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Hilbert spaces (reminder)

DEFINITION: Hilbert space is a complete, infinite-dimensional Hermitian
space which is second countable (that is, has a countable dense set).

DEFINITION: Orthonormal basis in a Hilbert space H is a set of pairwise
orthogonal vectors {xα} which satisfy |xα| = 1, and such that H is the closure
of the subspace generated by the set {xα}.

THEOREM: Any Hilbert space has a basis, and all such bases are
countable.

Proof: A basis is found using Zorn lemma. If it’s not countable, open balls
with centers in xα and radius ε < 2−1/2 don’t intersect, which means that the
second countability axiom is not satisfied.

THEOREM: All Hilbert spaces are isometric.

Proof: Each Hilbert space has a countable orthonormal basis.

EXAMPLE: Let M be a space with measure, and L2(M) be the quotient of
the space of measurable, square-integrable functions by the space of functions
which vanish almost everywhere. Define the scalar product on L2(M) by
(f, g) :=

∫
M fg. Then L2(M) is a Hilbert space (F. Riesz, E. S. Fischer).
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Real Hilbert spaces

DEFINITION: A Euclidean space is a vector space over R equipped with a
positive definite scalar product g. Real Hilbert space is a complete, infinite-
dimensional Euclidean space which is second countable (that is, has a count-
able dense set).

DEFINITION: Orthonormal basis in a Hilbert space H is a set of pairwise
orthogonal vectors {xα} which satisfy |xα| = 1, and such that H is the closure
of the subspace generated by the set {xα}.

THEOREM: Any real Hilbert space has a basis, and all such bases are
countable.

Proof: A basis is found using Zorn lemma. If it’s not countable, open balls
with centers in xα and radius ε < 2−1/2 don’t intersect, which means that the
second countability axiom is not satisfied.

THEOREM: All real Hilbert spaces are isometric.

Proof: Each Hilbert space has a countable orthonormal basis.

REMARK: Further on, all linear operators on Hilbert spaces are tacitly
assumed continuous.
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Adjoint maps

EXERCISE: Let (H, g) be a Hilbert space. Show that the map x−→ g(x, ·)
defines an isomorphism H −→H∗.

DEFINITION: Let A : H −→H be a continuous linear endomorphism of a

Hilbert space (H, g). Then λ−→ λ(A(·)) is a an adjoint map A∗ : H∗ −→H∗.
Identifying H and H∗ as above, we interpret A∗ as an endomorphism of H.

REMARK: The map A∗ satisfies g(x,A(y)) = g(A∗(x), y). This relation is

often taken as a definition of the adjoint map.

DEFINITION: An operator U : H −→H is orthogonal if g(x, y) = g(U(x), U(y))

for all x, y ∈ H.

CLAIM: An invertible operator U is orthogonal if and only if U∗ = U−1.

Proof: Indeed, orthogonality is equivalent to g(x, y) = g(U∗U(x), y), which is

equivalent to U∗U = Id because the form g(·, y) is non-zero for non-zero y.
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Orthogonal maps and direct sum decompositions

LEMMA: Let U : H −→H be an invertible orthogonal map. Denote by HU

the kernel of 1 − U , that is, the space of U-invariant vectors, and let H1 be

the closure of the image of 1 − U . Then H = HU ⊕ H1 is an orthogonal

direct sum decomposition.

Proof. Step 1: Clearly, HU ⊂ is a closed subspace. Let x ∈ HU . Then

(U∗ − 1)(x) = (U∗ − 1)U(x) = (U−1 − 1)U(x) = (1− U)x = 0.

This gives g(x, (U − 1)y) = g((U∗ − 1)x, y) = 0, hence x⊥H1. We obtain that

HU⊥H1.

Step 2: It remains to show only that H⊥1 = HU . Any vector x which is

orthogonal to H1 satisfies 0 = g(x, (U − 1)y) = g((U∗ − 1)x, y), giving

0 = (U∗ − 1)(x) = U(U∗ − 1)(x) = U(U−1 − 1)(x) = (1− U)x,

hence x ∈ HU .
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Von Neumann erodic theorem

Corollary 1: Let U : H −→H be an invertible orthogonal map, and Un :=
1
n

∑n−1
i=0 U

i(x). Consider the orthogonal projection to P : H −→HU . Then

limnUn(x) = P (x), for all x ∈ H.

Proof: By the previous lemma, it suffices to show that limnUn = 0 on H1.

