Stable bundles on non-Kähler manifolds with transversally Kähler foliations

Misha Verbitsky

Holomophic foliations and complex dynamics

14 June 2012, Poncelet Laboratory, Moscow, Russia

Motivation.

QUESTION: How to study non-Kähler complex manifolds?

THEOREM: (Harvey-Lawson) Let M be a compact complex n-manifold not admitting a Kähler structure. Then there exists a positive (n - 1, n - 1)current T which is an (n - 1, n - 1)-part of an exact current.

THEOREM: (Harvey-Lawson) Let M be a compact complex non-Kähler surface. Then M admits a positive, exact (1,1)-current.

DEFINITION: Kähler rank of a complex manifold M is maximal rank of a positive, closed (1,1)-form on M.

Marco Brunella: classification of non-Kähler surfaces according to their Kähler rank.

We are interested in *n*-manifolds admitting positive, exact forms of rank n-1, which are transversally Kähler with respect to a 1-dimensional foliation.

Plan.

1. Motivation: Manifolds with transversally Kähler foliations (examples).

2. Immediate application: Classification of complex subvarieties.

3. Geometry of Vaisman manifolds. Structure theorem and transversal foliations. Application to complex subvarieties.

4. Stable bundles on non-Kähler manifolds. Gauduchon metrics and stability.

5. Coherent sheaves on Vaisman manifolds. Filtered sheaves and applications of Yang-Mills theory.

Transversally Kähler forms.

DEFINITION: A model situation. Let M be a compact complex manifold, $\Sigma \subset TM$ a holomorphic 1-dimensional foliation, generated by a nowhere vanishing holomorphic vector field s, and ω_0 a closed semipositive (1,1)-form on M. We say that ω_0 is transversally Kähler, if Σ is the null-space of ω_0 , equivariant, if $\text{Lie}_s \omega_0 = 0$, and transversally Kähler exact if ω_0 is exact: $\omega_0 = d\theta$.

REMARK: A manifold admitting a transversally Kähler exact form **is never Kähler**. Indeed, if ω is a Kähler form, we would have $\int_M \omega_0 \wedge \omega^{\dim M-1} > 0$, which is impossible by Stokes' theorem, because $\omega_0 \wedge \omega^{\dim M-1} = d(\theta \wedge \omega^{\dim M-1})$.

EXAMPLE: A classical Hopf surface is $H := \mathbb{C}^2 \setminus 0/\mathbb{Z}$, where \mathbb{Z} acts as a multiplication by a complex number λ , $|\lambda| > 1$.

OBSERVATION: *H* is diffeomorphic to $S^1 \times S^3$, and fibered over $\mathbb{C}P^1$ with fiber $\mathbb{C}^*/\langle \lambda \rangle$.

CLAIM: Let $\pi : H \longrightarrow \mathbb{C}P^1$ be the standard projection, and $\omega_0 := \pi^* \omega_{\mathbb{C}P^1}$ be a pullback of the Fubini-Study form. Clearly, ω_0 is exact, because $H^2(H) = 0$ (by Künneth formula). Therefore, H admits a transversally Kähler, exact form.

Locally trivial elliptic fibrations.

DEFINITION: A principal elliptic fibration M is a complex manifold equipped with a free holomorphic action of a 1-dimensional compact complex torus T.

Such a manifold is fibered over M/T, with fiber T.

REMARK: It is a principal T-bundle: all fibers are identified with T, with T acting on fibers freely.

DEFINITION: Let $M \xrightarrow{\pi} X$ be a principal elliptic fibration, M compact. We say that M is **positive elliptic fibration**, if for some Kähler class ω on X, $\pi^*\omega$ is exact. ("Kähler class" is a cohomology class of a Kähler form).

EXAMPLE: The classical Hopf surface introduced earlier.

EXAMPLE: A more general example is given by $Tot(L^*)/\langle \mathbb{Z} \rangle$, where *L* is an ample line bundle. Such manifold is called a regular Vaisman manifold. It is positive, because $\pi^*(c_1(L)) = 0$, and $c_1(L)$ is a Kähler class.

Calabi-Eckmann manifolds

Calabi-Eckmann manifolds.

