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Plan of the talk
1. Introduce hyperkahler manifolds and their moduli. Define the bira-
tional moduli space as a quotient of a Teichmuller space Per = SO(b> —

3,3)/S0(2) x SO(bp — 3,1) by an arithmetic group I;.

2. Explore the non-Hausdorff properties of the birational moduli. Explain
how the Moore’'s ergodic theorem is relevant.

3. Use the Brody's lemma to obtain non-hyperbolicity. Define twistor spaces
and prove the Campana’s theorem.

4. Prove non-hyperbolicity using Lagrangian fibrations.
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Holomorphically symplectic manifolds

DEFINITION: A hyperkahler structure on a manifold M is a Riemannian
structure g and a triple of complex structures I, J, K, satisfying quaternionic
relations T oJ = —J oI = K, such that g is Kahler for I, J, K.

REMARK: A hyperkahler manifold is holomorphically symplectic: wj+
vV—1wg is a holomorphic symplectic form on (M, 1I).

THEOREM: (Calabi-Yau) A compact, Kahler, holomorphically symplectic
manifold admits a unique hyperkahler metric in any Kahler class.

DEFINITION: For the rest of this talk, a hyperkahler manifold is a com-
pact, Kahler, holomorphically symplectic manifold.

DEFINITION: A compact hyperkahler manifold M is called simple if 711 (M) =
0, H29(M) = C.

Bogomolov’s decomposition: Any hyperkahler manifold admits a finite cov-
ering which is a product of a torus and several simple hyperkahler manifolds.

Further on, all hyperkahler manifolds are assumed to be simple.
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Hilbert schemes

THEOREM: (a special case of Enriques-Kodaira classification)
Let M be a compact complex surface which is hyperkahler. Then M is either
a torus or a K3 surface.

DEFINITION: A Hilbert scheme M of a complex surface M is a clas-
sifying space of all ideal sheaves I C O,; for which the quotient O,;/I has
dimension n over C.

REMARK: A Hilbert scheme is obtained as a resolution of singularities
of the symmetric power Sym™ M.

THEOREM: (Beauville) A Hilbert scheme of a hyperkahler surface is
hyperkahler.
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EXAMPLES.
EXAMPLE: A Hilbert scheme of K3 is simple and hyperkahler.

EXAMPLE: Let T be a torus. Then it acts on its Hilbert scheme freely
and properly by translations. For n = 2, the quotient T[”]/T IS a Kummer
K3-surface. For n > 2, a universal covering of Tl /T is called a generalized
Kummer variety.

REMARK: There are 2 more ‘sporadic’” examples of compact hyperkahler
manifolds, constructed by K. O’Grady. All known simple hyperkaehler
manifolds are these 2 and two series: Hilbert schemes of K3, and gener-
alized Kummer.
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The Teichmuller space and the mapping class group

Definition: Let M be a compact complex manifold, and Diffg(M) a con-
nected component of its diffeomorphism group (the group of isotopies).
Denote by Teich the space of complex structures on M, and let Teich =
Teich/ Diffg(M). We call it the Teichmuller space.

Remark: Teich is a finite-dimensional complex space (Kodaira-Spencer-
Kuranishi-Douady), but often non-Hausdorff¥.

Definition: Let Diff4 (M) be the group of oriented diffeomorphisms of M.
We call I := Diff . (M)/ Diffo(M) the mapping class group. The coarse
moduli space of complex structures on M is a connected component of
Teich /T".

Remark: This terminology is standard for curves.

REMARK: For hyperkahler manifolds, it is convenient to take for Teich the
space of all complex structures of hyperkahler type, that is, holomor-
phically symplectic and Kahler. It is open in the usual Teichmtuller space.
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The Bogomolov-Beauville-Fujiki form

THEOREM: (Fujiki). Let n € H2(M), and dimM = 2n, where M is hy-
perkdhler. Then [,;17°" = cq(n,n)"™, for some primitive integer quadratic form
g on H2(M,Z), and ¢ > 0 an integer number.