However, the vectors of form x = (1 − U)(y) are dense in H1, and for such

x we have Un(x) = Un(1 − U)(y) = 1−Un
n (y), and it converges to 0 because

‖Un‖ = 1.

THEOREM: Let (M,µ) be a measured space and T : M −→M a map

preserving the measure. Consider the space L2(M) of functions f : M −→ R
with f2 integrable, and let T ∗ : L2(M)−→ L2(M) map f to T ∗f . Then

the series Tn(f) := 1
n

∑n−1
i=0 (T ∗)i(f) converges in L2(M) to a T ∗-invariant

function.

Proof: Corollary 1 implies that Tn(f) converges to P (f).
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The Hopf Argument

DEFINITION: Let M be a metric space with a Borel measure and F :
M −→M a continuous map preserving measure. The “stable foliation” is
an equivalence relation on M , with x ∼ y when limi d(Fn(x), Fn(y)) = 0. The
“leaves” of stable foliation are the equivalence classes.

THEOREM: (Hopf Argument) Any measurable, F -invariant function is
constant on the leaves of stable foliation outside of a measure 0 set.

Proof: Let A(f) := limn
1
n

∑n−1
i=0 (F i)∗f be the map defined above. Since

A(f) = f for any F -invariant f , it suffices to prove that A(f) is constant on
leaves of the stable foliation only for f ∈ imA. The Lipschitz L2-integrable
functions are dense in L1(M) by Stone-Weierstrass. Therefore it suffices
to show that A(f) is constant on leaves of the stable foliation when f is
C-Lipschitz for some C > 0 and square integrable.

For any sequence αi ∈ R converging to 0, the sequence 1
n

∑n−1
i=0 αi also con-

verges to 0. Therefore, whenever x ∼ y, one has

A(f)(x)−A(f)(y) = lim
n

n−1∑
i=0

f(F i(x))− f(F i(y)) = 0

because αi = |f(F i(x))− f(F i(y))| 6 Cd(F i(x), F i(y)) converges to 0.
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Stable and unstable foliations

DEFINITION: Let M be a metric space with a Borel measure and F :

M −→M a homeomorphism preserving measure. The “unstable foliation”

is a stable foliation for F−1.

DEFINITION: The map F is called pseudo-Anosov if any leaf of stable

foliation intersects any leaf of unstable foliation.

COROLLARY: A pseudo-Anosov map F : M −→M is always ergodic.

Proof: F is ergodic if all F -invariant f ∈ L2(M) are constant. However,

al such f are constant on leaves of stable foliation and leaves on unstable

foliation and these leaves intersect.

EXAMPLE: (Anosov diffeomorphism)

Let A : T2 −→ T2 be a linear map of a torus defined by A ∈ SL(2,Z), with

real eigenvalues α > 1 and β ∈]0,1[, The eigenspace corresponding to β gives

a stable foliation, the eigenspace corresponding to α the unstable foliation,

hence A is ergodic.
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Arnold’s cat map

DEFINITION: The Arnold’s cat map is A : T2 −→ T2 defined by A ∈
SL(2,Z),

A =

[
2 1
1 1

]
.

The eigenvalues of A are roots of det(t Id−A) = (t−2)(t−1)−1 = t2−3t−1.

This is a quadratic equation with roots α± = 3±
√

5
2 . On the vectors tangent

to the eigenspace of α−, the map An acts as (α−)n, hence the stable foliation

is tangent to these vectors. Similarly, unstable foliation is tangent to the

eigenspace of α+.
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Boolean algebras

DEFINITION: The set of subsets of X is denoted by 2X. Boolean algebra

of subsets if X is a subset of 2X closed under boolean operations of union,

intersection and complement.

DEFINITION: Let M be a set A σ-algebra of subsets of X is a Boolean

algebra A ⊂ 2X such that for any countable family A1, ..., An, ... ∈ A the union⋃∞
i=1Ai is also an element of A.

DEFINITION: A function µ : A−→ R ∪ {∞} is called finitely additive if for

all non-intersecting A,B ∈ U, µ(A
∐
B) = µ(A) + µ(B). The sign

∐
denotes

union of non-intersecting sets. µ is called σ-additive if µ(
∐∞
i=1Ai) =

∑
µ(Ai)

for any pairwise disjoint countable family of subsets Ai ∈ A.

