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Non-Kahler manifolds

Constructions of compact, non-Kahler manifolds.

1. Locally conformally Kahler manifolds. A quotient of a Kahler manifold
by a discrete group acting by homotheties. Never admits a Kahler metric.
(Vaisman).

Example: Hopf manifold (C™\0)/Z.

2. Left-invariant complex structures on Lie groups or their quotients by
discrete groups. Almost never Kahler (exception: a torus).

3. Twistor spaces. Huge. Any finite-generated group can be a fun-
damental of a twistor space (Taubes; Panov-Petrunin). Never Kahler

(Hitchin), except CP3 and flag spaces.

4. Moishezon (and Fujiki class C) manifolds.
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Twistor spaces (hyperkahler geometry)

DEFINITION: A hyperkahler structure on a manifold M is a Riemannian
structure g and a triple of complex structures I, J, K, satisfying quaternionic
relations T oJ = —J ol = K, such that g is Kahler for I, J, K.

DEFINITION: Induced complex structures on a hyperkahler manifold are
complex structures of form S?2 =2 {L :=al +bJ +cK, a?°+b°+c°=1.}

DEFINITION: A twistor space Tw(M) of a hyperkahler manifold is a com-
plex manifold obtained by gluing these complex structures into a holo-
morphic family over CPLl. More formally:

Let Tw(M) := M x S2. Consider the complex structure Ip, : TrnM — T;nM on
M induced by J & S2 c H. Let I; denote the complex structure on S2 = cpl.

The operator Ity = Im ® Iy : Tp TW(M) — Tp Tw(M) satisfies 12, = —Id.
It defines an almost complex structure on Tw(M). This almost complex
structure is known to be integrable (Obata)

EXAMPLE: If M = H", Tw(M) = Tot(O(1)%"?) =& cp2rt\cp2n—1 (total
space of a vector bundle (O(1)%7).

REMARK: For M compact, Tw(M) never admits a Kahler structure.
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Twistor spaces (4-manifolds)

DEFINITION: Let M be a Riemannian 4-manifold. Consider the action of
the Hodge x-operator: x : A2M — A2M. Since x2 = 1, the eigenvalues
are £1, and one has a decomposition AN2M = ATM @& A~ M onto autodual
(xn = n) and anti-autodual (xn = —n) forms.

REMARK: If one changes the orientation of M, leaving metric the same,
ATM and A~ M are exchanged. Therefore, dim A2M = 6 implies dim AT (M) =
3.

REMARK: Using the isomorphism A2M = so(T M), we interpret n € /\%,LM as
an endomorphisms of T;, M. Then the unit vectors n € /\;EM correspond
to oriented, orthogonal complex structures on 7;,M.

DEFINITION: Let Tw(M) := SATM be the set of unit vectors in AT M.
At each pount (m,s) € Tw(M), consider the decoposition Ty s TW(M) =

TmM@TSS/\ M, induced by the Levi-Civita connection. Let I be the complex
structure on 1}, M induced by s, IS/\;','LM the complex structure on S/\;';M — §2

induced by the metrics and orientation, and Z: Ty s TW(M) — Tim,s TW(M)
be equal to Zs d 1 SAt s An almost complex manifold (Tw(M),Z) is called
the twistor space S

5
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PROPERTIES OF TWISTOR SPACES:

1. The almost complex structure on Tw(M),Z is a conformal invariant
of M. Moreover, one can reconstruct the conformal structure on M
from the almost complex structure on Tw(M) and its anticomplex involution
(m,s) — (m, —s).

2. Tw(M),Z is a complex manifold if and only if W+ = 0, where W+
( “self-dual conformal curvature”) is an autodual component of the curva-
ture tensor. Such manifolds are called conformally half-flat or ASD (anti-
selfdual).

3. For a hyperkahler 4-fold, two definitions of twistor spaces coincide.
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Rational curves on Tw(M).

DEFINITION: An ample rational curve on a complex manifold M is a
smooth curve S =2 CPl ¢ M such that NS = @2;11 O(ig), with 7, > 0. It is
called a quasi-line if all 7, = 1.