Definition: This form is called Bogomolov-Beauville-Fujiki form. It is
defined by the Fujiki’s relation uniquely, up to a sign. The sign is
determined from the following formula (Bogomolov, Beauville)

Aq(n,m) = /Xn AnpAQI AT

1 _ —n—
_n (/ n/\Q”‘l/\Q”’) (/ nAQLAQ" 1)
n X X

where €2 is the holomorphic symplectic form, and A\ > 0.
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Computation of the mapping class group

Theorem: (Sullivan) Let M be a compact, simply connected Kahler mani-
fold, dimg M > 3. Denote by g the group of automorphisms of an algebra
H*(M,Z) preserving the Pontryagin classes p;,(M). Then the natural map
Diff L (M )/ Diffp — "o has finite kernel, and its image has finite index
in lp.

Theorem: Let M be a simple hyperkahler manifold, and o as above. Then
(i) I‘O)HQ(MZ) is a finite index subgroup of O(H?2(M,7Z),q).
(ii) The map My — O(H?2(M,Z), q) has finite kernel.
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The period map

Remark: For any J € Teich, (M, J) is also a simple hyperkahler manifold,
hence H29(M,J) is one-dimensional.

Definition: Let P : Teich — PH?(M,C) map J to a line H%9(M,J) €
PH2(M,C). The map P: Teich — PH?2(M,C) is called the period map.

REMARK: P maps Teich into an open subset of a quadric, defined by

Per := {l € PH?(M,C) | q¢(l,1) =0,q(l,1) > 0.
It is called the period space of M.

REMARK: Per = SO(by — 3,3)/50(2) x SO(by — 3,1)
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Birational Teichmuller moduli space

DEFINITION: Let M be a topological space. We say that =,y € M are non-
separable (denoted by =z ~ y) if for any open sets V3 z, U3y, UNV # 0.

THEOREM: (Huybrechts) Two points I,I’ € Teich are non-separable if
and only if there exists a bimeromorphism (M,I) — (M,I") which is
non-singular in codimension 2.

DEFINITION: The space Teich, := Teich / ~ is called the birational Te-
ichmuller space of M.

THEOREM: The period map Teich, ﬂ Per 1s an isomorphism, for each

connected component of Teichy,.
DEFINITION: Let M be a hyperkaehler manifold, Teich, its birational Te-

ichmiller space, and ' the mapping class group. The quotient Teichy /T is
called the birational moduli space of M.
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Monodromy group and the birational moduli space

THEOREM: Let (M,I) be a hyperkahler manifold, and W a connected
component of its birational moduli space. Then W is isomorphic to Per/I",
where Per = SO(by — 3,3)/S0(2) x SO(bo, — 3,1) and I is an arithmetic
group in O(H?%(M,R),q), called the monodromy group.

REMARK: ['; is a group generated by monodromy of the Gauss-Manin local
system on H2(M).

A CAUTION: Usually “the global Torelli theorem”™ is understood as a the-
orem about Hodge structures. For K3 surfaces, the Hodge structure on
H?2(M,7) determines the complex structure. For dimg M > 2, it is false.

REMARK: Further on, I shall freely identify Per and Teich,.
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Ergodicity of the monodromy group action
The moduli space Per/I"; is extremely non-HausdorfT,

THEOREM: (Calvin C. Moore, 1966) Let I' be an arithmetic lattice in a
non-compact simple Lie group G with finite center, and H C G a nhon-compact
subgroup. Then the left action of ' on G/H is ergodic, that is, for all -
invariant measurable subsets 7 C G/H, either Z has measure 0, or
G/H\Z has measure O.

REMARK: This implies that “almost all” M-orbits in G/H are dense.
THEOREM: Let Per be a component of a birational Teichmuller space, and

[ its monodromy group. Let Per. be a set of all points L C Per such that the
orbit I - L is dense. Then Z := Per\ Perc has measure O.

