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Plan of the talk

1. Introduce hyperkähler manifolds and their moduli. Define the bira-

tional moduli space as a quotient of a Teichmüller space Per = SO(b2−
3,3)/SO(2)× SO(b2 − 3,1) by an arithmetic group ΓI.

2. Explore the non-Hausdorff properties of the birational moduli. Explain

how the Moore’s ergodic theorem is relevant.

3. Use the Brody’s lemma to obtain non-hyperbolicity. Define twistor spaces

and prove the Campana’s theorem.

4. Prove non-hyperbolicity using Lagrangian fibrations.
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Holomorphically symplectic manifolds

DEFINITION: A hyperkähler structure on a manifold M is a Riemannian
structure g and a triple of complex structures I, J,K, satisfying quaternionic
relations I ◦ J = −J ◦ I = K, such that g is Kähler for I, J,K.

REMARK: A hyperkähler manifold is holomorphically symplectic: ωJ +√
−1 ωK is a holomorphic symplectic form on (M, I).

THEOREM: (Calabi-Yau) A compact, Kähler, holomorphically symplectic
manifold admits a unique hyperkähler metric in any Kähler class.

DEFINITION: For the rest of this talk, a hyperkähler manifold is a com-
pact, Kähler, holomorphically symplectic manifold.

DEFINITION: A compact hyperkähler manifold M is called simple if π1(M) =
0, H2,0(M) = C.

Bogomolov’s decomposition: Any hyperkähler manifold admits a finite cov-
ering which is a product of a torus and several simple hyperkähler manifolds.

Further on, all hyperkähler manifolds are assumed to be simple.
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Hilbert schemes

THEOREM: (a special case of Enriques-Kodaira classification)

Let M be a compact complex surface which is hyperkähler. Then M is either

a torus or a K3 surface.

DEFINITION: A Hilbert scheme M [n] of a complex surface M is a clas-

sifying space of all ideal sheaves I ⊂ OM for which the quotient OM/I has

dimension n over C.

REMARK: A Hilbert scheme is obtained as a resolution of singularities

of the symmetric power SymnM .

THEOREM: (Beauville) A Hilbert scheme of a hyperkähler surface is

hyperkähler.
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EXAMPLES.

EXAMPLE: A Hilbert scheme of K3 is simple and hyperkähler.

EXAMPLE: Let T be a torus. Then it acts on its Hilbert scheme freely

and properly by translations. For n = 2, the quotient T [n]/T is a Kummer

K3-surface. For n > 2, a universal covering of T [n]/T is called a generalized

Kummer variety.

REMARK: There are 2 more “sporadic” examples of compact hyperkähler

manifolds, constructed by K. O’Grady. All known simple hyperkaehler

manifolds are these 2 and two series: Hilbert schemes of K3, and gener-

alized Kummer.
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The Teichmüller space and the mapping class group

Definition: Let M be a compact complex manifold, and Diff0(M) a con-

nected component of its diffeomorphism group (the group of isotopies).

Denote by T̃eich the space of complex structures on M , and let Teich :=

T̃eich/Diff0(M). We call it the Teichmüller space.

Remark: Teich is a finite-dimensional complex space (Kodaira-Spencer-

Kuranishi-Douady), but often non-Hausdorff.

Definition: Let Diff+(M) be the group of oriented diffeomorphisms of M .

We call Γ := Diff+(M)/Diff0(M) the mapping class group. The coarse

moduli space of complex structures on M is a connected component of

Teich /Γ.

Remark: This terminology is standard for curves.

REMARK: For hyperkähler manifolds, it is convenient to take for Teich the

space of all complex structures of hyperkähler type, that is, holomor-

phically symplectic and Kähler. It is open in the usual Teichmüller space.
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The Bogomolov-Beauville-Fujiki form

THEOREM: (Fujiki). Let η ∈ H2(M), and dimM = 2n, where M is hy-

perkähler. Then
∫
M η2n = cq(η, η)n, for some primitive integer quadratic form

q on H2(M,Z), and c > 0 an integer number.

