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1. Non-Kähler manifolds. Twistor spaces.

2. Different Hermitian structures and conditions.

3. Rational curves on twistor spaces and special metrics.

4. Applications.
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Non-Kähler manifolds

Constructions of compact, non-Kähler manifolds.

1. Locally conformally Kähler manifolds. A quotient of a Kähler manifold

by a discrete group acting by homotheties. Never admits a Kähler metric.

(Vaisman).

Example: Hopf manifold (Cn\0)/Z.

2. Left-invariant complex structures on Lie groups or their quotients by

discrete groups. Almost never Kähler (exception: a torus).

3. Twistor spaces. Huge. Any finite-generated group can be a fun-

damental of a twistor space (Taubes; Panov-Petrunin). Never Kähler

(Hitchin), except CP3 and flag spaces.

4. Moishezon (and Fujiki class C) manifolds.
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Twistor spaces (hyperkähler geometry)

DEFINITION: A hyperkähler structure on a manifold M is a Riemannian
structure g and a triple of complex structures I, J,K, satisfying quaternionic
relations I ◦ J = −J ◦ I = K, such that g is Kähler for I, J,K.

DEFINITION: Induced complex structures on a hyperkähler manifold are
complex structures of form S2 ∼= {L := aI + bJ + cK, a2 + b2 + c2 = 1.}

DEFINITION: A twistor space Tw(M) of a hyperkähler manifold is a com-
plex manifold obtained by gluing these complex structures into a holo-
morphic family over CP1. More formally:

Let Tw(M) := M ×S2. Consider the complex structure Im : TmM → TmM on
M induced by J ∈ S2 ⊂ H. Let IJ denote the complex structure on S2 = CP1.

The operator ITw = Im ⊕ IJ : TxTw(M) → TxTw(M) satisfies I2
Tw = − Id.

It defines an almost complex structure on Tw(M). This almost complex
structure is known to be integrable (Obata)

EXAMPLE: If M = Hn, Tw(M) = Tot(O(1)⊕n) ∼= CP2n+1\CP2n−1 (total
space of a vector bundle (O(1)⊕n).

REMARK: For M compact, Tw(M) never admits a Kähler structure.
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Twistor spaces (4-manifolds)

DEFINITION: Let M be a Riemannian 4-manifold. Consider the action of
the Hodge ∗-operator: ∗ : Λ2M −→ Λ2M . Since ∗2 = 1, the eigenvalues
are ±1, and one has a decomposition Λ2M = Λ+M ⊕ Λ−M onto autodual
(∗η = η) and anti-autodual (∗η = −η) forms.

REMARK: If one changes the orientation of M , leaving metric the same,
Λ+M and Λ−M are exchanged. Therefore, dim Λ2M = 6 implies dim Λ±(M) =
3.

REMARK: Using the isomorphism Λ2M = so(TM), we interpret η ∈ Λ2
mM as

an endomorphisms of TmM . Then the unit vectors η ∈ Λ+
mM correspond

to oriented, orthogonal complex structures on TmM.

DEFINITION: Let Tw(M) := SΛ+M be the set of unit vectors in Λ+M .
At each point (m, s) ∈ Tw(M), consider the decoposition Tm,sTw(M) =
TmM⊕TsSΛ+

mM , induced by the Levi-Civita connection. Let Is be the complex
structure on TmM induced by s, I

SΛ+
mM

the complex structure on SΛ+
mM = S2

induced by the metrics and orientation, and I : Tm,sTw(M)−→ Tm,sTw(M)
be equal to Is ⊕ ISΛ+

mM
. An almost complex manifold (Tw(M), I) is called

the twistor space of M .
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PROPERTIES OF TWISTOR SPACES:

1. The almost complex structure on Tw(M), I is a conformal invariant

of M . Moreover, one can reconstruct the conformal structure on M

from the almost complex structure on Tw(M) and its anticomplex involution

(m, s)−→ (m,−s).

2. Tw(M), I is a complex manifold if and only if W+ = 0, where W+

(“self-dual conformal curvature”) is an autodual component of the curva-

ture tensor. Such manifolds are called conformally half-flat or ASD (anti-

selfdual).

3. For a hyperkähler 4-fold, two definitions of twistor spaces coincide.

6



Rational curves on non-Kähler manifolds M. Verbitsky

Rational curves on Tw(M).

