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’»Sasakian manifolds and locally conformally Kahler geometry”

Sasakian manifolds are Riemannian manifolds equipped with an R-equivariant
Kahler structure on their Riemannian cone. This allows one to characterize
the Sasakian manifolds in terms of Kahler structure on the corresponding
cones. Three lectures are planned.

1. A characterization of Sasakian manifolds in terms of CR-geometry (Nov.
03, 2009)

2. Locally conformally Kahler geometry, Vaisman manifolds and the struc-
ture theorem, providing an equivalence of Vaisman geometry and Sasakian
geometry (Nov. 05, 2009)

3. A version of Kodaira theorem for Sasakian and Vaisman manifolds, giving
a complex embedding of a Vaisman manifold into a Hopf manifold and a
CR-embedding of a Sasakian manifold into a sphere (Nov. 06, 2009)

These results are obtained jointly with Liviu Ornea.
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Contact manifolds.

Definition: Let M be a smooth manifold, dimM = 2n — 1, and w a symplec-
tic form on M x R>°. Suppose that w is homogeneous: Wiw = ¢%w, where
W,(m,t) = (m,qt). Then M is called contact.

Remark: The contact form on M is defined as § = w_T, where T = &%. Then
d) = [d,- T|w = Liezw = w. Therefore, the form d6" 1 A = Lw",T is non-
degenerate on M x {tg} C M x R>0,

Remark: Usually, a contact manifold is defined as a (2n — 1)-manifold with
1-form @ such that d9" 1 A 6 is nowhere degenerate.

Example: An odd-dimensional sphere 52"l is contact. Indeed, its cone
§2n—1 x R>0 = R?™\0 has the standard symplectic form % ; dzo; 1 Adzo; which
IS obviously homogeneous.

Contact geometry is an odd-dimensional counterpart to symplectic ge-
ometry Indeed, its cone S2"~1 x R>9 = R2™\0 has the standard symplectic form
> i1 dxo;_1 N\ dxo; which is obviously homogeneous.

Contact geometry is an odd-dimensional counterpart to symplectic ge-
ometry
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Kahler manifolds.

Definition: Let (M, I) be a complex manifold, dimg M = n, and g is Riemannian
form. Then g is called Hermitian if g(Iz,Iy) = g(x,vy).

Remark: Since I?2 = —1Id, it is equivalent to g(Iz,y) = —g(z,Iy). The form
w(x,y) ;= g(x, [y) is skew-symmetric.

Definition: The differential form w is called the Hermitian form of (M, 1,g).
Definition: A complex Hermitian manifold is called Kahler if dw = 0.

Remark: Kahler manifolds are the main object of complex algebraic ge-
ometry (algebraic geometry over C). See e.g. Griffiths, Harris, “Principles of
Algebraic Geometry’.



Structure theorem for VVaisman manifolds M. Verbitsky

Examples of Kahler manifolds.

Definition: Let M = CP™ be a complex projective space, and g a U(n + 1)-
invariant Riemannian form. It is called Fubini-Study form on CP"™. The Fubini-
Study form is obtained by taking arbitrary Riemannian form and averaging with

Un+1).

Remark: For any z € CP", the stabilizer St(z) is isomorphic to U(n). Fubini-
Study form on T,CP" is U(n)-invariant, hence unique up to a constant.

Claim: Fubini-Study form is Kahler. Indeed, dw| is a U(n)-invariant 3-form
on C", but such a form must vanish (invariants of U(n) are known since XIX
century).

Corollary: Every projective manifold (complex submanifold of CP") is Kahler.
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Sasakian manifolds.

Definition: Let M be a smooth manifold, dmM = 2n — 1, and (w, ) a Kahler
structure on M x R>%. Suppose that w is homogeneous: W}w = ¢2g, where
W,(m,t) = (m,qt), and I is Wy-invariant. Then M is called Sasakian, and
M x R>0 jts Kahler cone.

Sasakian geometry is an odd-dimensional counterpart to Kahler geometry

Remark: A Sasakian manifold is obviosly contact. Indeed, a Sasakian manifold
IS a contact manifold equipped with a compatible Riemannian metric.