CLAIM: Let M be a compact complex manifold containing a an ample ra-
tional line. Then any N points zq,...,zxy can be connected by an ample
rational curve.

CLAIM: Let M be a Riemannian 4-manifold, Tw(M) -2 M its twistor
space, m € M a point, and Sy, ;= o~ 1(m) = S/\;';L(M) the corresponding S2
in Tw(M). Then S, is a quasi-line.

Proof: Since the claim is essentially infinitesimal, it suffices to check it when
M is flat. Then Tw(M) = Tot(0(1)®2) 2 cp3\CP1l, and S,, is a section
of O(1)92, m
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Hermitian structures on complex manifolds.

Let (M, I,g) be a complex Hermitian n-manifold, w € ALL(M) its Hermitian
form.

REMARK: For each 1 < kK < n — 1, the condition d(w®) = 0 implies dw =
0. Hermitian metric is called balanced if d(w"~1) = 0. All twistor spaces
are balanced (Hitchin). All Moishezon manifolds are balanced (Alessandrini-
Bassaneli).

REMARK: We call d° := —IdIl the twisted differential and dd¢ the pluri-
Laplacian. Hermitian metric is called Gauduchon if dd¢(w™ 1) = 0.

THEOREM: (Gauduchon) For each (M,1,gq), there exists a unique, up to
a constant multiplier, Gauduchon metric in the same conformal class.

REMARK: This is very useful, because allows to define a degree of a
holomorphic bundle, define stability, and prove a non-Kahler version of
Donaldson-Uhlenbeck-Yau therem.

3
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Strongly Gauduchon metrics.

Let (M,1,g) be a complex Hermitian n-manifold, w € ALI(M) its Hermitian
form.

DEFINITION: Hermitian metric is called strongly Gauduchon if W 1is a
(n — 1,n — 1)-part of a closed form: w1 =yr=1n=1 (Dan Popovici).

REMARK: dd° preserves the Hodge type, hence dd“nP9 = O for any Hodge
component nP9 of a closed form. Therefore, strongly Gauduchon implies
Gauduchon: dd¢(n®1n=1) = —(d%n)™™ = 0 whenever 7 is closed.
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Hermitian symplectic and SKT metrics.

DEFINITION: A metric g is called SKT (“strong Kahler torsion”) or
pluriclosed if dd‘w = 0.

REMARK: Such structures are used in physics (and differential geometry
“generalized Kahler manifolds”).

DEFINITION: A form w is called taming or symplectic-Hermitian if it is
a (1,1)-part of a symplectic form.

REMARK: Symplectic-Hermitian implies pluriclosed, by the same argu-
ment as used to show that strongly Gauduchon implies Gauduchon.

REMARK: Such metrics are used a lot in symplectic geometry. Also, Streets-
Tian (2010) constructed a Ricci flow for symplectic-Hermitian metrics.
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Main results of today’s talk

1. For an almost complex structure I equipped with a taming symplectic
form, all components of the space of complex curves are compact (Gromov).
I will show that the same is true for pluriclosed metrics, if  is integrable.

2. When M has a quasi-line and a pluriclosed metric, it is actually Moishezon.

3. This is used to show that a twistor space admits a pluriclosed metric
iIf and only if it is tamed.

4. I prove that no twistor space can admit a taming form, if it is non-Kahler.
This implies that twistor spaces are never pluriclosed.

11
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Pluriharmonic function on the space of complex curves

DEFINITION: Let S be a complex curve on a Hermitian manifold (M, I, g,w).
Define the Riemannian volume as Vol(S) = [qw.

DEFINITION: A function ¢ is called pluriharmonic if dd°p = 0.

CLAIM: Let X be a component of the moduli of complex curves on a given
complex manifold, X the set of pairs {S € X,z€ S C M}, (“the universal
family’”), and myy X — M, mx X — X the forgetful maps. Then the volume
function Vol : X — R>0 can be expressed as Vol = (T x ) w0

REMARK: Since pullback and pushforward of differential forms commute

with d, d° this gives dd°Vol = (mx)«m3,(dd°w). Therefore, the volume
function is pluriharmonic on X, whenever w is pluriclosed.