Fix $\alpha \in \mathbb{C}$, α non-real, $|\alpha| > 1$. Consider a subgroup

 $G := \{ e^t \times e^{\alpha t} \subset \mathbb{C}^* \times \mathbb{C}^*, \quad t \in \mathbb{C} \} \subset \mathbb{C}^* \times \mathbb{C}^*$

within $\mathbb{C}^* \times \mathbb{C}^*$. It is clearly co-compact and closed, with $\mathbb{C}^* \times \mathbb{C}^*/G$ being an elliptic curve $\mathbb{C}^*/\langle \alpha \rangle$.

Now, let $M := (\mathbb{C}^n \setminus 0) \otimes (\mathbb{C}^m \setminus 0)/G$, with $G \subset \mathbb{C}^* \times \mathbb{C}^*$ acting on $(\mathbb{C}^n \setminus 0) \otimes (\mathbb{C}^m \setminus 0)$ by $(t_1, t_2)(x, y) \longrightarrow (t_1 x, t_2 y)$. Clearly, M is fibered over

$$\mathbb{C}P^{n-1} \times \mathbb{C}P^{m-1} = (\mathbb{C}^n \backslash 0) \otimes (\mathbb{C}^m \backslash 0) / \mathbb{C}^* \times \mathbb{C}^*$$

with a fiber $\mathbb{C}^* \times \mathbb{C}^*/G$, which is an elliptic curve. Its total space M the Calabi-Eckmann manifold. It is diffeomorphic to $S^{2n-1} \times S^{2m-1}$.

REMARK: The map $M \longrightarrow \mathbb{C}P^{n-1} \times \mathbb{C}P^{m-1}$ is a principal elliptic fibration.

REMARK: The pullback of a Kähler form from $\mathbb{C}P^{n-1} \times \mathbb{C}P^{m-1}$ to M is exact, because $H^2(M) = 0$ (by Künneth formula).

Irregular and quasi-regular foliations

DEFINITION: A foliation is called **quasi-regular** if all its leaves are compact. If this is not so, it is called **irregular**. A foliation is called **regular** if all its leaves are compact, and the leaf space is smooth.

So far, in our examples all foliations were quasi-regular. Let's have some irregular examples.

REMARK: Calabi-Eckmann manifolds were generalized by Lopez de Medrano, Verjovsky and Meersseman. The complex structure on Calabi-Eckmann can be deformed together with the foliation, giving **an equivariant transversally Kähler manifold with a foliation having non-compact leaves** ("LVMmanifolds").

REMARK: If (M, Σ, ω_0) is a manifold equipped with a transversally Kähler, exact form, and $Z \subset M$ is a complex subvariety, then Z is a union of closures of leaves of Σ .

For more examples, we define Vaisman manifolds.

LCK manifolds

DEFINITION: Let M be a complex manifold, $\tilde{M} \to M$ its covering, $\tilde{M}/\Gamma = M$, and Γ the **monodromy group** freely acting on \tilde{M} . Assume that \tilde{M} is Kähler, and Γ acts on \tilde{M} by homotheties. Then M is called **locally conformally Kähler** (LCK).

EXAMPLE: A classical Hopf manifold $\mathbb{C}^n \setminus 0/\langle A \rangle$, A(x) = qx, |q| > 1, is obviously LCK.

DEFINITION: Let M be an LCK manifold, $(\tilde{M}, \tilde{\omega})$ its covering. An LCK metric on M is a metric conformal to $\tilde{\omega}$.

REMARK: If $\omega = f\tilde{\omega}$, one has $d\omega = df \wedge \omega'$. Therefore, an LCK metric satisfies $d\omega = \theta \wedge \omega$, for some closed 1-form θ .

REMARK: If $\theta = df$, the form $e^{-f}\omega$ is Kähler.

Hermitian metrics on LCK manifolds

CLAIM: If (M, I, ω) is a Hermitian manifold with $d\omega = \theta \wedge \omega$, for some closed 1-form θ , then (M, I) is LCK.

Proof: For some covering of M, the pullback of θ is exact, and then **the** pullback of ω is conformal to a Kähler form: $\theta = df$, then $d(e^{-f}\omega) = e^{-f}\omega \wedge \theta - e^{-f}\omega \wedge \theta = 0$.

DEFINITION: A Hermitian manifold (M, I, ω) is called **LCK** if $d\omega = \theta \wedge \omega$, for some closed 1-form θ .

