Structure theorem for Vaisman manifolds

Lecture 2

Misha Verbitsky

Nov. 05, 2009, Nantes

"Sasakian manifolds and locally conformally Kähler geometry"

Sasakian manifolds are Riemannian manifolds equipped with an \mathbb{R} -equivariant Kähler structure on their Riemannian cone. This allows one to characterize the Sasakian manifolds in terms of Kähler structure on the corresponding cones. Three lectures are planned.

- 1. A characterization of Sasakian manifolds in terms of CR-geometry (Nov. 03, 2009)
- 2. Locally conformally Kähler geometry, Vaisman manifolds and the structure theorem, providing an equivalence of Vaisman geometry and Sasakian geometry (Nov. 05, 2009)
- 3. A version of Kodaira theorem for Sasakian and Vaisman manifolds, giving a complex embedding of a Vaisman manifold into a Hopf manifold and a CR-embedding of a Sasakian manifold into a sphere (Nov. 06, 2009)

These results are obtained jointly with Liviu Ornea.

Contact manifolds.

Definition: Let M be a smooth manifold, $\dim M = 2n - 1$, and ω a symplectic form on $M \times \mathbb{R}^{>0}$. Suppose that ω is **homogeneous**: $\Psi_q^*\omega = q^2\omega$, where $\Psi_q(m,t) = (m,qt)$. Then M is called **contact**.

Remark: The contact form on M is defined as $\theta = \omega \, \lrcorner \, \vec{T}$, where $\vec{T} = t \frac{d}{dt}$. Then $d\theta = [d, \cdot \lrcorner \, \vec{T}] \omega = \text{Lie}_{\vec{T}} \omega = \omega$. Therefore, the form $d\theta^{n-1} \wedge \theta = \frac{1}{n} \omega^n \, \lrcorner \, \vec{T}$ is non-degenerate on $M \times \{t_0\} \subset M \times \mathbb{R}^{>0}$.

Remark: Usually, a contact manifold is defined as a (2n-1)-manifold with 1-form θ such that $d\theta^{n-1} \wedge \theta$ is nowhere degenerate.

Example: An odd-dimensional sphere S^{2n-1} is contact. Indeed, its cone $S^{2n-1} \times \mathbb{R}^{>0} = \mathbb{R}^{2n} \setminus 0$ has the standard symplectic form $\sum_{i=1}^{n} dx_{2i-1} \wedge dx_{2i}$ which is obviously homogeneous.

Contact geometry is an odd-dimensional counterpart to symplectic geometry Indeed, its cone $S^{2n-1} \times \mathbb{R}^{>0} = \mathbb{R}^{2n} \setminus 0$ has the standard symplectic form $\sum_{i=1}^{n} dx_{2i-1} \wedge dx_{2i}$ which is obviously homogeneous.

Contact geometry is an odd-dimensional counterpart to symplectic geometry

Kähler manifolds.

Definition: Let (M, I) be a complex manifold, $\dim_{\mathbb{C}} M = n$, and g is Riemannian form. Then g is called **Hermitian** if g(Ix, Iy) = g(x, y).

Remark: Since $I^2 = -\operatorname{Id}$, it is equivalent to g(Ix,y) = -g(x,Iy). The form $\omega(x,y) := g(x,Iy)$ is skew-symmetric.

Definition: The differential form ω is called the Hermitian form of (M, I, g).

Definition: A complex Hermitian manifold is called **Kähler** if $d\omega = 0$.

Remark: Kähler manifolds are the main object of complex algebraic geometry (algebraic geometry over \mathbb{C}). See e.g. Griffiths, Harris, "Principles of Algebraic Geometry".

Examples of Kähler manifolds.

Definition: Let $M = \mathbb{C}P^n$ be a complex projective space, and g a U(n+1)-invariant Riemannian form. It is called **Fubini-Study form on** $\mathbb{C}P^n$. The Fubini-Study form is obtained by taking arbitrary Riemannian form and averaging with U(n+1).

Remark: For any $x \in \mathbb{C}P^n$, the stabilizer St(x) is isomorphic to U(n). Fubini-Study form on $T_x\mathbb{C}P^n$ is U(n)-invariant, hence unique up to a constant.

