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”Sasakian manifolds and locally conformally Kähler geometry”

Sasakian manifolds are Riemannian manifolds equipped with an R-equivariant
Kähler structure on their Riemannian cone. This allows one to characterize
the Sasakian manifolds in terms of Kähler structure on the corresponding
cones. Three lectures are planned.

1. A characterization of Sasakian manifolds in terms of CR-geometry (Nov.
03, 2009)

2. Locally conformally Kähler geometry, Vaisman manifolds and the struc-
ture theorem, providing an equivalence of Vaisman geometry and Sasakian
geometry (Nov. 05, 2009)

3. A version of Kodaira theorem for Sasakian and Vaisman manifolds, giving
a complex embedding of a Vaisman manifold into a Hopf manifold and a
CR-embedding of a Sasakian manifold into a sphere (Nov. 06, 2009)

These results are obtained jointly with Liviu Ornea.
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Contact manifolds.

Definition: Let M be a smooth manifold, dimM = 2n − 1, and ω a symplec-
tic form on M × R>0. Suppose that ω is homogeneous: Ψ∗

qω = q2ω, where
Ψq(m, t) = (m, qt). Then M is called contact.

Remark: The contact form on M is defined as θ = ωy ~T , where ~T = t d
dt. Then

dθ = [d, ·y ~T ]ω = Lie~T
ω = ω. Therefore, the form dθn−1 ∧ θ = 1

nωny ~T is non-
degenerate on M × {t0} ⊂ M × R>0.

Remark: Usually, a contact manifold is defined as a (2n − 1)-manifold with
1-form θ such that dθn−1 ∧ θ is nowhere degenerate.

Example: An odd-dimensional sphere S2n−1 is contact. Indeed, its cone
S2n−1×R>0 = R2n\0 has the standard symplectic form

∑n
i=1 dx2i−1∧ dx2i which

is obviously homogeneous.

Contact geometry is an odd-dimensional counterpart to symplectic ge-
ometry Indeed, its cone S2n−1×R>0 = R2n\0 has the standard symplectic form∑n

i=1 dx2i−1 ∧ dx2i which is obviously homogeneous.

Contact geometry is an odd-dimensional counterpart to symplectic ge-
ometry

3



Structure theorem for Vaisman manifolds M. Verbitsky

Kähler manifolds.

Definition: Let (M, I) be a complex manifold, dimC M = n, and g is Riemannian

form. Then g is called Hermitian if g(Ix, Iy) = g(x, y).

Remark: Since I2 = − Id, it is equivalent to g(Ix, y) = −g(x, Iy). The form

ω(x, y) := g(x, Iy) is skew-symmetric.

Definition: The differential form ω is called the Hermitian form of (M, I, g).

Definition: A complex Hermitian manifold is called Kähler if dω = 0.

Remark: Kähler manifolds are the main object of complex algebraic ge-

ometry (algebraic geometry over C). See e.g. Griffiths, Harris, “Principles of

Algebraic Geometry”.
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Examples of Kähler manifolds.

Definition: Let M = CPn be a complex projective space, and g a U(n + 1)-

invariant Riemannian form. It is called Fubini-Study form on CPn. The Fubini-

Study form is obtained by taking arbitrary Riemannian form and averaging with

U(n + 1).

Remark: For any x ∈ CPn, the stabilizer St(x) is isomorphic to U(n). Fubini-

Study form on TxCPn is U(n)-invariant, hence unique up to a constant.

Claim: Fubini-Study form is Kähler. Indeed, dω
∣∣∣
x

is a U(n)-invariant 3-form

on Cn, but such a form must vanish (invariants of U(n) are known since XIX

century).

Corollary: Every projective manifold (complex submanifold of CPn) is Kähler.
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Sasakian manifolds.

Definition: Let M be a smooth manifold, dimM = 2n− 1, and (ω, I) a Kähler

structure on M × R>0. Suppose that ω is homogeneous: Ψ∗
qω = q2g, where

Ψq(m, t) = (m, qt), and I is Ψq-invariant. Then M is called Sasakian, and

M × R>0 its Kähler cone.

Sasakian geometry is an odd-dimensional counterpart to Kähler geometry

Remark: A Sasakian manifold is obviosly contact. Indeed, a Sasakian manifold

is a contact manifold equipped with a compatible Riemannian metric.

Example: An odd-dimensional sphere S2n−1 is Sasakian. Indeed, its cone

S2n−1 × R>0 = Cn\0 has the standard Kähler form
√
−1

∑n
i=1 dzi ∧ dzi which is

obviously homogeneous.