DEFINITION: An ample rational curve on a complex manifold M is a

smooth curve S ∼= CP1 ⊂ M such that NS =
⊕n−1
k=1O(ik), with ik > 0. It is

called a quasi-line if all ik = 1.

CLAIM: Let M be a compact complex manifold containing a an ample ra-

tional line. Then any N points z1, ..., zN can be connected by an ample

rational curve.

CLAIM: Let M be a Riemannian 4-manifold, Tw(M)
σ−→ M its twistor

space, m ∈ M a point, and Sm := σ−1(m) = SΛ+
m(M) the corresponding S2

in Tw(M). Then Sm is a quasi-line.

Proof: Since the claim is essentially infinitesimal, it suffices to check it when

M is flat. Then Tw(M) = Tot(O(1)⊕2) ∼= CP3\CP1, and Sm is a section

of O(1)⊕2.
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Hermitian structures on complex manifolds.

Let (M, I, g) be a complex Hermitian n-manifold, ω ∈ Λ1,1(M) its Hermitian

form.

REMARK: For each 1 6 k 6 n − 1, the condition d(ωk) = 0 implies dω =

0. Hermitian metric is called balanced if d(ωn−1) = 0. All twistor spaces

are balanced (Hitchin). All Moishezon manifolds are balanced (Alessandrini-

Bassaneli).

REMARK: We call dc := −IdI the twisted differential and ddc the pluri-

Laplacian. Hermitian metric is called Gauduchon if ddc(ωn−1) = 0.

THEOREM: (Gauduchon) For each (M, I, g), there exists a unique, up to

a constant multiplier, Gauduchon metric in the same conformal class.

REMARK: This is very useful, because allows to define a degree of a

holomorphic bundle, define stability, and prove a non-Kähler version of

Donaldson-Uhlenbeck-Yau therem.
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Strongly Gauduchon metrics.

Let (M, I, g) be a complex Hermitian n-manifold, ω ∈ Λ1,1(M) its Hermitian

form.

DEFINITION: Hermitian metric is called strongly Gauduchon if ωn−1 is a

(n− 1, n− 1)-part of a closed form: ωn−1 = ηn−1,n−1 (Dan Popovici).

REMARK: ddc preserves the Hodge type, hence ddcηp,q = 0 for any Hodge

component ηp,q of a closed form. Therefore, strongly Gauduchon implies

Gauduchon: ddc(ηn−1,n−1) = −(dcdη)n,n = 0 whenever η is closed.
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Hermitian symplectic and SKT metrics.

DEFINITION: A metric g is called SKT (“strong Kähler torsion”) or

pluriclosed if ddcω = 0.

REMARK: Such structures are used in physics (and differential geometry

“generalized Kähler manifolds”).

DEFINITION: A form ω is called taming or symplectic-Hermitian if it is

a (1,1)-part of a symplectic form.

REMARK: Symplectic-Hermitian implies pluriclosed, by the same argu-

ment as used to show that strongly Gauduchon implies Gauduchon.

REMARK: Such metrics are used a lot in symplectic geometry. Also, Streets-

Tian (2010) constructed a Ricci flow for symplectic-Hermitian metrics.
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Main results of today’s talk

1. For an almost complex structure I equipped with a taming symplectic

form, all components of the space of complex curves are compact (Gromov).

I will show that the same is true for pluriclosed metrics, if I is integrable.

2. When M has a quasi-line and a pluriclosed metric, it is actually Moishezon.

3. This is used to show that a twistor space admits a pluriclosed metric

if and only if it is tamed.

4. I prove that no twistor space can admit a taming form, if it is non-Kähler.

This implies that twistor spaces are never pluriclosed.
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Pluriharmonic function on the space of complex curves

DEFINITION: Let S be a complex curve on a Hermitian manifold (M, I, g, ω).

Define the Riemannian volume as Vol(S) :=
∫
S ω.

DEFINITION: A function ϕ is called pluriharmonic if ddcϕ = 0.

CLAIM: Let X be a component of the moduli of complex curves on a given

complex manifold, X̃ the set of pairs {S ∈ X, z ∈ S ⊂ M}, (“the universal

family”), and πM X̃ −→M , πX X̃ −→X the forgetful maps. Then the volume

function Vol : X −→ R>0 can be expressed as Vol = (πX)∗π∗Mω.

