is covered by deformations of S. Assume that M is equipped with a projection π : $M \longrightarrow S$ inducing identity on S. Consider a tubular neighbourhood $U \supset S$, and assume that π : $U \longrightarrow S$ has connected fibers. Then, for any holomorphic line bundle L on M, the space $H^0(U,L)$ is independent from the choice of U and S in its deformation class.

A (slighly) weaker statement.

THEOREM 1: Let $S \subset M$ be a quasiline, and L a holomorphic bundle on M. Assume that M is equipped with a projection $\pi: M \longrightarrow S$ inducing identity on S. Consider a sufficiently small tubular neighbourhood $U \supset S$, and a smaller tubular neighbourhood $V \subset U$. Then the restriction map $H^0(U,L) \longrightarrow H^0(V,L)$ is an isomorphism.

We deduce the "Holography principle" from Theorem 1.

Deducing the holography principle from Theorem 1

Step 1: Choose a continuous, connected family S_b of quasilines parametrized by B such that $\bigcup_{b\in B} S_b = M$. Find a tubular neighbourhood U_b for each S_b in such a way that an intersection $U_b \cap U_{b'}$ for sufficiently close b,b' always contains S_b and $S_{b'}$. By Theorem 1, $H^0(U_b \cap U_{b'}, L) = H^0(U_b, L) = H^0(U_{b'}, L)$.

Step 2: Since B is connected, all the spaces $H^0(U_b, L)$ are isomorphic, and these isomorphisms are compatible with the restrictions to the intersections $U_b \cap U_{b'}$.

Step 3: Let now $f \in H^0(U_b, L)$, and let \tilde{M}_f be the domain of holomorphy for f, that is, a maximal domain (non-ramified over M) such that f admits a holomorphic extension to \tilde{M}_f . Since $\cup U_b = M$, and f can be holomorphically extended to any U_b , the domain \tilde{M}_f is a covering of M. Now, "holography principle" follows, because M is simply connected.

Proof of Theorem 1

THEOREM 1: Let $S \subset M$ be a quasiline, and L a holomorphic bundle on M. Assume that M is equipped with a projection $\pi: M \longrightarrow S$ inducing identity on S. Consider a sufficiently small tubular neighbourhood $U \supset S$, and a smaller tubular neighbourhood $V \subset U$. Then the restriction map $H^0(U,L) \longrightarrow H^0(V,L)$ is an isomorphism.

Proof. Step 1: Fix a point $x_0 = \infty$ in $\mathbb{C}P^1$. A section of $L|_{\mathbb{C}P^1} = \mathcal{O}(d)$ is the same as meromorphic function having a pole of degree $\leqslant d$ at $\pi^{-1}(\infty)$.

Step 2: For each section $S_1: \mathbb{C}P^1 \longrightarrow M$ of π , a degree d meromorphic function on S_1 is uniquely determined by its values at any d+1 points of S_1 .

Step 3: Given a meromorphic function $f \in H^0(V,L)$ and a quasiline S_1 intersecting V in an open set, we can extend f to a meromorphic function \tilde{f} on S_1 by computing its values at d+1 distinct points $z_1,...,z_{d+1}$ of $S_1 \cap V$. Whenever S_1 is in V, this procedure gives $f|_{S_1}$. By analytic continuation, the values of $\tilde{f}(z)$ at any $z \in S_1$ are independent from the choice of z_i and S_1 .

Step 4: Therefore, \tilde{f} is a well-defined meromorphic function on the union V_1 of all quasilines intersecting V. For U sufficiently small, V_1 contains U. Therefore, any $f \in H^0(V, L)$ can be extended to U.

Hamiltonians

Let's define the hyperkähler reduction.

We denote the Lie derivative along a vector field as $\text{Lie}_x: \Lambda^i M \longrightarrow \Lambda^i M$, and contraction with a vector field by $i_x: \Lambda^i M \longrightarrow \Lambda^{i-1} M$.

Cartan's formula: $d \circ i_x + i_x \circ d = \text{Lie}_x$.

REMARK: Let (M,ω) be a symplectic manifold, G a Lie group acting on M by symplectomorphisms, and $\mathfrak g$ its Lie algebra. For any $g\in \mathfrak g$, denote by ρ_g the corresponding vector field. Then $\operatorname{Lie}_{\rho_g}\omega=0$, giving $d(i_{\rho_g}(\omega))=0$. We obtain that $i_{\rho_g}(\omega)$ is closed, for any $g\in \mathfrak g$.

DEFINITION: A Hamiltonian of $g \in \mathfrak{g}$ is a function h on M such that $dh = i\rho_g(\omega)$.

Moment maps

DEFINITION: (M,ω) be a symplectic manifold, G a Lie group acting on M by symplectomorphisms. A moment map μ of this action is a linear map $g \longrightarrow C^{\infty}M$ associating to each $g \in G$ its Hamiltonian.

