Complex subvarieties in homogeneous complex manifolds

Misha Verbitsky

August 10, 2014

Topology of Torus Actions and Applications to Geometry and Combinatorics,

Daejeon, Korea.

Homogeneous complex manifolds

DEFINITION: A complex manifold M is called **homogeneous** if its automorphism group acts transitively.

Examples of compact homogeneous manifolds:

- 0. Flag spaces and partial flag spaces.
- 1. Calabi-Eckmann and Hopf manifolds.
- 2. Tori.

3. Let G be a compact, even-dimensional Lie group. Then G admits a left-invariant complex structure (H. Samelson, 1953).

Hopf surface

The (classical) Hopf surface. Fix $\alpha \in \mathbb{C}$, $|\alpha| > 1$. Consider the quotient $H = (\mathbb{C}^2 \setminus 0)/\langle \mathbb{Z} \rangle$, with \mathbb{Z} acting on \mathbb{C}^2 by $(x, y) \longrightarrow (\alpha x, \alpha y)$. It is called **the Hopf surface**. Topologically the Hopf surface is isomorphic to $S^1 \times S^3$ (hence, non-Kähler). The elliptic curve $T^2 = \mathbb{C}^*/\langle \alpha \rangle$ acts on H by $t, (x, y) \longrightarrow (tx, ty)$. This action is free, and its quotient is $\mathbb{C}P^1$. The Hopf surface is a **principal elliptic fibration**. Topologically, it's a product of a Hopf fibration $S^3 \longrightarrow S^2$ and a circle.

Calabi-Eckmann manifolds

Fix $\alpha \in \mathbb{C}$, α non-real, $|\alpha| > 1$. Consider a subgroup

 $G := \{ e^t \times e^{\alpha t} \subset \mathbb{C}^* \times \mathbb{C}^*, \quad t \in \mathbb{C} \} \subset \mathbb{C}^* \times \mathbb{C}^*$

within $\mathbb{C}^* \times \mathbb{C}^*$. It is clearly co-compact and closed, with $\mathbb{C}^* \times \mathbb{C}^*/G$ being an elliptic curve $\mathbb{C}^*/\langle \alpha \rangle$.

Now, let $M := (\mathbb{C}^n \setminus 0) \otimes (\mathbb{C}^m \setminus 0)/G$, with $G \subset \mathbb{C}^* \times \mathbb{C}^*$ acting on $(\mathbb{C}^n \setminus 0) \otimes (\mathbb{C}^m \setminus 0)$ by $(t_1, t_2)(x, y) \longrightarrow (t_1 x, t_2 y)$. Clearly, M is fibered over

$$\mathbb{C}P^{n-1} \times \mathbb{C}P^{m-1} = (\mathbb{C}^n \backslash 0) \otimes (\mathbb{C}^m \backslash 0) / \mathbb{C}^* \times \mathbb{C}^*$$

with a fiber $\mathbb{C}^* \times \mathbb{C}^*/G$, which is an elliptic curve. Then M is called **the Calabi-Eckmann manifold**. It is diffeomorphic to $S^{2n-1} \times S^{2m-1}$. The group $U(n) \times U(m)$ acts on M transitively.

We obtained a homogeneous complex structure on $S^{2n-1} \times S^{2m-1}$.

It is non-Kähler, because $H^2(M) = 0$.

Principal toric fibrations

DEFINITION: A complex principal toric fibration M is a complex manifold equipped with a free holomorphic action of a compact complex torus T.

Such a manifold is fibered over M/T, with fiber T.

It is a principal T-bundle: all fibers are identified with T, with T acting on fibers freely.

To trivialize a principal group bundle it means to find a section.

Borel-Remmert-Tits theorem

Borel-Remmert-Tits theorem: Let M be a compact, complex, simply connected homogeneous manifold. Then M is a principal toric fibration, with a base which is a homogeneous, rational projective manifold.

Proof: Let $K^{-1} = \Lambda_{\mathbb{C}}^{\dim M}(TM)$ be the anticanonical class of M. Since TM is globally generated, the same is true for K^{-1} . This gives a G-invariant morphism

$$M \xrightarrow{\pi} \mathbb{P}H^0(K^{-1}).$$

The fibers F of π are homogeneous with trivial canonical class, and its base is homogeneous and projective (hence, rational). The fundamental group of F is a quotient of $\pi_2(X)$, as follows from the long exact sequence of homotopy groups for a Serre's fibration:

$$\pi_2(X) \longrightarrow \pi_1(F) \longrightarrow \pi_1(M) = 0$$

Therefore, $\pi_1(F)$ is abelian. It remains to show that it is a torus.

