Von Neumann ergodic theorem and the ergodicity of the geodesic flow

Misha Verbitsky

Estruturas geométricas em variedades,

IMPA, July 21, 2022

Hilbert spaces (reminder)

DEFINITION: Hilbert space is a complete, infinite-dimensional Hermitian space which is second countable (that is, has a countable dense set).

DEFINITION: Orthonormal basis in a Hilbert space *H* is a set of pairwise orthogonal vectors $\{x_{\alpha}\}$ which satisfy $|x_{\alpha}| = 1$, and such that *H* is the closure of the subspace generated by the set $\{x_{\alpha}\}$.

THEOREM: Any Hilbert space has a basis, and all such bases are countable.

Proof: A basis is found using Zorn lemma. If it's not countable, open balls with centers in x_{α} and radius $\varepsilon < 2^{-1/2}$ don't intersect, which means that the second countability axiom is not satisfied.

THEOREM: All Hilbert spaces are isometric.

Proof: Each Hilbert space has a countable orthonormal basis.

EXAMPLE: Let M be a space with measure, and $L^2(M)$ be the quotient of the space of measurable, square-integrable functions by the space of functions which vanish almost everywhere. Define the scalar product on $L^2(M)$ by $(f,g) := \int_M fg$. Then $L^2(M)$ is a Hilbert space (F. Riesz, E. S. Fischer).

Real Hilbert spaces

DEFINITION: A Euclidean space is a vector space over \mathbb{R} equipped with a positive definite scalar product g. **Real Hilbert space** is a complete, infinite-dimensional Euclidean space which is second countable (that is, has a countable dense set).

DEFINITION: Orthonormal basis in a Hilbert space *H* is a set of pairwise orthogonal vectors $\{x_{\alpha}\}$ which satisfy $|x_{\alpha}| = 1$, and such that *H* is the closure of the subspace generated by the set $\{x_{\alpha}\}$.

THEOREM: Any real Hilbert space has a basis, and all such bases are countable.

Proof: A basis is found using Zorn lemma. If it's not countable, open balls with centers in x_{α} and radius $\varepsilon < 2^{-1/2}$ don't intersect, which means that the second countability axiom is not satisfied.

THEOREM: All real Hilbert spaces are isometric.

Proof: Each Hilbert space has a countable orthonormal basis.

REMARK: Further on, all linear operators on Hilbert spaces are tacitly assumed continuous.

Adjoint maps

EXERCISE: Let (H,g) be a Hilbert space. Show that the map $x \longrightarrow g(x, \cdot)$ defines an isomorphism $H \longrightarrow H^*$.

DEFINITION: Let $A : H \longrightarrow H$ be a continuous linear endomorphism of a Hilbert space (H,g). Then $\lambda \longrightarrow \lambda(A(\cdot))$ is a **an adjoint map** $A^* : H^* \longrightarrow H^*$. Identifying H and H^* as above, we interpret A^* as an endomorphism of H.

REMARK: The map A^* satisfies $g(x, A(y)) = g(A^*(x), y)$. This relation is often taken as a definition of the adjoint map.

DEFINITION: An operator $U : H \longrightarrow H$ is orthogonal if g(x, y) = g(U(x), U(y)) for all $x, y \in H$.

CLAIM: An invertible operator U is orthogonal if and only if $U^* = U^{-1}$.

Proof: Indeed, orthogonality is equivalent to $g(x,y) = g(U^*U(x),y)$, which is equivalent to $U^*U = Id$ because the form $g(\cdot, y)$ is non-zero for non-zero y.

Orthogonal maps and direct sum decompositions

LEMMA: Let $U : H \longrightarrow H$ be an invertible orthogonal map. Denote by H^U the kernel of 1 - U, that is, the space of U-invariant vectors, and let H_1 be the closure of the image of 1 - U. Then $H = H^U \oplus H_1$ is an orthogonal direct sum decomposition.

Proof. Step 1: Clearly, $H^U \subset$ is a closed subspace. Let $x \in H^U$. Then

$$(U^* - 1)(x) = (U^* - 1)U(x) = (U^{-1} - 1)U(x) = (1 - U)x = 0.$$

This gives $g(x, (U-1)y) = g((U^*-1)x, y) = 0$, hence $x \perp H_1$. We obtain that $H^U \perp H_1$.

Step 2: It remains to show only that $H_1^{\perp} = H_U$. Any vector x which is orthogonal to H_1 satisfies $0 = g(x, (U-1)y) = g((U^*-1)x, y)$, giving

$$0 = (U^* - 1)(x) = U(U^* - 1)(x) = U(U^{-1} - 1)(x) = (1 - U)x,$$

hence $x \in H_U$.

