Rational curves on non-Kähler manifolds

Misha Verbitsky

September 7, 2012, Komplexe Analysis,

Oberwolfach

Plan

- 1. Non-Kähler manifolds. Twistor spaces.
- 2. Different Hermitian structures and conditions.
- 3. Rational curves on twistor spaces and special metrics.
- 4. Applications.

Non-Kähler manifolds

Constructions of compact, non-Kähler manifolds.

 Locally conformally Kähler manifolds. A quotient of a Kähler manifold by a discrete group acting by homotheties. Never admits a Kähler metric. (Vaisman).

Example: Hopf manifold $(\mathbb{C}^n \setminus 0)/\mathbb{Z}$.

2. Left-invariant complex structures on Lie groups or their quotients by discrete groups. Almost never Kähler (exception: a torus).

3. Twistor spaces. Huge. Any finite-generated group can be a fundamental of a twistor space (Taubes; Panov-Petrunin). Never Kähler (Hitchin), except $\mathbb{C}P^3$ and flag spaces.

4. Moishezon (and Fujiki class C) manifolds.

Twistor spaces (hyperkähler geometry)

DEFINITION: A hyperkähler structure on a manifold M is a Riemannian structure g and a triple of complex structures I, J, K, satisfying quaternionic relations $I \circ J = -J \circ I = K$, such that g is Kähler for I, J, K.

DEFINITION: Induced complex structures on a hyperkähler manifold are complex structures of form $S^2 \cong \{L := aI + bJ + cK, a^2 + b^2 + c^2 = 1.\}$

DEFINITION: A twistor space Tw(M) of a hyperkähler manifold is a complex manifold obtained by gluing these complex structures into a holomorphic family over $\mathbb{C}P^1$. More formally:

Let $\mathsf{Tw}(M) := M \times S^2$. Consider the complex structure $I_m : T_m M \to T_m M$ on M induced by $J \in S^2 \subset \mathbb{H}$. Let I_J denote the complex structure on $S^2 = \mathbb{C}P^1$.

The operator $I_{\mathsf{Tw}} = I_m \oplus I_J : T_x \mathsf{Tw}(M) \to T_x \mathsf{Tw}(M)$ satisfies $I^2_{\mathsf{Tw}} = -\operatorname{Id}$. **It defines an almost complex structure on** $\mathsf{Tw}(M)$. This almost complex structure is known to be integrable (Obata)

EXAMPLE: If $M = \mathbb{H}^n$, $\mathsf{Tw}(M) = \mathsf{Tot}(\mathcal{O}(1)^{\oplus n}) \cong \mathbb{C}P^{2n+1} \setminus \mathbb{C}P^{2n-1}$ (total space of a vector bundle $(\mathcal{O}(1)^{\oplus n})$.

REMARK: For *M* compact, Tw(M) never admits a Kähler structure.

Twistor spaces (4-manifolds)

DEFINITION: Let M be a Riemannian 4-manifold. Consider the action of the Hodge *-operator: $* : \Lambda^2 M \longrightarrow \Lambda^2 M$. Since $*^2 = 1$, the eigenvalues are ± 1 , and one has a decomposition $\Lambda^2 M = \Lambda^+ M \oplus \Lambda^- M$ onto **autodual** $(*\eta = \eta)$ and **anti-autodual** $(*\eta = -\eta)$ forms.

REMARK: If one changes the orientation of M, leaving metric the same, $\Lambda^+ M$ and $\Lambda^- M$ are exchanged. Therefore, $\dim \Lambda^2 M = 6$ implies $\dim \Lambda^{\pm}(M) = 3$.

REMARK: Using the isomorphism $\Lambda^2 M = \mathfrak{so}(TM)$, we interpret $\eta \in \Lambda_m^2 M$ as an endomorphisms of $T_m M$. Then the unit vectors $\eta \in \Lambda_m^+ M$ correspond to oriented, orthogonal complex structures on $T_m M$.

DEFINITION: Let $\mathsf{Tw}(M) := S\Lambda^+ M$ be the set of unit vectors in $\Lambda^+ M$. At each point $(m,s) \in \mathsf{Tw}(M)$, consider the decoposition $T_{m,s} \mathsf{Tw}(M) = T_m M \oplus T_s S\Lambda_m^+ M$, induced by the Levi-Civita connection. Let I_s be the complex structure on $T_m M$ induced by s, $I_{S\Lambda_m^+ M}$ the complex structure on $S\Lambda_m^+ M = S^2$ induced by the metrics and orientation, and $\mathcal{I} : T_{m,s} \mathsf{Tw}(M) \longrightarrow T_{m,s} \mathsf{Tw}(M)$ be equal to $\mathcal{I}_s \oplus I_{S\Lambda_m^+ M}$. An almost complex manifold $(\mathsf{Tw}(M), \mathcal{I})$ is called **the twistor space** of M.