Proof. Step 1: Let G = SO(by —3,3), H = SO(2) x SO(bo —3,1). Then
[-action on G/H is ergodic, by Moore’'s theorem.

Step 2: Ergodic orbits are dense, non-ergodic orbits have measure 0. =
12
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Ergodic complex structures

COROLLARY: For each hyperkahler manifold M there exists a complex
structure 7 such that any other complex structure I’ in the same de-
formation class can be obtained as a limit of ¢;I, where ¢, is a sequence
of isotopies.

DEFINITION: We call a complex structure I ergodic if its orbit in Per is
dense.

PROBLEM: Nobody has produced a concrete example of an ergodic
complex structure (so far).
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Kobayashi hyperbolic manifolds
DEFINITION: An entire curve is a non-constant map C — M.

DEFINITION: A compact complex manifold M is called Kobayashi hyper-
bolic, if there exist no entire curves C — M.

THEOREM: (Brody, 1975)
Let I, be a sequence of complex structures on M which are not hyperbolic,
and I its limit. Then (M,I) is also not hyperbolic.

CONJECTURE: All hyperkahler manifolds are non-hyperbolic.

REMARK: This conjecture would follow if we produce an ergodic com-
plex structure which is non-hyperbolic.
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Twistor spaces and hyperkahler geometry

DEFINITION: A hyperkahler structure on a manifold M is a Riemannian
structure g and a triple of complex structures I, J, K, satisfying quaternionic
relations ToJ = —J oI = K, such that g is Kahler for I, J, K.

DEFINITION: Induced complex structures on a hyperkahler manifold are
complex structures of form S2 =2 {L :=al +bJ +cK, a’+b°+c*=1.}

DEFINITION: A twistor space Tw(M) of a hyperkahler manifold is a com-
plex manifold obtained by gluing these complex structures into a holo-
morphic family over CPl. More formally:

Let Tw(M) := M x S2. Consider the complex structure Ip, : TinM — T;nM on
M induced by J & S2 C H. Let I ; denote the complex structure on S2 = cpl.

The operator Iy = I;m®1j: Ty TW(M) — T, Tw(M) satisfies I-QI-W = —1Id.
It defines an almost complex structure on Tw(M). This almost complex
structure is known to be integrable (Obata)
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Rational curves on Tw(M).

DEFINITION: An ample rational curve on a complex manifold M is a
smooth curve S =2 CPl ¢ M such that NS = EBZ;% O(ig), with 4, > 0. It is
called a quasiline if all 7, = 1.

CLAIM: Let M be a compact complex manifold containing a an ample ra-
tional line. Then any N points zq,...,zxy can be connected by an ample
rational curve.

CLAIM: Let M be a hyperkidhler manifold, Tw(M) -2 M its twistor space,
m € M a point, and S;; = CPl x {m} the corresponding rational curve in
Tw(M). Then S,, is a quasiline.

Proof: Since the claim is essentially infinitesimal, it suffices to check it when

M is flat. Then Tw(M) = Tot(0(1)%?P) = cp2rtI\CcP?,~1, and S,, is a
section of O(1)%2P, m
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Entire curves in twistor fibers

THEOREM: (F. Campana)
Let M be a hyperkdhler manifold, and Tw(M) = CP! its twistor projection.
Then there exists an entire curve in some fiber of .

Proof: The space of rational curves in Tw(M) is not compact, because M
is not Moishezon. Take a sequence s; : CP! — Tw(M) of rational curves
which does not converge. Then lim; |ds;(I;)| = oo for some sequence I; € CP1L.
Take a subsequence for which I, converges to some I. Then =~ 1(I) contains
an entire curve obtained as a limit of s;, by Brody’s theorem. =

COROLLARY: Let N C Per be the set of all non-hyperbolic complex struc-
tures. Then N contains a point on each rational curve S C Per obtained
from a hyperkahler structure.

COROLLARY: N has Hausdorff codimension < 2.