Homogeneous manifolds with trivial canonical class

LEMMA: Let F be a compact, complex, homogeneous manifold with $\pi_1(F)$ abelian and a trivial anticanonical class K^{-1} . Then F is a torus.

Proof: The sheaf of holomorphic vector fields on M is globally generated. Taking a vector field v_1 and multiplying it by general vector fields $v_2, ... v_n$, we obtain a section of K^{-1} , which is non-zero for general v_i , and therefore non-degenerate. We obtain that v_i are linearly independent everywhere. Taking the corresponding flows of diffeomorphisms, we obtain that F is a quotient of a holomorphic Lie group G by a cocompact lattice. Since $\pi_1(F)$ is abelian, G is commutative, and T is a torus.

Positive elliptic fibrations

DEFINITION: Let $M \xrightarrow{\pi} X$ be an elliptic fibration, M compact. We say that M is a **positive elliptic fibration**, if for some Kähler class ω on X, $\pi^*\omega$ is exact. ("Kähler class" is a cohomology class of a Kähler form.)

Examples:

- 1. Hopf manifold, $H^2(M) = 0$, hence positive.
- 2. Calabi-Eckmann manifold (same).
- 3. SU(3) is elliptically fibered over the flag manifold F(2,3), also $H^2(M) = 0$.

Subvarieties of positive elliptic fibrations

Theorem: Let $M \xrightarrow{\pi} X$ be a positive elliptic T fibration, and $Z \subset M$ be a subvariety, of positive dimension m. Then Z is T-invariant.

Proof: Let $\omega_0 = \pi^* \omega$ be a pullback of a Kähler form which is exact. Then

$$\int_Z \omega_0^m = 0.$$

On the other hand, all eigenvalues of $\omega_0|_Z$ are non-negative, and all are positive, unless Z is tangent to the action of T. In a point where Z is not tangent to T, the form ω_0^m is positive, and **in this case the integral** $\int_Z \omega_0^m$ **is also positive.**

Positive toric fibrations

DEFINITION: Let $M \xrightarrow{\pi} X$ be a complex principal toric fibration, M compact, with fiber T. We say that π is **convex** if $\pi^*\omega$ is exact for some Kähler form ω . We say that π is **positive** if for any proper complex subtorus $T' \subset T$, the corresponding quotient fibration $M/T' \longrightarrow X$ is convex.

EXAMPLE: Let M be a complex, compact homogeneous manifold with $H^2(M) = 0$ (e.g. a Lie group), and $M \xrightarrow{\pi} X$ the Borel-Remmert-Tits toric fibration. Assume that the fiber of π have no proper subtori (easy to insure by taking a generic invariant complex structure). Then M is positive.

Subvarieties in principal toric fibrations

THEOREM: Consider an irreducible complex subvariety $Z \subset M$ of a positive principal toric fibration $M \xrightarrow{\pi} X$, with fiber T. Then Z is T-invariant, or is contained in a fiber of π .

Proof: 1. For any positive-dimensional subvariety $Z_0 \subset X$, the restriction of π to Z_0 has no multisections (because $\int_Z \omega_0^m$ must vanish).

2. Given a Kähler manifold A with an action of T, consider an associated fiber bundle $M \times_T A$ over X. Unless T acts on A trivially, $M \times_T A$ is also convex, hence **admits no multisections.**

3. If $Z \subset M$ is not *T*-invariant, it provides us with a multisection from *X* to $M \times_T A$, where *A* is the space of deformations of the fiber $Z \cap \pi^{-1}(t_0)$. It is convex (step 2). Cannot have multisections! Contradiction.

Open questions

1. **THEOREM:** Let $M \xrightarrow{\pi} X$, $\dim_{\mathbb{C}} X > 1$, be a positive elliptic T fibration, and F a stable reflexive sheaf on M. Then $F \cong L \otimes \pi^* F_0$, where L is a line bundle, and F_0 a stable coherent sheaf on X.

Is there a similar result for positive torus fibrations?

2. Is it possible to define positivity for \mathbb{C}^n -fibrations? For \mathbb{C} -fibrations it is possible in terms of curvature; all subvarieties would be also \mathbb{C} -invariant.