S. Sasaki, ”On differentiable manifolds with certain structures which are closely related to almost

contact structure”, Tohoku Math. J. 2 (1960), 459-476.
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Quasiregular Sasakian manifolds.

Definition: Given a contact manifold (M, θ) with a Riemannian structure g, the

dual vector field θ] is called the Reeb field of (M, θ, g).

Remark: For any Sasakian manifold, the Reeb field generates a flow of

diffeomorphisms acting on M by contact isometries. This is obvious from

the definition, because the Reeb field θ] = It d
dt acts by holomorphic isometries

on the Kähler cone.

Definition: A Sasakian manifold M is called quasiregular if all orbits of the Reeb

flow are compact. The space of orbits of the Reeb flow is a complex orbifold.

Every quasiregular Sasakian manifold is a total space of S1-bundle over a

complex orbifold.

This is easy to see, because the quotient of M over the Reeb flow is the same

as the quotient of CM over its complexification, generated by θ] and Iθ].
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Examples of Sasakian manifolds.

Example: Let X ⊂ CPn be a complex submanifold, and CX ⊂ Cn+1\0 the

corresponding cone. The cone CX is obviously Kähler and homogeneous, hence

the intersection CX ∩ S2n−1 is Sasakian. This intersection is an S1-bundle

over X. This construction gives many interesting contact manifolds, including

Milnor’s exotic 7-spheres, which happen to be Sasakian.

REMARK: In other words, a link of a homogeneous singularity is always

Sasakian.

REMARK: Every quasiregular Sasakian manifold is obtained this way, for

some Kähler metric on Cn+1 (Ornea-V., arXiv:math/0609617 ).

REMARK: All 3-dimensional Sasakian manifolds are quasiregular (H. Geiges,

1997, F. Belgun, 2000).

REMARK: Every Sasakian manifold is diffeomorphic to a quasiregular one

(Ornea-V., arXiv:math/0306077)
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Sasakian manifolds and circle bundles

DEFINITION: Let S be a projective manifold (or orbifold), L a holomorphic

Hermitian line bundle, ω ∈ Λ1,1(S) its curvature. If ω > 0, the bundle is called

positive.

REMARK: Consider the function v(l) = |l|2 on M̃ := Tot(L∗\0). Then ddc(v)

is a Kähler form on M̃.

EXAMPLE: Let X be a total space of the unit circle bundle in L∗. Then

M̃ = C(X) is its Riemannian cone. In particular, X is Sasakian.

REMARK: Every quasiregular Sasakian manifold X is a circle bundle over its

quotient X/S1, which is a Kähler orbifold.
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Locally conformally Kähler manifolds

REMARK: It is always assumed that LCK manifolds have dimC > 1.

DEFINITION: Let M be a complex manifold, M̃ −→M its covering, M̃/Γ = M ,
and Γ the monodromy group freely acting on M̃ . Assume that M̃ is Kähler,
and Γ acts on M̃ by homotheties. Then M is called locally conformally Kähler
(LCK).

EXAMPLE: A Hopf manifold Cn\0/〈A〉 is obviously LCK, if A(x) = qx, |q| > 1.

EXAMPLE: Let X be a Sasakian manifold, and M̃ = C(X) = X × R>0 its

Kähler cone, equipped with an action by Z =

〈
(x, t) 7→ (x, qt)

〉
, q > 1. Then

C(X)/Z is LCK.

DEFINITION: Let M be an LCK manifold, (M̃, ω̃) its covering. An LCK
metric on M is a metric conformal to ω̃.

REMARK: If ω = fω̃, one has dω = df∧ω′. Therefore, an LCK metric satisfies
dω = θ ∧ ω, for some closed 1-form θ.

REMARK: If θ = df, the form e−fω is Kähler.
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LCK manifolds and Hermitian geometry

CLAIM: If (M, I, ω) is a Hermitian manifold with dω = θ ∧ ω, for some closed

1-form θ, then (M, I) is LCK.

Proof: For some covering of M the lift of θ is exact, and there the lift of ω is

conformal to a Kähler form.

DEFINITION: A Hermitian manifold (M, I, ω) is called LCK if dω = θ ∧ ω, for

some closed 1-form θ.

DEFINITION: The form θ is called the Lee form of an LCK-manifold. The

dual vector field θ] – the Lee field

CLAIM: If dimC M > 2, and dω = θ ∧ ω, then θ is always exact.