DEFINITION: The form θ is called **the Lee form** of an LCK-manifold. The dual vector field θ^{\ddagger} – **the Lee field**.

Vaisman manifolds

DEFINITION: An LCK manifold (M, ω, θ) is called **Vaisman** ("generalized Hopf") if $\nabla_{LC}\theta = 0$, where ∇_{LC} is the Levi-Civita connection.

THEOREM: (Kamishima-Ornea) Let M be an LCK manifold equipped with conformal a holomorphic flow. Assume that this flow acts by non-isometric homotheties on the Kähler covering. **Then** M **is Vaisman.**

EXAMPLE: The classical Hopf manifolds are obviously Vaisman.

THEOREM: Let (M, ω, θ) be a Vaisman manifold. Then **the form** $\omega_0 := \omega - \theta \wedge I(\theta)$ is semi-positive and exact: $\omega_0 = d(I\theta)$. Moreover, the foliation Σ generated by θ^{\sharp} is holomorphic, and ω_0 is equivariant and transversally Kähler with respect to Σ .

REMARK: Vaisman manifolds are build from Sasakian manifolds; there is an inexhaustible supply of those. More of this later in this talk.

Oeljeklaus-Toma manifolds

Let K be a number field which has 2t complex embedding denoted $\tau_i, \overline{\tau}_i$ and s real ones denoted σ_i , s > 0, t > 0.

Let $\mathcal{O}_{K}^{*,+} := \mathcal{O}_{K}^{*} \cap \bigcap_{i} \sigma_{i}^{-1}(\mathbb{R}^{>0})$. Choose in $\mathcal{O}_{K}^{*,+}$ a free abelian subgroup $\mathcal{O}_{K}^{*,U}$ of rank s such that the quotient $\mathbb{R}^{s}/\mathcal{O}_{K}^{*,U}$ is compact, where $\mathcal{O}_{K}^{*,U}$ is mapped to \mathbb{R}^{t} as $\xi \longrightarrow \left(\log(\sigma_{1}(\xi)), ..., \log(\sigma_{t}(\xi))\right)$. Let $\Gamma := \mathcal{O}_{K}^{+} \rtimes \mathcal{O}_{K}^{*,U}$.

DEFINITION: An Oeljeklaus-Toma manifold is a quotient $\mathbb{C}^t \times H^s / \Gamma$, where \mathcal{O}_K^+ acts on $\mathbb{C}^t \times H^t$ as

 $\zeta(x_1, ..., x_t, y_1, ..., y_s) = (x_1 + \tau_1(\zeta), ..., x_t + \tau_t(\zeta), y_1 + \sigma_1(\zeta), ..., y_s + \sigma_s(\zeta)),$ and $\mathcal{O}_K^{*, U}$ as $\xi(x_1, ..., x_t, y_1, ..., y_s) = (x_1, ..., x_t, \sigma_1(\xi)y_1, ..., \sigma_t(\xi)y_t)$

THEOREM: (Oeljeklaus-Toma) The OT-manifold $M := \mathbb{C}^t \times H^s/\Gamma$ is a compact complex manifold, without any non-constant meromorphic functions. When t = 1, it is locally conformally Kähler. When s = 1, t = 1, it is an Inoue surface of class S^0 .

THEOREM: (Ornea-V.) Let M be an OT-manifold, t = 1. Then M is equipped with a holomorphic 1-dimensional foliation and an equivariant, transversally Kähler, exact form.

Complex subvarieties in transversally Kähler manifolds

THEOREM: Let (M, Σ, ω_0) be a manifold, equipped with a transversally Kähler, exact form, and $Z \subset M$ a complex subvariety. Then Z is a union of leaves of Σ .

Proof: Suppose that Z is transversal to Σ at a point z. Then all eigenvalues of $\omega_0|_Z$ at z are positive, hence $\int_Z \omega_0^k > 0$, where $k := \dim Z$. This is impossible by Stokes' theorem, because ω_0^k is exact.

COROLLARY: Let $M \xrightarrow{\pi} X$ be a positive, principal elliptic fibration (such as Calabi-Eckmann, or Hopf manifold). Then all positive-dimensional subvarieties of M are of form $\pi^{-1}(Z)$, for some complex subvariety $Z \subset M$.

THEOREM: (Ornea-V.) **An OT-manifold for** t = 1 has no non-trivial complex subvarieties.