12
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Gromov'’s theorem

THEOREM: (Gromov) Let M be a compact Hermitian almost complex

manifold, X the space of all complex curves on M, and X ﬂ R>0 the volume

function. Then Vol is proper (preimage of a compact set is compact).

COROLLARY: Let M be a complex manifold, equipped with a pluriclosed
Hermitian form w, and X a component of the moduli of complex curves.
Then the function Vol : X — R>0 js constant, and X is compact.

Proof: Since Vol > 0, the set Vol~1(]— o0, C]) is compact for all C € R, hence
Vol has a minimum somewhere in X. However, a pluritharmonic function
which has a minimum is necessarily constant (E. Hopf's strong maximum
principle). Therefore, Vol is constant: Vol = A. Now, compactness of X =
Vol~1(A) follows from Gromov's theorem. =

13



Rational curves on non-Kahler manifolds M. Verbitsky

Complex manifolds and quasi-lines

REMARK: Let S C M be a quasi-line. Then, for an appropriate tubular
neighbourhood U C M of S, “for every two points z,y € U close to S and
far from each other, there is a unique deformation of S containing X
and Y.”

More precisely:

Claim 1: Let S C M be a quasi-line. Then, for an appropriate tubular
neighbourhood U C M of S, and any open neighbourhood W of a diagonal
A C U x U, there exists a smaller open neighbourhood V, of S inside U such
that for each (z,y) € V x V\W, there exists a unique deformation S’ C U
of S containing =z and y.

Similarly,

Claim 2: A small deformation S’ Cc U of S passing through z € S is uniquely
determined by a 1-jet of S’ at =.
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Quasilines in Moishezon manifolds

THEOREM: Let M be a complex manifold, S C M a quasi-line, and W its
deformation space. Assume that W is compact. Then M is Moishezon.

Proof. Step 1: Let z € M a point, containing a quasi-line S ¢ W, W,
the set of all curves Sq4 € W containing z, and W. — the set of all pairs
{r € S1,51 € W.}. From Claim 1, it follows that the map W, — M,
(S,x) — x is surjective and finite at generic point.

Step 2: Therefore, it would suffice to prove that W, is Moishezon.

Step 3: After an appropriate bimeromorphic transform, we may assume that
W. — W, is a smooth, proper map with rational, 1-dimensional fibers. Then
W, is Moishezon < W, is Moishezon.

Step 4: By Claim 2, the map from W, to PI,M mapping a quasi-line to its
1-jet is also generically finite. Therefore, W, is Moishezon. m

COROLLARY: Let M be a twistor space admitting a pluriclosed Hermitian

metric. Then M is Moishezon. =
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Harvey-Lawson duality argument applied to pluriclosed metrics
Recall the classical theorem

THEOREM: (Harvey-Lawson, 1982) Let M be a compact, complex mani-
fold. Then the following conditions are equivalent.

a. M does not admit a Kahler metric.

b. M has a non-zero, positive (n — 1,n — 1)-current © which is a
(n—1,n— 1)-part of a closed current.

The same argument, applied to pluriclosed or taming metrics, brings the
following.

THEOREM 1: Let M be a compact, complex manifold. Then

1. M admits no pluriclosed metrics & M admits a positive, dd°-
exact (n —1,n — 1)-current

2. M admits no Hermitian symplectic metrics & M admits a
positive, exact (n —1,n — 1)-current. =
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Applications.

COROLLARY: Any twistor space which admits a pluriclosed metric, also
admits a Hermitian symplectic structure.

Proof: Since M is Moishezon, it satisfies dd®-lemma (Deligne-Griffiths-Morgan-
Sullivan). Therefore, any positive, exact (n—1,n—1)-current is dd“-exact.
u

COROLLARY:

No non-Kahler twistor space admits a pluriclosed (or Hermitian sym-
plectic) metric.

Proof: Th. Peternell (1984) has shown that any non-Kahler Moishezon n-
manifold admits an exact, positive (n—1,n—1)-current. Therefore, it is never
Hermitian symplectic (Theorem 1). =
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