PROPERTIES OF TWISTOR SPACES:

1. The almost complex structure on $\mathsf{Tw}(M), \mathcal{I}$ is a conformal invariant of M. Moreover, one can reconstruct the conformal structure on Mfrom the almost complex structure on $\mathsf{Tw}(M)$ and its anticomplex involution $(m,s) \longrightarrow (m,-s).$

2. Tw(M), \mathcal{I} is a complex manifold if and only if $W^+ = 0$, where W^+ ("self-dual conformal curvature") is an autodual component of the curvature tensor. Such manifolds are called **conformally half-flat** or **ASD (antiselfdual)**.

3. For a hyperkähler 4-fold, two definitions of twistor spaces coincide.

Rational curves on Tw(M).

DEFINITION: An ample rational curve on a complex manifold M is a smooth curve $S \cong \mathbb{C}P^1 \subset M$ such that $NS = \bigoplus_{k=1}^{n-1} \mathcal{O}(i_k)$, with $i_k > 0$. It is called a quasi-line if all $i_k = 1$.

CLAIM: Let M be a compact complex manifold containing a an ample rational line. Then any N points $z_1, ..., z_N$ can be connected by an ample rational curve.

CLAIM: Let M be a Riemannian 4-manifold, $\mathsf{Tw}(M) \xrightarrow{\sigma} M$ its twistor space, $m \in M$ a point, and $S_m := \sigma^{-1}(m) = S \wedge_m^+(M)$ the corresponding S^2 in $\mathsf{Tw}(M)$. Then S_m is a quasi-line.

Proof: Since the claim is essentially infinitesimal, it suffices to check it when M is flat. Then $Tw(M) = Tot(\mathcal{O}(1)^{\oplus 2}) \cong \mathbb{C}P^3 \setminus \mathbb{C}P^1$, and S_m is a section of $\mathcal{O}(1)^{\oplus 2}$.

Hermitian structures on complex manifolds.

Let (M, I, g) be a complex Hermitian *n*-manifold, $\omega \in \Lambda^{1,1}(M)$ its Hermitian form.

REMARK: For each $1 \le k \le n-1$, the condition $d(\omega^k) = 0$ implies $d\omega = 0$. Hermitian metric is called **balanced** if $d(\omega^{n-1}) = 0$. All twistor spaces are balanced (Hitchin). All Moishezon manifolds are balanced (Alessandrini-Bassaneli).

REMARK: We call $d^c := -IdI$ the twisted differential and dd^c the pluri-Laplacian. Hermitian metric is called Gauduchon if $dd^c(\omega^{n-1}) = 0$.

THEOREM: (Gauduchon) For each (M, I, g), there exists a unique, up to a constant multiplier, Gauduchon metric in the same conformal class.

REMARK: This is very useful, because allows to define a degree of a holomorphic bundle, define stability, and prove a **non-Kähler version of Donaldson-Uhlenbeck-Yau therem.**

8

Strongly Gauduchon metrics.

Let (M, I, g) be a complex Hermitian *n*-manifold, $\omega \in \Lambda^{1,1}(M)$ its Hermitian form.

DEFINITION: Hermitian metric is called **strongly Gauduchon** if ω^{n-1} is a (n-1, n-1)-part of a closed form: $\omega^{n-1} = \eta^{n-1, n-1}$ (Dan Popovici).

REMARK: dd^c preserves the Hodge type, hence $dd^c\eta^{p,q} = 0$ for any Hodge component $\eta^{p,q}$ of a closed form. Therefore, strongly Gauduchon implies Gauduchon: $dd^c(\eta^{n-1,n-1}) = -(d^c d\eta)^{n,n} = 0$ whenever η is closed.

Hermitian symplectic and SKT metrics.

DEFINITION: A metric g is called **SKT ("strong Kähler torsion")** or **pluriclosed** if $dd^c \omega = 0$.

REMARK: Such structures are used in physics (and differential geometry "generalized Kähler manifolds").

DEFINITION: A form ω is called **taming** or **symplectic-Hermitian** if it is a (1,1)-part of a symplectic form.

REMARK: Symplectic-Hermitian implies pluriclosed, by the same argument as used to show that strongly Gauduchon implies Gauduchon.

REMARK: Such metrics are used a lot in symplectic geometry. Also, Streets-Tian (2010) constructed a Ricci flow for symplectic-Hermitian metrics.

Main results of today's talk

1. For an almost complex structure *I* equipped with a taming symplectic form, all components of the space of complex curves are compact (Gromov). I will show that **the same is true for pluriclosed metrics, if** *I* **is integrable**.

2. When M has a quasi-line and a pluriclosed metric, it is actually **Moishezon**.

3. This is used to show that a twistor space admits a pluriclosed metric if and only if it is tamed.

4. I prove that no twistor space can admit a taming form, if it is non-Kähler. This implies that **twistor spaces are never pluriclosed**.

Pluriharmonic function on the space of complex curves

DEFINITION: Let *S* be a complex curve on a Hermitian manifold (M, I, g, ω) . Define the Riemannian volume as $Vol(S) := \int_S \omega$.

DEFINITION: A function φ is called **pluriharmonic** if $dd^c \varphi = 0$.