The proof of this theorem requires a bit of number theory.

Sasakian manifolds.

Definition: Let M be a smooth manifold, dim M = 2n-1, and (ω, I) a Kähler structure on $M \times \mathbb{R}^{>0}$. Suppose that ω is **homogeneous**: $\Psi_q^* \omega = q^2 g$, where $\Psi_q(m,t) = (m,qt)$, and I is Ψ_q -invariant. Then M is called **Sasakian**, and $M \times \mathbb{R}^{>0}$ its Kähler cone.

Sasakian geometry is an odd-dimensional counterpart to Kähler geometry

Example: An odd-dimensional sphere S^{2n-1} **is Sasakian.** Indeed, its cone $S^{2n-1} \times \mathbb{R}^{>0} = \mathbb{C}^n \setminus 0$ has the standard Kähler form $\sqrt{-1} \sum_{i=1}^n dz_i \wedge d\overline{z}_i$ which is obviously homogeneous.

S. Sasaki, "On differentiable manifolds with certain structures which are closely related to almost contact structure", Tohoku Math. J. 2 (1960), 459-476.

Quasiregular Sasakian manifolds.

Definition: Given a contact manifold (M, θ) with a Riemannian structure g, the dual vector field θ^{\sharp} is called **the Reeb field** of (M, θ, g) .

Remark: For any Sasakian manifold, the Reeb field generates a flow of diffeomorphisms acting on M by contact isometries. This is obvious from the definition, because the Reeb field $\theta^{\sharp} = It \frac{d}{dt}$ acts by holomorphic isometries on the Kähler cone.

Definition: A Sasakian manifold M is called **quasiregular** if all orbits of the Reeb flow are compact. The space of orbits of the Reeb flow is a complex orbifold. **Every quasiregular Sasakian manifold is a total space of** S^{1} -**bundle over a complex orbifold.**

This is easy to see, because the quotient of M over the Reeb flow is the same as the quotient of CM over its complexification, generated by θ^{\sharp} and $I\theta^{\sharp}$.

Examples of Sasakian manifolds.

Example: Let $X \subset \mathbb{C}P^n$ be a complex submanifold, and $CX \subset \mathbb{C}^{n+1}\setminus 0$ the corresponding cone. The cone CX is obviously Kähler and homogeneous, hence **the intersection** $CX \cap S^{2n-1}$ **is Sasakian.** This intersection is an S^1 -bundle over X. This construction gives many interesting contact manifolds, including Milnor's exotic 7-spheres, which happen to be Sasakian.

REMARK: In other words, a link of a homogeneous singularity is always Sasakian.

REMARK: Every quasiregular Sasakian manifold is obtained this way, for some Kähler metric on \mathbb{C}^{n+1} (Ornea-V., arXiv:math/0609617).

REMARK: All 3-dimensional Sasakian manifolds are quasiregular (H. Geiges, 1997, F. Belgun, 2000).

REMARK: Every Sasakian manifold is diffeomorphic to a quasiregular one (Ornea-V., arXiv:math/0306077)

Structure theorem for Vaisman manifolds

THEOREM: (Ornea-V.) **Every Vaisman manifold is obtained as** $C(X)/\mathbb{Z}$, where X is Sasakian, $\mathbb{Z} = \left\langle (x,t) \mapsto (\varphi(x),qt) \right\rangle$, q > 1, and φ is a Sasakian automorphism of X. Moreover, the triple (X,φ,q) is unique.

REMARK: This is equivalent to the existence of a Riemannian submersion $M \longrightarrow S^1$, with Sasakian fibers.

REMARK: This construction gives an equivalence between the category of Vaisman manifolds, and the category of triples (X, φ, q) (Sasakian manifold, a Sasakian automorphism, number).

Gauduchon metrics

DEFINITION: A Hermitian metric ω on a complex n manifold is called **Gauduchon** if $\partial \overline{\partial} \omega^{n-1} = 0$.

THEOREM: (P. Gauduchon, 1978) Let M be a compact, complex manifold, and h a Hermitian form. Then there exists a Gauduchon metric conformally equivalent to h, and it is unique, up to a constant multiplier.