Example: An odd-dimensional sphere S2"—1 js Sasakian. Indeed, its cone
§2n=1 x R>0 = C™\0 has the standard Kahler form /=1 Y7 dz; A dz; which is
obviously homogeneous.

S. Sasaki, " On differentiable manifolds with certain structures which are closely related to almost
contact structure”, Tohoku Math. J. 2 (1960), 459-476.
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Quasiregular Sasakian manifolds.

Definition: Given a contact manifold (M, 0) with a Riemannian structure g, the
dual vector field 6% is called the Reeb field of (M, 0, q).

Remark: For any Sasakian manifold, the Reeb field generates a flow of
diffeomorphisms acting on M by contact isometries. This is obvious from
the definition, because the Reeb field o8 — It% acts by holomorphic isometries
on the Kahler cone.

Definition: A Sasakian manifold M is called quasiregular if all orbits of the Reeb
flow are compact. The space of orbits of the Reeb flow is a complex orbifold.
Every quasiregular Sasakian manifold is a total space of Sl-bundle over a
complex orbifold.

This is easy to see, because the quotient of M over the Reeb flow is the same
as the quotient of CM over its complexification, generated by 6% and 6%
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Examples of Sasakian manifolds.

Example: Let X Cc CP"™ be a complex submanifold, and CX C C”+1\O the
corresponding cone. The cone CX is obviously Kahler and homogeneous, hence
the intersection CX N S2"~1 is Sasakian. This intersection is an S!-bundle
over X. This construction gives many interesting contact manifolds, including
Milnor’'s exotic 7-spheres, which happen to be Sasakian.

REMARK: In other words, a link of a homogeneous singularity is always
Sasakian.

REMARK: Every quasiregular Sasakian manifold is obtained this way, for
some Kihler metric on C**T1 (Ornea-V., arXivimath/0609617 ).

REMARK: All 3-dimensional Sasakian manifolds are quasiregular (H. Geiges,
1997, F. Belgun, 2000).

REMARK: Every Sasakian manifold is diffeomorphic to a quasiregular one
(Ornea-V., arXivimath/0306077)
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Sasakian manifolds and circle bundles

DEFINITION: Let S be a projective manifold (or orbifold), L a holomorphic
Hermitian line bundle, w € AL1(S) its curvature. If w > 0, the bundle is called
positive.

REMARK: Consider the function v(l) = |I|2 on M := Tot(L*\0). Then dd¢(v)
is a Kahler form on 1.

EXAMPLE: Let X be a total space of the unit circle bundle in L*. Then
M = C(X) is its Riemannian cone. In particular, X is Sasakian.

REMARK: Every quasiregular Sasakian manifold X is a circle bundle over its
quotient X/S1, which is a Kahler orbifold.
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Locally conformally Kahler manifolds
REMARK: It is always assumed that LCK manifolds have dim¢ > 1.

DEFINITION: Let M be a complex manifold, M — M its covering, M /IT = M,
and T the monodromy group freely acting on M. Assume that M is Kahler,
and " acts on M by homotheties. Then M is called locally conformally Kahler
(LCK).

EXAMPLE: A Hopf manifold C"\0/(A) is obviously LCK, if A(x) = gz, |q| > 1.

EXAMPLE: Let X be a Sasakian manifold, and M = C(X) = X x R>0 its
Kahler cone, equipped with an action by Z = <(m,t) — (a;,qt)>, g > 1. Then
C(X)/Z is LCK.

DEFINITION: Let M be an LCK manifold, (M,&) its covering. An LCK
metric on M is a metric conformal to @.

REMARK: If w = f©, one has dw = df Aw’. Therefore, an LCK metric satisfies
dw = 0 N w, for some closed 1-form 6.

REMARK: If 6 = df, the form e /w is Kahler.
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LCK manifolds and Hermitian geometry

CLAIM: If (M,I,w) is a Hermitian manifold with dw = 6 A w, for some closed
1-form 0, then (M, 1) is LCK.

Proof: For some covering of M the lift of 6 is exact, and there the lift of w is
conformal to a Kahler form. =

DEFINITION: A Hermitian manifold (M, I,w) is called LCK if dw = 6 A w, for
some closed 1-form 6.