Proof: 0 = d2ω = dθ ∧ ω, but · ∧ ω : Λ2(M)−→ Λ4(M) is always injective for

dimC M > 2.
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Vaisman manifolds

DEFINITION: An LCK manifold (M, ω, θ) is called Vaisman (“generalized

Hopf”) if ∇LCθ = 0, where ∇LC is the Levi-Civita connection.

THEOREM: (Kamishima-Ornea, 2001) If M is compact, this is equivalent

to M admitting a conformal holomorphic flow, acting non-isometrically on

its Kähler covering.

EXAMPLE: A Hopf manifold Cn\0/〈A〉 is Vaisman. It is isometric to S2n−1×
S1, and the Lee field is d

dt.

EXAMPLE: Let X be a Sasakian manifold, and C(X) its Kähler cone, equipped

with an action by Z =

〈
(x, t) 7→ (x, qt)

〉
, q > 1. Then C(X)/Z is Vaisman.

Indeed, C(X)/Z is isometric to X × S1, with the Lee field is d
dt.

EXAMPLE: The same happens if Z =

〈
(x, t) 7→ (ϕ(x), qt)

〉
, q > 1, and ϕ is

a Sasakian automorphism of X.
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Structure theorem for Vaisman manifolds

THEOREM: Every Vaisman manifold is obtained as C(X)/Z, where X is

Sasakian, Z =

〈
(x, t) 7→ (ϕ(x), qt)

〉
, q > 1, and ϕ is a Sasakian automorphism of

X. Moreover, the triple (X, ϕ, q) is unique.

REMARK: This is equivalent to the existence of a Riemannian submersion

M −→ S1, with Sasakian fibers.

Proof. Step 1: Since θ] is parallel and Killing, M = X × R locally. Fix x0 ∈ M .

Then the projection M = X × R to R is induced by x−→
∫
γx0,x

θ, for γx0,x some

path connecting x and x0. Therefore, M = X × R whenever θ is exact.

DEFINITION: A monodromy group Mon(M) of an LCK manifold M is the

smallest group Γ such that M = M̃/Γ and M̃ is Kähler.

REMARK: This is equivalent to the lift of θ being exact.
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The proof of Structure theorem for Vaisman manifolds

Proof. Step 2: Let γ1, ..., γk ∈ H1(M, Z) be generators of homology, and

αi
∫
γi

θ the corresponding periods. One has a map M −→ R/〈α1, ..., αk〉, with a

commutative diagram

M̃ −→ My y
R −→ R/〈α1, ..., αk〉

with vertical lines x−→
∫
γx0,x

θ. The Riemannian submersion to S1 will be

obtained if R/〈α1, ..., αk〉 = S1.

Step 3: Let G ⊂ π1(M) be the group generated by all γ ∈ π1(M) such that∫
γ θ = 0. Then Γ = π1(M)/G is the monodromy group of M. Therefore,

R/〈α1, ..., αk〉 = S1 ⇐⇒ Mon(M) = Z.
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Computation of the monodromy group of a Vaisman manifold

DEFINITION: Let G be a group of holomorphic automorphisms of M obtained

as a closure of the Lee field action.

REMARK: Since θ] acts by isometries, G is a compact torus G = (S1)k.

CLAIM: Consider the group G̃ of pairs f̃ ∈ Aut(M̃), f ∈ G, making the following

diagram commutative.

M̃
f̃−→ M̃

π

y yπ

M
f−→ M

Then G̃ ∼= (S1)k−1 × R.

REMARK: From this claim, the isomorphism Mon(M) = Z follows imme-

diately. Indeed, Mon(M) ⊂ ker p : G̃−→G.
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Computation of the monodromy group of a Vaisman manifold (part 2)

Proof of G̃ ∼= (S1)k−1 × R.

Step 1: G̃ is a covering of G, and the kernel of this projection is Mon(M).

Step 2: Let G̃0 ⊂ G̃ be a subgroup acting on M̃ by isometries. Since G̃ acts

on M̃ by homotheties, G̃0 has codimension 1. Therefore, G̃0 cannot intersect

Mon(M) and it maps injectively to Aut(M) ∼= (S1)k.

Step 3: We obtain that G̃0
∼= (S1)k−1 (it’s codimension 1).

Step 4: Since G̃0 meets every component of G̃, it is connected. Therefore,

G̃ ∼= G̃0 × R ∼= (S1)k−1 × R.
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