CLAIM: Let X be a component of the moduli of complex curves on a given complex manifold, \tilde{X} the set of pairs $\{S \in X, z \in S \subset M\}$, ("the universal family"), and $\pi_M \tilde{X} \longrightarrow M$, $\pi_X \tilde{X} \longrightarrow X$ the forgetful maps. **Then the volume function** Vol : $X \longrightarrow \mathbb{R}^{>0}$ can be expressed as $Vol = (\pi_X)_* \pi_M^* \omega$.

REMARK: Since pullback and pushforward of differential forms commute with d, d^c , this gives $dd^c \text{Vol} = (\pi_X)_* \pi_M^* (dd^c \omega)$. Therefore, the volume function is pluriharmonic on X, whenever ω is pluriclosed.

Gromov's theorem

THEOREM: (Gromov) Let M be a compact Hermitian almost complex manifold, \mathfrak{X} the space of all complex curves on M, and $\mathfrak{X} \xrightarrow{\text{Vol}} \mathbb{R}^{>0}$ the volume function. Then Vol is **proper** (preimage of a compact set is compact).

COROLLARY: Let *M* be a complex manifold, equipped with a pluriclosed Hermitian form ω , and *X* a component of the moduli of complex curves. **Then the function** Vol: $X \longrightarrow \mathbb{R}^{>0}$ **is constant, and** *X* **is compact.**

Proof: Since $Vol \ge 0$, the set $Vol^{-1}(]-\infty, C]$) is compact for all $C \in \mathbb{R}$, hence Vol has a minimum somewhere in X. However, **a pluriharmonic function which has a minimum is necessarily constant** (E. Hopf's strong maximum principle). Therefore, Vol is constant: Vol = A. Now, compactness of $X = Vol^{-1}(A)$ follows from Gromov's theorem.

Complex manifolds and quasi-lines

REMARK: Let $S \subset M$ be a quasi-line. Then, for an appropriate tubular neighbourhood $U \subset M$ of S, "for every two points $x, y \in U$ close to S and far from each other, there is a unique deformation of S containing X and Y."

More precisely:

Claim 1: Let $S \subset M$ be a quasi-line. Then, for an appropriate tubular neighbourhood $U \subset M$ of S, and any open neighbourhood W of a diagonal $\Delta \subset U \times U$, there exists a smaller open neighbourhood V, of S inside U such that for each $(x, y) \in V \times V \setminus W$, there exists a unique deformation $S' \subset U$ of S containing x and y.

Similarly,

Claim 2: A small deformation $S' \subset U$ of S passing through $z \in S$ is uniquely determined by a 1-jet of S' at z.

Quasilines in Moishezon manifolds

THEOREM: Let M be a complex manifold, $S \subset M$ a quasi-line, and W its deformation space. Assume that W is compact. Then M is Moishezon.

Proof. Step 1: Let $z \in M$ a point, containing a quasi-line $S \in W$, W_z the set of all curves $S_1 \in W$ containing z, and \tilde{W}_z – the set of all pairs $\{x \in S_1, S_1 \in W_z\}$. From Claim 1, it follows that the map $\tilde{W}_z \longrightarrow M$, $(S, x) \longrightarrow x$ is surjective and finite at generic point.

Step 2: Therefore, it would suffice to prove that \tilde{W}_z is Moishezon.

Step 3: After an appropriate bimeromorphic transform, we may assume that $\tilde{W}_z \longrightarrow W_z$ is a smooth, proper map with rational, 1-dimensional fibers. Then \tilde{W}_z is Moishezon $\Leftrightarrow W_z$ is Moishezon.

Step 4: By Claim 2, the map from W_z to $\mathbb{P}T_zM$ mapping a quasi-line to its 1-jet is also generically finite. **Therefore,** W_z **is Moishezon.**

COROLLARY: Let M be a twistor space admitting a pluriclosed Hermitian metric. Then M is Moishezon.

Harvey-Lawson duality argument applied to pluriclosed metrics

Recall the classical theorem

THEOREM: (Harvey-Lawson, 1982) Let M be a compact, complex manifold. Then the **following conditions are equivalent**.

a. M does not admit a Kähler metric.

b. *M* has a non-zero, positive (n - 1, n - 1)-current Θ which is a (n - 1, n - 1)-part of a closed current.

The same argument, applied to pluriclosed or taming metrics, brings the following.

THEOREM 1: Let M be a compact, complex manifold. Then

1. *M* admits no pluriclosed metrics \Leftrightarrow *M* admits a positive, dd^c -exact (n-1, n-1)-current

2. *M* admits no Hermitian symplectic metrics $\Leftrightarrow M$ admits a positive, exact (n-1, n-1)-current.

Applications.

COROLLARY: Any twistor space which admits a pluriclosed metric, **also** admits a Hermitian symplectic structure.

Proof: Since *M* is Moishezon, it satisfies dd^c -lemma (Deligne-Griffiths-Morgan-Sullivan). Therefore, **any positive, exact** (n-1, n-1)-**current is** dd^c -**exact**.

COROLLARY:

No non-Kähler twistor space admits a pluriclosed (or Hermitian symplectic) metric.

Proof: Th. Peternell (1984) has shown that any non-Kähler Moishezon n-manifold admits an exact, positive (n-1, n-1)-current. Therefore, it is never Hermitian symplectic (Theorem 1).