Claim: Fubini-Study form is Kähler. Indeed, $d\omega|_x$ is a U(n)-invariant 3-form on \mathbb{C}^n , but such a form must vanish (invariants of U(n) are known since XIX century).

Corollary: Every projective manifold (complex submanifold of $\mathbb{C}P^n$) is Kähler.

Sasakian manifolds.

Definition: Let M be a smooth manifold, $\dim M = 2n - 1$, and (ω, I) a Kähler structure on $M \times \mathbb{R}^{>0}$. Suppose that ω is **homogeneous**: $\Psi_q^* \omega = q^2 g$, where $\Psi_q(m,t) = (m,qt)$, and I is Ψ_q -invariant. Then M is called **Sasakian**, and $M \times \mathbb{R}^{>0}$ its **Kähler cone**.

Sasakian geometry is an odd-dimensional counterpart to Kähler geometry

Remark: A Sasakian manifold is obviously contact. Indeed, a Sasakian manifold is a contact manifold equipped with a compatible Riemannian metric.

Example: An odd-dimensional sphere S^{2n-1} is Sasakian. Indeed, its cone $S^{2n-1} \times \mathbb{R}^{>0} = \mathbb{C}^n \setminus 0$ has the standard Kähler form $\sqrt{-1} \sum_{i=1}^n dz_i \wedge d\overline{z}_i$ which is obviously homogeneous.

S. Sasaki, "On differentiable manifolds with certain structures which are closely related to almost contact structure", Tohoku Math. J. 2 (1960), 459-476.

Quasiregular Sasakian manifolds.

Definition: Given a contact manifold (M, θ) with a Riemannian structure g, the dual vector field θ^{\sharp} is called the Reeb field of (M, θ, g) .

Remark: For any Sasakian manifold, the Reeb field generates a flow of diffeomorphisms acting on M by contact isometries. This is obvious from the definition, because the Reeb field $\theta^{\sharp} = It\frac{d}{dt}$ acts by holomorphic isometries on the Kähler cone.

Definition: A Sasakian manifold M is called **quasiregular** if all orbits of the Reeb flow are compact. The space of orbits of the Reeb flow is a complex orbifold. **Every quasiregular Sasakian manifold is a total space of** S^1 -bundle over a complex orbifold.

This is easy to see, because the quotient of M over the Reeb flow is the same as the quotient of CM over its complexification, generated by θ^{\sharp} and $I\theta^{\sharp}$.

Examples of Sasakian manifolds.

Example: Let $X \subset \mathbb{C}P^n$ be a complex submanifold, and $CX \subset \mathbb{C}^{n+1} \setminus 0$ the corresponding cone. The cone CX is obviously Kähler and homogeneous, hence the intersection $CX \cap S^{2n-1}$ is Sasakian. This intersection is an S^1 -bundle over X. This construction gives many interesting contact manifolds, including Milnor's exotic 7-spheres, which happen to be Sasakian.

REMARK: In other words, a link of a homogeneous singularity is always Sasakian.

REMARK: Every quasiregular Sasakian manifold is obtained this way, for some Kähler metric on \mathbb{C}^{n+1} (Ornea-V., arXiv:math/0609617).

REMARK: All 3-dimensional Sasakian manifolds are quasiregular (H. Geiges, 1997, F. Belgun, 2000).

REMARK: Every Sasakian manifold is diffeomorphic to a quasiregular one (Ornea-V., arXiv:math/0306077)

Sasakian manifolds and circle bundles

DEFINITION: Let S be a projective manifold (or orbifold), L a holomorphic Hermitian line bundle, $\omega \in \Lambda^{1,1}(S)$ its curvature. If $\omega > 0$, the bundle is called **positive**.

REMARK: Consider the function $v(l) = |l|^2$ on $\tilde{M} := \text{Tot}(L^* \setminus 0)$. Then $dd^c(v)$ is a Kähler form on \tilde{M} .

EXAMPLE: Let X be a total space of the unit circle bundle in L^* . Then $\tilde{M} = C(X)$ is its Riemannian cone. In particular, X is Sasakian.

REMARK: Every quasiregular Sasakian manifold X is a circle bundle over its quotient X/S^1 , which is a Kähler orbifold.