DEFINITION: A measure in a σ-algebra A ⊂ 2X is a σ-additive function

µ : A−→ R ∪ {∞}.

EXAMPLE: Let X be a topological space. The Borel σ-algebra is a smallest

σ-algebra A ⊂ 2X containing all open subsets. Borel measure is a measure

on Borel σ-algebra.
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Ergodic measures

REMARK: Let M,µ be a space with measure. We say that “property P

holds for almost all x ∈M” when property P holds for all x ∈M outside of
a measure 0 subset.

DEFINITION: Let Γ be a group acting on a measured space (M,µ) and
preserving its σ-algebra. We say that the Γ-action is ergodic if for each Γ-
invariant, measurable set U ⊂ M , either µ(U) = 0 or µ(M\U) = 0. In this
case µ is called an ergodic measure.

THEOREM: Let M be a second countable topological space, and µ a Borel
measure on M . Let Γ be a group acting on M by homeomorphisms. Suppose
that any non-empty open subset of M has positive measure, and action of Γ
is ergodic. Then for almost all x ∈M, the orbit Γ · x is dense in M.

Proof. Step 1: Let Ui be a countable base of topology on M . The orbit
Γ · x is dense in M if (Γ · x) ∩ Ui 6= 0 for all i. This is equivalent to x ∈ Γ · Ui.
Therefore, the set of all x with dense orbits is

⋂
i(Γ · Ui).

Step 2: Since Γ·Ui is Γ-invariant and has positive measure, it has full measure
because of ergodicity. Then

⋂
i(Γ ·Ui) is an intersection of sets which have

full measure.
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Ergodic measures and integrable functions

Rule of a thumb: If your group action preserves measure and almost all its
orbits are dense, it is most likely ergodic. Not always!

THEOREM: Let (M,µ) be a space with finite measure, and Γ a group acting
on M and preserving the measure. Then the following are equivalent.

(a) The action of Γ is ergodic.

(b) For each integrable, Γ-invariant function f : M −→ R, f is constant
almost everywhere.

Proof: To obtain (a) from (b), take the characteristic function χU of a Γ-
invariant set U ⊂ M . Then it is constant almost everywhere, hence U is of
full measure (in this case χU = 1 almost everywhere) or measure zero, in later
case χU = 0 almost everywhere.

To obtain (b) from (a), let c be the average value of f on M , M+
ε :=

f−1([c + ε,∞[), and M−ε := f−1(]−∞, c + ε]). Both sets are Γ-invariant and
not of full measure, hence they have measure zero. This means that for all
ε > 0, c− ε < f(x) < c+ ε for almost all x.
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Geodesic flow

DEFINITION: Let M be a manifold. Spherical tangent bundle SM ⊂ TM
is the space of all tangent vectors of length 1.

DEFINITION: Consider the map

Ψt(v, x) = (exp(tv), d exp(tv)(v))

mapping v ∈ TxM, t ∈ R to d exp(tv)(v)) ∈ Texp(tv)M ; here

d exp(tv) : TxM −→ Texp(tv)M

is the differential of the exponent map exp : TxM −→M . This defines an
action of R on SM , t−→Ψt ∈ Diff(SM). This action is called the geodesic
flow.

REMARK: Geodesic flow takes a unit tangent vector, takes a naturally
parametrized geodesic tangent to this vector, and moves this vector
along this geodesic.

THEOREM: Geodesic flow preserves the Riemannian volume form on
SM.

Proof: Left as an exercise.
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Space forms (reminder)

DEFINITION: Simply connected space form is a homogeneous manifold

of one of the following types:

positive curvature: Sn (an n-dimensional sphere), equipped with an

action of the group SO(n+ 1) of rotations

zero curvature: Rn (an n-dimensional Euclidean space), equipped with

an action of isometries

negative curvature: SO(1, n)/O(n), equipped with the natural SO(1, n)-

action. This space is also called hyperbolic space, and in dimension 2 hy-

perbolic plane or Poincaré plane or Bolyai-Lobachevsky plane
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Riemannian metric on space forms

LEMMA: Let G = SO(n) act on Rn in a natural way. Then there exists a

unique G-invariant symmetric 2-form: the standard Euclidean metric.

Proof: Let g, g′ be two G-invariant symmetric 2-forms. Since Sn−1 is an

orbit of G, we have g(x, x) = g(y, y) for any x, y ∈ Sn−1. Multiplying g′ by

a constant, we may assume that g(x, x) = g′(x, x) for any x ∈ Sn−1. Then

g(λx, λx) = g′(λx, λx) for any x ∈ Sn−1, λ ∈ R; however, all vectors can be

written as λx.

