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Hypercomplex Manifolds

Quaternionic geometry: an introduction
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Isometries of R2 are expressed in terms of complex

numbers. This allows one to answer geometry ques-

tions algebraically.

QUESTION: Can we do that in dimension 3?

ANSWER: Yes!
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Sir William Rowan Hamilton

(August 4, 1805 – September 2, 1865)
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Broom Bridge

“Here as he walked by on the 16th of October 1843

Sir William Rowan Hamilton in a flash of genius

discovered the fundamental formula for quaternion

multiplication

I2 = J2 = K2 = IJK = −1

and cut it on a stone of this bridge.”
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Fast forward 70 years.

Élie Joseph Cartan

(9 April 1869 – 6 May 1951)
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“Quaternionic structures” in the sense of Elie Car-

tan don’t exist.

THEOREM: Let f : Hn −→Hm be a function,

defined locally in some open subset of n-dimensional

quaternion space Hn. Suppose that the differential

Df is H-linear. Then f is a linear map.

Proof (a modern one): The graph of f is “hyper-

complex manifold” in Hn×Hm, hence “geodesically

complete”, hence linear.
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Marcel Berger

Classification of holonomies.
Berger’s list

Holonomy Geometry

SO(n) acting on Rn Riemannian manifolds

U(n) acting on R2n Kähler manifolds

SU(n) acting on R2n, n > 2 Calabi-Yau manifolds

Sp(n) acting on R4n hyperkähler manifolds

Sp(n)× Sp(1)/{±1} quaternionic-Kähler

acting on R4n, n > 1 manifolds

G2 acting on R7 G2-manifolds

Spin(7) acting on R8 Spin(7)-manifolds
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In Riemannian Geometry, we have two kinds of quater-

nionic manifolds:

quaternionic-Kähler, holonomy Sp(n)Sp(1)

hyperkähler manifolds , holonomy Sp(n)

The quaternionic-Kähler manifolds (name is mis-

leading) are rare: all compact examples are symmet-

ric. Compact hyperkähler manifolds are constructed

by Yau’s solution of Calabi’s conjecture.

Nota bene: Sp(n) is a group of matrices h ∈ GL(n, H)

preserving the quaternionic Hermitian structure.
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What is Kähler geometry?

1. Kähler manifold is a Riemannian manifold with holonomy
U(n)

2. This means that we are given I : TM −→ TM , I2 = − Id,
and ∇I = 0. Also, I is orthogonal: g(Ix, Iy) = g(x, y).

3. The operator I is a complex structure on M . The metric
g is Hermitian, hence the form ω(x, y) := G(Ix, y) is skew-
symmetric (“Hermitian form”). Also ∇ω = 0, hence ω is
closed.

4. These data are used to provide an equivalent definition

(which becomes a theorem now).

THEOREM: Let M be a complex, Hermitian man-

ifold, ω its Hermitian form. Then (M, I, ω) is Kähler

if and only if dω = 0.

Kähler manifolds are bona fide symplectic.

Algebraic complex manifolds manifolds are always Kähler
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Eugenio Calabi

Definition: (E. Calabi, 1978)

Let (M, g) be a Riemannian manifold equipped with

three complex structure operators I, J, K : TM −→ TM ,

satisfying the quaternionic relation

I2 = J2 = K2 = IJK = − Id .

Suppose that I, J, K are Kähler. Then (M, I, J, K, g)

is called hyperkähler.
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Holomorphic symplectic geometry

A hyperkähler manifold (M, I, J, K), considered as a complex

manifold (M, I), is holomorphically symplectic (equipped with

a holomorphic, non-degenerate 2-form). Recall that, M is

equipped with 3 symplectic forms ωI, ωJ, ωK.

LEMMA: The form Ω := ωJ +
√
−1 ωK is a holo-

morphic symplectic 2-form on (M, I).

Converse is also true, as follows from the famous
conjecture, made by Calabi in 1952.

THEOREM: (S.-T. Yau, 1978) Let M be a com-
pact, holomorphically symplectic Kähler manifold.
Then M admits a hyperkähler metric, which is uniquely
determined by the cohomology class of its Kähler
form ωI.

Hyperkähler geometry is essentially the same as holo-
morphic symplectic geometry
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Hyperkähler geometry

0. Induced complex structures are complex struc-

tures of form

L := aI + bJ + cK, a2 + b2 + c2 = 1.

They are non-algebraic (mostly). Indeed, for generic

a, b, c, (M, L) has no divisors.

1. These complex structures can be glued together

to form a “twistor space”, Tw(M)−→ CP1. The

hyperkähler structure can be defined in terms of a

twistor space. You can have “hyperkähler singular

spaces”, and even schemes.
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2. Trianalytic subvarieties are closed subsets which

are complex analytic with respect to I, J, K.

• Let L be a generic induced complex structure.

Then all complex subvarieties of (M, L) are tri-

analytic.

• A normalization of a trianalytic subvariety is smooth

and hyperkähler.

• A complex deformation of a trianalytic subvari-

ety is again trianalytic, the corresponding mod-

uli space is hyperkähler.

3. Similar results (also very strong) are true for

vector bundles which are holomorphic under I, J, K

(“hyperholomorphic bundles”)
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Another world: HYPERCOMPLEX MANIFOLDS

Definition: Let M be a smooth manifold equipped
with endomorphisms I, J, K : TM −→ TM , satisfy-
ing the quaternionic relation

I2 = J2 = K2 = IJK = − Id .

Suppose that I, J, K are integrable. Then (M, I, J, K)
is called a hypercomplex manifold.

0. Obata connection.

1. In dimension 1, we have a classification, due to
Charles P. Boyer.

2. In dimension i > 1, no classification is known
(and no conjectures either).

3. Many examples, due to D. Joyce and physicists
Ph. Spindel, A. Sevrin, W. Troost, A. Van Proeyen.
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QUESTIONS

1. Given a complex manifold M , when M admits a

hypercomplex structure? How many?

2. Can we classify the affine hypercomplex mani-

folds (one where the Obata connection is flat)?

3. What are possible holonomies of Obata connec-

tion?

4. What are the trianalytic subvarieties and auto-

morphisms?

THEOREM: Let (M, I, J, K) be a compact hyper-

complex manifold. Assume that (M, I) admits a

Kähler structure. Then M is hyperkähler.
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