DEFINITION: The form 0 is called the Lee form of an LCK-manifold. The
dual vector field 6 — the Lee field

CLAIM: If dimg M > 2, and dw = 0 Aw, then 0 iIs always exact.

Proof: 0 = d?w =df Aw, but - Aw: A2(M) — A*(M) is always injective for
dimcM > 2. m
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Vaisman manifolds

DEFINITION: An LCK manifold (M,w,0) is called Vaisman (‘“generalized
Hopf") if Vo0 = 0, where Vo is the Levi-Civita connection.

THEOREM: (Kamishima-Ornea, 2001) If M is compact, this is equivalent
to M admitting a conformal holomorphic flow, acting non-isometrically on
its Kahler covering.

EXAMPLE: A Hopf manifold C"\0/(A) is Vaisman. It is isometric to 52"~ 1 x

S1, and the Lee field is .

EXAMPLE: Let X be a Sasakian manifold, and C(X) its Kahler cone, equipped
with an action by Z = <(:c,t) — (a:,qt)>, g > 1. Then C(X)/Z is Vaisman.

Indeed, C(X)/Z is isometric to X x ST, with the Lee field is 4.

EXAMPLE: The same happens if Z = <(:c,t) — (go(:c),qt)>, g>1, and ¢ is

a Sasakian automorphism of X.
12
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Structure theorem for Vaisman manifolds

THEOREM: Every Vaisman manifold is obtained as C(X)/Z, where X is
Sasakian, Z = <(ac,t) o (go(aj),qt)>, g > 1, and ¢ is a Sasakian automorphism of
X. Moreover, the triple (X, ¢, q) is unique.

REMARK: This is equivalent to the existence of a Riemannian submersion
M — S1 with Sasakian fibers.

Proof. Step 1: Since ot is parallel and Killing, M = X x R locally. Fix zg € M.
Then the projection M = X xR to R is induced by z — f,mox@, for vz, SOMe
path connecting x and xg. Therefore, M = X x R whenever 6 is exact.

DEFINITION: A monodromy group Mon(M) of an LCK manifold M is the
smallest group I such that M = M /I and M is Kahler.

REMARK: This is equivalent to the lift of 6 being exact.
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The proof of Structure theorem for Vaisman manifolds

Proof. Step 2: Let ~1,...,v € H1(M,Z) be generators of homology, and
Q; f%_G the corresponding periods. One has a map M — R/{aq,...,ax), with a
commutative diagram

R — R/{aq,...,ar)
with vertical lines  — [, 6. The Riemannian submersion to S* will be
obtained if R/{aq,...,0p) = S1.

Step 3: Let G C m1(M) be the group generated by all v € m1(M) such that
Jv0 =0. Then I' = m1(M)/G is the monodromy group of M. Therefore,
R/(Ozl, °-°7ak;> =51 — MOH(M) = /.
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Computation of the monodromy group of a Vaisman manifold

DEFINITION: Let G be a group of holomorphic automorphisms of M obtained
as a closure of the Lee field action.

REMARK: Since ¢ acts by isometries, G is a compact torus G = (S1)*,

CLAIM: Consider the group G of pairs f € Aut(M), f € G, making the following
diagram commutative.

~

Lo

T T

M Lowm

Then G = (SHF-1 x R.

REMARK: From this claim, the isomorphism Mon(M) = Z follows imme-
diately. Indeed, Mon(M) C kerp: G — G.
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Computation of the monodromy group of a Vaisman manifold (part 2)
Proof of G = (s1)k—1 x R.
Step 1: G is a covering of G, and the kernel of this projection is Mon(M).

Step 2: Let Gg Cc G be a subgroup acting on M by isometries. Since G acts
on M by homotheties, Gy has codimension 1. Therefore, Gg cannot intersect
Mon(M) and it maps injectively to Aut(M) = (S1)k.

Step 3: We obtain that Gy = (S1)%~1 (it’s codimension 1).

Step 4: Since Gy meets every component of G, it is connected. Therefore,
G2GoxR=2(SHFLIXR. m
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