COROLLARY: Let M = G/H be a simply connected space form. Then M

admits a unique, up to a constant multiplier, G-invariant Riemannian

form.

Proof: The isotropy group is SO(n − 1) in all three cases, and the previous

lemma can be applied.

REMARK: From now on, the space forms are assumed to be homo-

geneous Riemannian manifolds.
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Upper half-plane as a space form

DEFINITION: Poincaré half-plane is the upper half-plane equipped with an

PSL(2,R)-invariant metric. By constructtion, t is isometric to the Poincare

disk and to the hyperbolic space form.

THEOREM: Let (x, y) be the usual coordinates on the upper half-plane H.

Then the Riemannian structure s on H is written as s = const dx
2+dy2

y2 .

Proof: Since the complex structure on H is the standard one and all Hermitian

structures are proportional, we obtain that s = µ(dx2+dy2), where µ ∈ C∞(H).

It remains to find µ, using the fact that s is PSL(2,R)-invariant.

For each a ∈ R, the parallel transport x−→ x+ a fixes s, hence µ is a function

of y. For any λ ∈ R>0, the map Hλ(x) = λx, being holomorphic, also fixes s;

since Hλ(dx2 + dy2) = λ2dx2 + dy2, we have µ(λx) = λ−2µ(x).
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Absolute

Let V = Rd be a vector space with bilinear form of signature (1,d-1). Denote

by V + the positive cone of V , that is, one of two connected components of

{v ∈ V | (v, v) > 0}. Consider the hyperbolic space H = SO+(1, d−1)/SO(d−
1) as projectivization of V +, H = PV + = V +/R>0. Let H be the closure of

PV + ⊂ PV = RP2.

DEFINITION: The infinite circle ∂∆ considered as a boundary of the disk

PV + = H is called the absolute of the projective plane.

REMARK: Any isometry of the disk is naturally extended to the ab-

solute. Indeed, SO+(1, d − 1) acts on the real projective space RP d−1, and

absolute is the boundary of PV + in RP d−1.
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Convergence of geodesics

REMARK: From now on, all geodesics are considered with their natural

parametrization.

REMARK: From the description of geodesics in Poincare disc, it is clear

that for any geodesic γ : ]∞,∞[−→∆ the limit points γ+ := lim
t 7→∞

γ(t) and

γ− := lim
t 7→−∞

γ(t) are well defined in the absolute ∂∆, and, moreover, the

points γ+, γ− ∈ ∂∆ determine the geodesic uniquely.

REMARK: The Poincaré metric on H is dP = dx2+dy2

y2 . Therefore,

lim
u−→∞ dP ((t1, u1 + u), (t2, u2 + u)) = 0.

This gives the following

COROLLARY: Let γ, δ be geodesics such that their +∞-limits γ+, δ+ ∈ ∂∆

are equal, and t1 ∈ R any number. Then there exists t2 ∈ R such that the

tangent vectors γ̇(t1), δ̇(t2) ∈ S∆ belong to the same leaf of the stable

foliation.
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Geodesic flow on a Riemann surface

THEOREM: (E. Hopf) Let M be a complete Riemannian manifold of fi-
nite volume and constant negative curvature. Then the geodesic flow is
ergodic.

Proof: We need to check that the geodesic flow is pseudo-Anosov, and apply
Hopf’s theorem.

Proof. Step 1: Any such M is obtained as a quotient of the hyperbolic
plane ∆/Γ, where Γ is a discrete group acting on ∆ by isometries.

Step 2: To prove Hopf Theorem it would suffice to show that a function
which is (*) constant on orbits of the geodesic flow and on almost all leaves
of stable foliation on S∆ and (**) on orbits of the geodesic flow and on
almost all leaves of unstable foliation is necessarily constant. This follows
from the Hopf argument.

Step 3: For (*) f should be constant on all Sα, where Sα is all v ∈ Tx∆ such
that the geodesic tangent to v end up in a point α ∈ ∂∆. For (**), f should
be constant on all Uβ, where Uβ is all vectors v ∈ Tx∆ such that the geodesic
tangent to v begins in β ∈ ∂∆. The sets Sα, Uβ intersect in a geodesic
connecting α to β which exists whenever α 6= β.
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