REMARK: If ω is Gauduchon, then (by Stokes' theorem) $\int_M \omega^{n-1} \partial \overline{\partial} f = 0$ for any f. The curvature Θ_L of a holomorphic line bundle L is well-defined up to $\partial \overline{\partial} \log |h|$, where h is a conformal factor. Therefore, for any line bundle L, the quantity $\deg_{\omega} L := \int_M \omega^{n-1} \wedge \Theta_L$ is well defined.

REMARK: Unlike the Kähler case, $\deg_{\omega} L$ is a holomorphic invariant of L, and **not topological.**

DEFINITION: Given a torsion-free coferent sheaf F of rank r, let det $F := \Lambda^r F^{**}$. From algebraic geometry it is known that det F is a line bundle. Define **the degree** deg_{ω} $F := deg_{\omega} det F$.

Kobayashi-Hitchin correspondence

DEFINITION: Let *F* be a coherent sheaf over an *n*-dimensional Gauduchon manifold (M, ω) . Let

$$slope(F) := \frac{\deg_{\omega} F}{\operatorname{rank}(F)}$$

A torsion-free sheaf F is called **stable** if for all subsheaves $F' \subset F$ one has slope(F') < slope(F). If F is a direct sum of stable sheaves of the same slope, F is called **polystable**.

DEFINITION: A Hermitian metric on a holomorphic vector bundle *B* is called **Yang-Mills** (Hermitian-Einstein) if $\Theta_B \wedge \omega^{n-1} = \text{slope}(F) \cdot \text{Id}_B \cdot \omega^n$, where Θ_B is its curvature.

THEOREM: (Kobayashi-Hitchin correspondence; Donaldson, Buchsdahl, Uhlenbeck-Yau, Li-Yau, Lübke-Teleman): Let *B* be a holomorphic vector bundle. Then *B* admits Yang-Mills metric if and only if *B* is polystable.

COROLLARY: Any tensor product of polystable bundles is polystable.

REMARK: This result was generalized to coherent sheaves by Bando and Siu.

Stability and transversally Kähler foliations

THEOREM: Let (M, Σ, ω_0) be a compact, complex manifold, dim M > 2, and ω_0 a transversally Kähler, exact, equivariant form. Consider a vector bundle B with a Yang-Mills metric, deg_{ω} B = 0, and let ∇ denote the Yang-Mills connection. Then ∇ is flat along the leaves of Σ , and equivariant with respect to $s \in \Gamma_M(\Sigma)$.

REMARK: When Σ is quasiregular, M is equipped with a holomorphic projection to the leaf space, π : $M \longrightarrow X = M/\Sigma$. In this situation, the category of coherent sheaves can be described explicitly, in terms of a projective orbifold M/Σ .

THEOREM: Let *F* be a stable coherent sheaf on a be a compact, complex manifold (M, Σ, ω_0) , with a transversally Kähler, exact form, dim M > 2. Assume that Σ is quasiregular, and let $\pi : M \longrightarrow X = M/\Sigma$ be the projection map. Then $F = \pi^* F_0$, for some coherent sheaf F_0 on M/Σ .

COROLLARY: In these assumptions, any coherent sheaf on M is filtrable, that is, admits a filtration with rank 1 quotient sheaves.

REMARK: Filtrability is a very strong property! It fails on almost all non-algebraic surfaces.

Open questions

QUESTION: What happens when Σ is irregular?

Conjecture 1: Any coherent sheaf on (M, Σ, ω_0) **is filtrable,** even if Σ is irrecular.

Conjecture 2: Let M be a Vaisman manifold, obtained as a quotient $C(X)/\mathbb{Z}$ from a pair (X, φ) , where X is Sasakian, and φ is a Sasakian automorphism. Consider the Lie group $G \subset \operatorname{Aut}(S)$ obtained as a closure of $\mathbb{Z} = \langle \varphi^n \rangle$. Then M is equipped with a natural projection $\pi : M \longrightarrow X/G$, with X/Gparametrizing the closure of the appropriate leaves. Let (B, ∇) be a Hermitian vector bundle with connection which is flat on Σ and equivariant. Then $(B, \nabla) = \pi^*(B_0, \nabla_0)$, for some (B_0, ∇_0) on X.

REMARK: Conjecture 2 implies Conjecture 1. Also, Conjectures 1 and 2 are proven when $M = \mathbb{C}^n / \langle A \rangle$, where A is a linear map ("linear Hopf manifold").