REMARK: It is more convenient to consider μ as an element of $\mathfrak{g}^* \otimes_{\mathbb{R}} C^{\infty}M$, or (and this is most standard) as a function with values in \mathfrak{g}^* .

REMARK: Moment map always exists if M is simply connected.

DEFINITION: A moment map $M \longrightarrow \mathfrak{g}^*$ is called **equivariant** if it is equivariant with respect to the coadjoint action of G on \mathfrak{g}^* .

REMARK: $M \xrightarrow{\mu} \mathfrak{g}^*$ is a moment map iff for all $g \in \mathfrak{g}$, $\langle d\mu, g \rangle = i_{\rho_g}(\omega)$. Therefore, a moment map is defined up to a constant \mathfrak{g}^* -valued function. An equivariant moment map is is defined up to a constant \mathfrak{g}^* -valued function which is G-invariant.

DEFINITION: A *G*-invariant $c \in \mathfrak{g}^*$ is called **central**.

CLAIM: An equivariant moment map exists whenever $H^1(G, \mathfrak{g}^*) = 0$. In particular, when G is reductive and M is simply connected, an equivariant moment map exists.

Hyperkähler reduction

DEFINITION: Let G be a compact Lie group, ρ its action on a hyperkähler manifold M by hyperkähler isometries, and \mathfrak{g}^* a dual space to its Lie algebra. A hyperkähler moment map is a G-equivariant smooth map $\mu: M \to \mathfrak{g}^* \otimes \mathbb{R}^3$ such that $\langle \mu_i(v), g \rangle = \omega_i(v, d\rho(g))$, for every $v \in TM$, $g \in \mathfrak{g}$ and i = 1, 2, 3, where ω_i is one three Kähler forms associated with the hyperkähler structure.

DEFINITION: Let ξ_1, ξ_2, ξ_3 be three G-invariant vectors in \mathfrak{g}^* . The quotient manifold $M/\!\!/ G := \mu^{-1}(\xi_1, \xi_2, \xi_3)/G$ is called the hyperkähler quotient of M.

THEOREM: (Hitchin, Karlhede, Lindström, Roček) **The quotient** $M/\!\!/\!\!/ G$ is hyperkaehler.

Holomorphic moment map

Let $\Omega := \omega_J + \sqrt{-1}\omega_K$. This is a holomorphic symplectic (2,0)-form on (M, I).

The proof of HKLR theorem. Step 1: Let μ_J, μ_K be the moment map associated with ω_J, ω_K , and $\mu_{\mathbb{C}} := \mu_J + \sqrt{-1} \mu_K$. Then $\langle d\mu_{\mathbb{C}}, g \rangle = i_{\rho_g}(\Omega)$ Therefore, $d\mu_{\mathbb{C}} \in \Lambda^{1,0}(M,I) \otimes \mathfrak{g}^*$.

Step 2: This implies that the map $\mu_{\mathbb{C}}$ is holomorphic. It is called the holomorphic moment map.

Step 3: By definition, $M/\!\!/G = \mu_{\mathbb{C}}^{-1}(c)/\!\!/G$, where $c \in \mathfrak{g}^* \otimes_{\mathbb{R}} \mathbb{C}$ is a central element. **This is a Kähler manifold**, because it is a Kähler quotient of a Kähler manifold.

Step 4: We obtain 3 complex structures I, J, K on the hyperkähler quotient $M/\!\!/\!\!/ G$. They are compatible in the usual way (an easy exercise).

Twistor spaces and hyperkähler reduction

THEOREM: Let V be a quaterionic Hermitian vector space, and $G \subset \operatorname{Sp}(V)$ a compact Lie group acting on V by quaternionic isometries. Denote by M the hyperkähler reduction of V. Then $\operatorname{Tw}(M)$ is Moishezon.

Proof: Tw(M) is obtained as the space of stable $G_{\mathbb{C}}$ -orbits in $\mu_{\mathbb{C}}^{-1}(0) \subset \operatorname{Tw}(V)$. The space $\operatorname{Tw}(V) = \mathbb{C}P^{2n+1} \backslash \mathbb{C}P^{2n-1}$ is algebraic. Averaging over G, we obtain that the field $G_{\mathbb{C}}$ -invariant rational functions on $\operatorname{Tw}(M)$ has dimension $\operatorname{dim}\operatorname{Tw}(M)$, and $\operatorname{Tw}(M)$ is Moishezon.

COROLLARY: Let U be an open subset of a compact, simply connected hyperkähler manifold, and U' an open subset of a hyperkähler manifold obtained as $V/\!\!/\!\!/ G$, where V is flat and G reductive. Then U is not isomorphic to U' as hyperkähler manifold.

Proof: Tw(U') has many meromorphic functions, and a(Tw(U)) = 1.