Locally conformally Kähler manifolds

REMARK: It is always assumed that LCK manifolds have $\dim_{\mathbb{C}} > 1$.

DEFINITION: Let M be a complex manifold, $\tilde{M} \longrightarrow M$ its covering, $\tilde{M}/\Gamma = M$, and Γ the **monodromy group** freely acting on \tilde{M} . Assume that \tilde{M} is Kähler, and Γ acts on \tilde{M} by homotheties. Then M is called **locally conformally Kähler** (LCK).

EXAMPLE: A Hopf manifold $\mathbb{C}^n \setminus 0/\langle A \rangle$ is obviously LCK, if A(x) = qx, |q| > 1.

EXAMPLE: Let X be a Sasakian manifold, and $\tilde{M} = C(X) = X \times \mathbb{R}^{>0}$ its Kähler cone, equipped with an action by $\mathbb{Z} = \left\langle (x,t) \mapsto (x,qt) \right\rangle$, q > 1. Then $C(X)/\mathbb{Z}$ is LCK.

DEFINITION: Let M be an LCK manifold, $(\tilde{M}, \tilde{\omega})$ its covering. An LCK metric on M is a metric conformal to $\tilde{\omega}$.

REMARK: If $\omega = f\tilde{\omega}$, one has $d\omega = df \wedge \omega'$. Therefore, an LCK metric satisfies $d\omega = \theta \wedge \omega$, for some closed 1-form θ .

REMARK: If $\theta=df$, the form $e^{-f}\omega$ is Kähler.

LCK manifolds and Hermitian geometry

CLAIM: If (M, I, ω) is a Hermitian manifold with $d\omega = \theta \wedge \omega$, for some closed 1-form θ , then (M, I) is LCK.

Proof: For some covering of M the lift of θ is exact, and there the lift of ω is conformal to a Kähler form.

DEFINITION: A Hermitian manifold (M, I, ω) is called **LCK** if $d\omega = \theta \wedge \omega$, for some closed 1-form θ .

DEFINITION: The form θ is called the Lee form of an LCK-manifold. The dual vector field θ^{\sharp} – the Lee field

CLAIM: If dim_C M > 2, and $d\omega = \theta \wedge \omega$, then θ is always exact.

Proof: $0 = d^2\omega = d\theta \wedge \omega$, but $\cdot \wedge \omega : \Lambda^2(M) \longrightarrow \Lambda^4(M)$ is always injective for $\dim_{\mathbb{C}} M > 2$.

Vaisman manifolds

DEFINITION: An LCK manifold (M, ω, θ) is called **Vaisman** ("generalized Hopf") if $\nabla_{LC}\theta = 0$, where ∇_{LC} is the Levi-Civita connection.

THEOREM: (Kamishima-Ornea, 2001) If M is compact, this is equivalent to M admitting a conformal holomorphic flow, acting non-isometrically on its Kähler covering.

EXAMPLE: A Hopf manifold $\mathbb{C}^n \setminus 0/\langle A \rangle$ is Vaisman. It is isometric to $S^{2n-1} \times S^1$, and the Lee field is $\frac{d}{dt}$.

EXAMPLE: Let X be a Sasakian manifold, and C(X) its Kähler cone, equipped with an action by $\mathbb{Z} = \left\langle (x,t) \mapsto (x,qt) \right\rangle$, q>1. Then $C(X)/\mathbb{Z}$ is Vaisman. Indeed, $C(X)/\mathbb{Z}$ is isometric to $X \times S^1$, with the Lee field is $\frac{d}{dt}$.

EXAMPLE: The same happens if $\mathbb{Z} = \left\langle (x,t) \mapsto (\varphi(x),qt) \right\rangle$, q>1, and φ is a Sasakian automorphism of X.

Structure theorem for Vaisman manifolds

THEOREM: Every Vaisman manifold is obtained as $C(X)/\mathbb{Z}$, where X is Sasakian, $\mathbb{Z} = \left\langle (x,t) \mapsto (\varphi(x),qt) \right\rangle$, q>1, and φ is a Sasakian automorphism of X. Moreover, the triple (X,φ,q) is unique.