Definition: This form is called Bogomolov-Beauville-Fujiki form. It is

defined by the Fujiki’s relation uniquely, up to a sign. The sign is

determined from the following formula (Bogomolov, Beauville)

λq(η, η) =
∫
X
η ∧ η ∧Ωn−1 ∧Ωn−1−

−
n− 1

n

(∫
X
η ∧Ωn−1 ∧Ωn

)(∫
X
η ∧Ωn ∧Ωn−1

)
where Ω is the holomorphic symplectic form, and λ > 0.
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Computation of the mapping class group

Theorem: (Sullivan) Let M be a compact, simply connected Kähler mani-

fold, dimCM > 3. Denote by Γ0 the group of automorphisms of an algebra

H∗(M,Z) preserving the Pontryagin classes pi(M). Then the natural map

Diff+(M)/Diff0 −→ Γ0 has finite kernel, and its image has finite index

in Γ0.

Theorem: Let M be a simple hyperkähler manifold, and Γ0 as above. Then

(i) Γ0

∣∣∣H2(M,Z) is a finite index subgroup of O(H2(M,Z), q).

(ii) The map Γ0 −→O(H2(M,Z), q) has finite kernel.
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The period map

Remark: For any J ∈ Teich, (M,J) is also a simple hyperkähler manifold,

hence H2,0(M,J) is one-dimensional.

Definition: Let P : Teich −→ PH2(M,C) map J to a line H2,0(M,J) ∈
PH2(M,C). The map P : Teich −→ PH2(M,C) is called the period map.

REMARK: P maps Teich into an open subset of a quadric, defined by

Per := {l ∈ PH2(M,C) | q(l, l) = 0, q(l, l) > 0.

It is called the period space of M .

REMARK: Per = SO(b2 − 3,3)/SO(2)× SO(b2 − 3,1)
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Birational Teichmüller moduli space

DEFINITION: Let M be a topological space. We say that x, y ∈M are non-

separable (denoted by x ∼ y) if for any open sets V 3 x, U 3 y, U ∩ V 6= ∅.

THEOREM: (Huybrechts) Two points I, I ′ ∈ Teich are non-separable if

and only if there exists a bimeromorphism (M, I)−→ (M, I ′) which is

non-singular in codimension 2.

DEFINITION: The space Teichb := Teich / ∼ is called the birational Te-

ichmüller space of M .

THEOREM: The period map Teichb
Per−→ Per is an isomorphism, for each

connected component of Teichb.

DEFINITION: Let M be a hyperkaehler manifold, Teichb its birational Te-

ichmüller space, and Γ the mapping class group. The quotient Teichb /Γ is

called the birational moduli space of M .
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Monodromy group and the birational moduli space

THEOREM: Let (M, I) be a hyperkähler manifold, and W a connected

component of its birational moduli space. Then W is isomorphic to Per/Γ,

where Per = SO(b2 − 3,3)/SO(2) × SO(b2 − 3,1) and Γ is an arithmetic

group in O(H2(M,R), q), called the monodromy group.

REMARK: ΓI is a group generated by monodromy of the Gauss-Manin local

system on H2(M).

A CAUTION: Usually “the global Torelli theorem” is understood as a the-

orem about Hodge structures. For K3 surfaces, the Hodge structure on

H2(M,Z) determines the complex structure. For dimCM > 2, it is false.

REMARK: Further on, I shall freely identify Per and Teichb.
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Ergodicity of the monodromy group action

The moduli space Per/ΓI is extremely non-Hausdorff.

THEOREM: (Calvin C. Moore, 1966) Let Γ be an arithmetic lattice in a

non-compact simple Lie group G with finite center, and H ⊂ G a non-compact

subgroup. Then the left action of Γ on G/H is ergodic, that is, for all Γ-

invariant measurable subsets Z ⊂ G/H, either Z has measure 0, or

G/H\Z has measure 0.

REMARK: This implies that “almost all” Γ-orbits in G/H are dense.

THEOREM: Let Per be a component of a birational Teichmüller space, and

Γ its monodromy group. Let Pere be a set of all points L ⊂ Per such that the

orbit Γ · L is dense. Then Z := Per \Pere has measure 0.