REMARK: Such rational curves S correspond to 3-dimensional subspaces
W C H?(M,R), with Per = Gry 4 (H%(M,R), Sy = Gry +(W). To prove
non-hyperbolicity it would suffice to show that the set of ergodic points
contains Sy for some W C H2(M,R).
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Divisors in the moduli space
Instead of taking a [-orbit of a point s € Per, let's take an orbit of a subvariety.

DEFINITION: Given non-zero n € H2(M,R), denote by Per,, C Per the set of
all I € Per such that n e HL1(M, I).

EXAMPLE: When ¢(n,n) > 0, and n is integer, n or —n is ample when
Pic(M,I) = (n) (Huybrechts, Boucksom). The space Per,, C Per is called the
polarized Teichmuller space of M. It is a symmetric space. Its quotient

IP’ern/I‘ IS quasiprojective, by Bailey-Borel's theorem, and Hausdorff.

THEOREM: (Anan’in-V.) For any integer n, the quotient Per, /" is dense
in the corresponding moduli space Per /T".

For today’s talk, we are interested in ¢(n,n) = 0.
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Holomorphic Lagrangian fibrations

THEOREM: (Matsushita, 1997)

Let 7 : M — X be a surjective holomorphic map from a hyperkahler manifold
M to X, whith 0 < dimX < dimM. Then dimX = 1/2dim M, and the
fibers of © are holomorphic Lagrangian (this means that the symplectic
form vanishes on 7~ 1(2)).

DEFINITION: Such a map is called holomorphic Lagrangian fibration.

REMARK: The base of 7w is conjectured to be rational. Hwang (2007)
proved that X = CP", if it is smooth. Matsushita (2000) proved that it has
the same rational cohomology as CP".

REMARK: The base of # has a natural flat connection on the smooth locus
of w. The combinatorics of this connection can be used to determine the
topology of M (Strominger-Yau-Zaslow, Kontsevich-Soibelman).

REMARK: A manifold admitting a holomorphic Lagrangian fibration is
non-hyperbolic, because it contains a torus.

19



Non-hyperbolicity of hyperkahler manifolds M. Verbitsky

The hyperkahler SYZ conjecture

CONJECTURE: (Tyurin, Bogomolov, Hassett-Tschinkel, Huybrechts, Sawon).
Any hyperkahler manifold can be deformed to a manifold admitting a holo-
morphic Lagrangian fibration.

A trivial observation: Let 7 : M — X be a holomorphic Lagrangian fibra-
tion, and wx a Kdhler class on X. Then n := n*wyx is nef, and satisfies

q(n,m) = 0.

The hyperkahler SYZ conjecture: Let L be a nef line bundle on a
hyperkahler manifold, with ¢(L,L) = 0. Then L is semiample. Here q is
the Bogomolov-Beauville form.

THEOREM: (Kamenova-V.) Let n € H2(M,Z) be a cohomology class sat-

isfying q(n,n) = 0, and I € Per, a complex structure for which 7 is semiample.
Then n i1s semiample for a dense, open subset of Per,,.
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Non-hyperbolicity of hyperkahler manifolds

COROLLARY: (Kamenova-V.) Let M be a hyperkahler manifold which has
a deformation admitting a holomorphic Lagrangian fibration. Then M is
non-hyperbolic.

Proof. Step 1: Let n be a nef class associated with a holomorphic La-
grangian fibration. Then n is semiample for a dense, open subset Pery® C Pery.
Since [ - Per, is dense in Per, [ - Per}® is also dense.

Step 2: All points of I‘-IPerf?“ are non-hyperbolic, and the set N D F-Perf?a of
non-hyperbolic points is closed in Per. Therefore, N — Per. m

EXAMPLE: All known examples of hyperkahler manifolds (Hilbert schemes

of K3, generalized Kummer, 2 of O'Grady’'s examples) have a deformation
admitting a Lagrangian fibration. Therefore, they are non-hyperbolic.
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