REMARK: This is equivalent to the existence of a Riemannian submersion $M \longrightarrow S^1$, with Sasakian fibers.

Proof. Step 1: Since θ^{\sharp} is parallel and Killing, $M = X \times \mathbb{R}$ locally. Fix $x_0 \in M$. Then the projection $M = X \times \mathbb{R}$ to \mathbb{R} is induced by $x \longrightarrow \int_{\gamma_{x_0,x}} \theta$, for $\gamma_{x_0,x}$ some path connecting x and x_0 . Therefore, $M = X \times \mathbb{R}$ whenever θ is exact.

DEFINITION: A monodromy group Mon(M) of an LCK manifold M is the smallest group Γ such that $M = \tilde{M}/\Gamma$ and \tilde{M} is Kähler.

REMARK: This is equivalent to the lift of θ being exact.

The proof of Structure theorem for Vaisman manifolds

Proof. Step 2: Let $\gamma_1,...,\gamma_k \in H_1(M,\mathbb{Z})$ be generators of homology, and $\alpha_i \int_{\gamma_i} \theta$ the corresponding periods. One has a map $M \longrightarrow \mathbb{R}/\langle \alpha_1,...,\alpha_k \rangle$, with a commutative diagram

$$egin{array}{cccc} ilde{M} & \longrightarrow & M & & & & \\ ilde{\downarrow} & & & & \downarrow & & \\ ilde{\mathbb{R}} & \longrightarrow & \mathbb{R}/\langle lpha_1,...,lpha_k
angle \end{array}$$

with vertical lines $x \longrightarrow \int_{\gamma_{x_0,x}} \theta$. The Riemannian submersion to S^1 will be obtained if $\mathbb{R}/\langle \alpha_1,...,\alpha_k \rangle = S^1$.

Step 3: Let $G \subset \pi_1(M)$ be the group generated by all $\gamma \in \pi_1(M)$ such that $\int_{\gamma} \theta = 0$. Then $\Gamma = \pi_1(M)/G$ is the monodromy group of M. Therefore, $\mathbb{R}/\langle \alpha_1,...,\alpha_k \rangle = S^1 \iff \mathsf{Mon}(M) = \mathbb{Z}$.

Computation of the monodromy group of a Vaisman manifold

DEFINITION: Let G be a group of holomorphic automorphisms of M obtained as a closure of the Lee field action.

REMARK: Since θ^{\sharp} acts by isometries, G is a compact torus $G = (S^1)^k$.

CLAIM: Consider the group \tilde{G} of pairs $\tilde{f} \in \operatorname{Aut}(\tilde{M})$, $f \in G$, making the following diagram commutative.

$$egin{array}{cccc} ilde{M} & \stackrel{ ilde{f}}{\longrightarrow} & ilde{M} \ \pi igg| & & igg| \pi \ M & \stackrel{f}{\longrightarrow} & M \end{array}$$

Then $\tilde{G} \cong (S^1)^{k-1} \times \mathbb{R}$.

REMARK: From this claim, the isomorphism $Mon(M) = \mathbb{Z}$ follows immediately. Indeed, $Mon(M) \subset \ker p : \tilde{G} \longrightarrow G$.

Computation of the monodromy group of a Vaisman manifold (part 2)

Proof of $\tilde{G} \cong (S^1)^{k-1} \times \mathbb{R}$.

Step 1: \tilde{G} is a covering of G, and the kernel of this projection is Mon(M).

Step 2: Let $\tilde{G}_0 \subset \tilde{G}$ be a subgroup acting on \tilde{M} by isometries. Since \tilde{G} acts on \tilde{M} by homotheties, \tilde{G}_0 has codimension 1. Therefore, \tilde{G}_0 cannot intersect Mon(M) and it maps injectively to $Aut(M) \cong (S^1)^k$.

Step 3: We obtain that $\tilde{G}_0 \cong (S^1)^{k-1}$ (it's codimension 1).

Step 4: Since \tilde{G}_0 meets every component of \tilde{G} , it is connected. **Therefore,** $\tilde{G} \cong \tilde{G}_0 \times \mathbb{R} \cong (S^1)^{k-1} \times \mathbb{R}$.