REMARK: Since pullback and pushforward of differential forms commute

with d, dc, this gives ddcVol = (πX)∗π∗M(ddcω). Therefore, the volume

function is pluriharmonic on X, whenever ω is pluriclosed.
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Gromov’s theorem

THEOREM: (Gromov) Let M be a compact Hermitian almost complex

manifold, X the space of all complex curves on M , and X
Vol−→ R>0 the volume

function. Then Vol is proper (preimage of a compact set is compact).

COROLLARY: Let M be a complex manifold, equipped with a pluriclosed

Hermitian form ω, and X a component of the moduli of complex curves.

Then the function Vol : X −→ R>0 is constant, and X is compact.

Proof: Since Vol > 0, the set Vol−1(]−∞, C]) is compact for all C ∈ R, hence

Vol has a minimum somewhere in X. However, a pluriharmonic function

which has a minimum is necessarily constant (E. Hopf’s strong maximum

principle). Therefore, Vol is constant: Vol = A. Now, compactness of X =

Vol−1(A) follows from Gromov’s theorem.
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Complex manifolds and quasi-lines

REMARK: Let S ⊂ M be a quasi-line. Then, for an appropriate tubular

neighbourhood U ⊂M of S, “for every two points x, y ∈ U close to S and

far from each other, there is a unique deformation of S containing X

and Y .”

More precisely:

Claim 1: Let S ⊂ M be a quasi-line. Then, for an appropriate tubular

neighbourhood U ⊂ M of S, and any open neighbourhood W of a diagonal

∆ ⊂ U × U , there exists a smaller open neighbourhood V , of S inside U such

that for each (x, y) ∈ V × V \W , there exists a unique deformation S′ ⊂ U

of S containing x and y.

Similarly,

Claim 2: A small deformation S′ ⊂ U of S passing through z ∈ S is uniquely

determined by a 1-jet of S′ at z.
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Quasilines in Moishezon manifolds

THEOREM: Let M be a complex manifold, S ⊂ M a quasi-line, and W its

deformation space. Assume that W is compact. Then M is Moishezon.

Proof. Step 1: Let z ∈ M a point, containing a quasi-line S ∈ W , Wz

the set of all curves S1 ∈ W containing z, and W̃z – the set of all pairs

{x ∈ S1, S1 ∈ Wz}. From Claim 1, it follows that the map W̃z −→M,

(S, x)−→ x is surjective and finite at generic point.

Step 2: Therefore, it would suffice to prove that W̃z is Moishezon.

Step 3: After an appropriate bimeromorphic transform, we may assume that

W̃z −→Wz is a smooth, proper map with rational, 1-dimensional fibers. Then

W̃z is Moishezon ⇔ Wz is Moishezon.

Step 4: By Claim 2, the map from Wz to PTzM mapping a quasi-line to its

1-jet is also generically finite. Therefore, Wz is Moishezon.

COROLLARY: Let M be a twistor space admitting a pluriclosed Hermitian

metric. Then M is Moishezon.
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Harvey-Lawson duality argument applied to pluriclosed metrics

Recall the classical theorem

THEOREM: (Harvey-Lawson, 1982) Let M be a compact, complex mani-

fold. Then the following conditions are equivalent.

a. M does not admit a Kähler metric.

b. M has a non-zero, positive (n − 1, n − 1)-current Θ which is a

(n− 1, n− 1)-part of a closed current.

The same argument, applied to pluriclosed or taming metrics, brings the

following.

THEOREM 1: Let M be a compact, complex manifold. Then

1. M admits no pluriclosed metrics ⇔ M admits a positive, ddc-

exact (n− 1, n− 1)-current

2. M admits no Hermitian symplectic metrics ⇔ M admits a

positive, exact (n− 1, n− 1)-current.
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Applications.

COROLLARY: Any twistor space which admits a pluriclosed metric, also

admits a Hermitian symplectic structure.

Proof: Since M is Moishezon, it satisfies ddc-lemma (Deligne-Griffiths-Morgan-

Sullivan). Therefore, any positive, exact (n−1, n−1)-current is ddc-exact.

COROLLARY:

No non-Kähler twistor space admits a pluriclosed (or Hermitian sym-

plectic) metric.

Proof: Th. Peternell (1984) has shown that any non-Kähler Moishezon n-

manifold admits an exact, positive (n−1, n−1)-current. Therefore, it is never

Hermitian symplectic (Theorem 1).
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