Proof. Step 1: Let G = SO(b2 − 3,3), H = SO(2) × SO(b2 − 3,1). Then

Γ-action on G/H is ergodic, by Moore’s theorem.

Step 2: Ergodic orbits are dense, non-ergodic orbits have measure 0.
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Ergodic complex structures

COROLLARY: For each hyperkähler manifold M there exists a complex

structure I such that any other complex structure I ′ in the same de-

formation class can be obtained as a limit of ϕiI, where ϕi is a sequence

of isotopies.

DEFINITION: We call a complex structure I ergodic if its orbit in Per is

dense.

PROBLEM: Nobody has produced a concrete example of an ergodic

complex structure (so far).
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Kobayashi hyperbolic manifolds

DEFINITION: An entire curve is a non-constant map C−→M .

DEFINITION: A compact complex manifold M is called Kobayashi hyper-

bolic, if there exist no entire curves C−→M .

THEOREM: (Brody, 1975)

Let Ii be a sequence of complex structures on M which are not hyperbolic,

and I its limit. Then (M, I) is also not hyperbolic.

CONJECTURE: All hyperkähler manifolds are non-hyperbolic.

REMARK: This conjecture would follow if we produce an ergodic com-

plex structure which is non-hyperbolic.
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Twistor spaces and hyperkähler geometry

DEFINITION: A hyperkähler structure on a manifold M is a Riemannian

structure g and a triple of complex structures I, J,K, satisfying quaternionic

relations I ◦ J = −J ◦ I = K, such that g is Kähler for I, J,K.

DEFINITION: Induced complex structures on a hyperkähler manifold are

complex structures of form S2 ∼= {L := aI + bJ + cK, a2 + b2 + c2 = 1.}

DEFINITION: A twistor space Tw(M) of a hyperkähler manifold is a com-

plex manifold obtained by gluing these complex structures into a holo-

morphic family over CP1. More formally:

Let Tw(M) := M ×S2. Consider the complex structure Im : TmM → TmM on

M induced by J ∈ S2 ⊂ H. Let IJ denote the complex structure on S2 = CP1.

The operator ITw = Im ⊕ IJ : TxTw(M) → TxTw(M) satisfies I2
Tw = − Id.

It defines an almost complex structure on Tw(M). This almost complex

structure is known to be integrable (Obata)
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Rational curves on Tw(M).

DEFINITION: An ample rational curve on a complex manifold M is a

smooth curve S ∼= CP1 ⊂ M such that NS =
⊕n−1
k=1O(ik), with ik > 0. It is

called a quasiline if all ik = 1.

CLAIM: Let M be a compact complex manifold containing a an ample ra-

tional line. Then any N points z1, ..., zN can be connected by an ample

rational curve.

CLAIM: Let M be a hyperkähler manifold, Tw(M)
σ−→ M its twistor space,

m ∈ M a point, and Sm = CP1 × {m} the corresponding rational curve in

Tw(M). Then Sm is a quasiline.

Proof: Since the claim is essentially infinitesimal, it suffices to check it when

M is flat. Then Tw(M) = Tot(O(1)⊕2p) ∼= CP2p+1\CP2p−1, and Sm is a

section of O(1)⊕2p.
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Entire curves in twistor fibers

THEOREM: (F. Campana)
Let M be a hyperkähler manifold, and Tw(M)

π−→ CP1 its twistor projection.
Then there exists an entire curve in some fiber of π.

Proof: The space of rational curves in Tw(M) is not compact, because M

is not Moishezon. Take a sequence si : CP1 −→ Tw(M) of rational curves
which does not converge. Then limi |dsi(Ii)| =∞ for some sequence Ii ∈ CP1.
Take a subsequence for which Ii converges to some I. Then π−1(I) contains
an entire curve obtained as a limit of si, by Brody’s theorem.

COROLLARY: Let N ⊂ Per be the set of all non-hyperbolic complex struc-
tures. Then N contains a point on each rational curve S ⊂ Per obtained
from a hyperkähler structure.

COROLLARY: N has Hausdorff codimension 6 2.

REMARK: Such rational curves S correspond to 3-dimensional subspaces
W ⊂ H2(M,R), with Per = Gr+,+(H2(M,R), SW = Gr+,+(W ). To prove
non-hyperbolicity it would suffice to show that the set of ergodic points
contains SW for some W ⊂ H2(M,R).
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Divisors in the moduli space

Instead of taking a Γ-orbit of a point s ∈ Per, let’s take an orbit of a subvariety.

DEFINITION: Given non-zero η ∈ H2(M,R), denote by Perη ⊂ Per the set of

all I ∈ Per such that η ∈ H1,1(M, I).

EXAMPLE: When q(η, η) > 0, and η is integer, η or −η is ample when

Pic(M, I) = 〈η〉 (Huybrechts, Boucksom). The space Perη ⊂ Per is called the

polarized Teichmüller space of M . It is a symmetric space. Its quotient

Perη /Γ is quasiprojective, by Bailey-Borel’s theorem, and Hausdorff.

THEOREM: (Anan′in-V.) For any integer η, the quotient Perη /Γ is dense

in the corresponding moduli space Per /Γ.

For today’s talk, we are interested in q(η, η) = 0.
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Holomorphic Lagrangian fibrations

THEOREM: (Matsushita, 1997)

Let π : M −→X be a surjective holomorphic map from a hyperkähler manifold

M to X, whith 0 < dimX < dimM . Then dimX = 1/2 dimM, and the

fibers of π are holomorphic Lagrangian (this means that the symplectic

form vanishes on π−1(x)).

DEFINITION: Such a map is called holomorphic Lagrangian fibration.

REMARK: The base of π is conjectured to be rational. Hwang (2007)

proved that X ∼= CPn, if it is smooth. Matsushita (2000) proved that it has

the same rational cohomology as CPn.

REMARK: The base of π has a natural flat connection on the smooth locus

of π. The combinatorics of this connection can be used to determine the

topology of M (Strominger-Yau-Zaslow, Kontsevich-Soibelman).

REMARK: A manifold admitting a holomorphic Lagrangian fibration is

non-hyperbolic, because it contains a torus.
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The hyperkähler SYZ conjecture

CONJECTURE: (Tyurin, Bogomolov, Hassett-Tschinkel, Huybrechts, Sawon).

Any hyperkähler manifold can be deformed to a manifold admitting a holo-

morphic Lagrangian fibration.

A trivial observation: Let π : M −→X be a holomorphic Lagrangian fibra-

tion, and ωX a Kähler class on X. Then η := π∗ωX is nef, and satisfies

q(η, η) = 0.

The hyperkähler SYZ conjecture: Let L be a nef line bundle on a

hyperkähler manifold, with q(L,L) = 0. Then L is semiample. Here q is

the Bogomolov-Beauville form.

THEOREM: (Kamenova-V.) Let η ∈ H2(M,Z) be a cohomology class sat-

isfying q(η, η) = 0, and I ∈ Perη a complex structure for which η is semiample.

Then η is semiample for a dense, open subset of Perη.
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Non-hyperbolicity of hyperkähler manifolds

COROLLARY: (Kamenova-V.) Let M be a hyperkähler manifold which has

a deformation admitting a holomorphic Lagrangian fibration. Then M is

non-hyperbolic.

Proof. Step 1: Let η be a nef class associated with a holomorphic La-

grangian fibration. Then η is semiample for a dense, open subset Persaη ⊂ Perη.

Since Γ · Perη is dense in Per, Γ · Persaη is also dense.

Step 2: All points of Γ · Persaη are non-hyperbolic, and the set N ⊃ Γ · Persaη of

non-hyperbolic points is closed in Per. Therefore, N = Per.

EXAMPLE: All known examples of hyperkähler manifolds (Hilbert schemes

of K3, generalized Kummer, 2 of O’Grady’s examples) have a deformation

admitting a Lagrangian fibration. Therefore, they are non-hyperbolic.
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