Von Neumann erodic theorem

Corollary 1: Let $U : H \longrightarrow H$ be an invertible orthogonal map, and $U_n := \frac{1}{n} \sum_{i=0}^{n-1} U^i(x)$. Consider the orthogonal projection to $P : H \longrightarrow H^U$. Then $\lim_n U_n(x) = P(x)$, for all $x \in H$.

Proof: By the previous lemma, it suffices to show that $\lim_n U_n = 0$ on H_1 . However, the vectors of form x = (1 - U)(y) are dense in H_1 , and for such x we have $U_n(x) = U_n(1 - U)(y) = \frac{1 - U^n}{n}(y)$, and it converges to 0 because $||U^n|| = 1$.

THEOREM: Let (M, μ) be a measured space and $T : M \longrightarrow M$ a map preserving the measure. Consider the space $L^2(M)$ of functions $f : M \longrightarrow \mathbb{R}$ with f^2 integrable, and let $T^* : L^2(M) \longrightarrow L^2(M)$ map f to T^*f . Then the series $T_n(f) := \frac{1}{n} \sum_{i=0}^{n-1} (T^*)^i(f)$ converges in $L^2(M)$ to a T^* -invariant function.

Proof: Corollary 1 implies that $T_n(f)$ converges to P(f).

Misha Verbitsky

The Hopf Argument

DEFINITION: Let M be a metric space with a Borel measure and F: $M \rightarrow M$ a continuous map preserving measure. The "stable foliation" is an equivalence relation on M, with $x \sim y$ when $\lim_{i} d(F^n(x), F^n(y)) = 0$. The "leaves" of stable foliation are the equivalence classes.

THEOREM: (Hopf Argument) Any measurable, *F*-invariant function is constant on the leaves of stable foliation outside of a measure 0 set.

Proof: Let $A(f) := \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} (F^i)^* f$ be the map defined above. Since A(f) = f for any *F*-invariant *f*, it suffices to prove that A(f) is constant on leaves of the stable foliation only for $f \in \operatorname{im} A$. The Lipschitz L^2 -integrable functions are dense in $L^1(M)$ by Stone-Weierstrass. Therefore it suffices to show that A(f) is constant on leaves of the stable foliation when *f* is *C*-Lipschitz for some C > 0 and square integrable.

For any sequence $\alpha_i \in \mathbb{R}$ converging to 0, the sequence $\frac{1}{n} \sum_{i=0}^{n-1} \alpha_i$ also converges to 0. Therefore, whenever $x \sim y$, one has

$$A(f)(x) - A(f)(y) = \lim_{n \to \infty} \sum_{i=0}^{n-1} f(F^{i}(x)) - f(F^{i}(y)) = 0$$

because $\alpha_i = |f(F^i(x)) - f(F^i(y))| \leq Cd(F^i(x), F^i(y))$ converges to 0. 7

Stable and unstable foliations

DEFINITION: Let M be a metric space with a Borel measure and F: $M \longrightarrow M$ a homeomorphism preserving measure. The "unstable foliation" is a stable foliation for F^{-1} .

DEFINITION: The map F is called **pseudo-Anosov** if any leaf of stable foliation intersects any leaf of unstable foliation.

COROLLARY: A pseudo-Anosov map $F: M \rightarrow M$ is always ergodic.

Proof: *F* is ergodic if all *F*-invariant $f \in L^2(M)$ are constant. However, al such *f* are constant on leaves of stable foliation and leaves on unstable foliation and these leaves intersect.

EXAMPLE: (Anosov diffeomorphism)

Let $A : T^2 \longrightarrow T^2$ be a linear map of a torus defined by $A \in SL(2,\mathbb{Z})$, with real eigenvalues $\alpha > 1$ and $\beta \in]0,1[$, The eigenspace corresponding to β gives a stable foliation, the eigenspace corresponding to α the unstable foliation, hence A is ergodic.

Arnold's cat map

DEFINITION: The Arnold's cat map is $A : T^2 \longrightarrow T^2$ defined by $A \in SL(2,\mathbb{Z})$,

The eigenvalues of A are roots of $\det(t \operatorname{Id} - A) = (t-2)(t-1) - 1 = t^2 - 3t - 1$. This is a quadratic equation with roots $\alpha_{\pm} = \frac{3 \pm \sqrt{5}}{2}$. On the vectors tangent to the eigenspace of α_{-} , the map A^n acts as $(\alpha_{-})^n$, hence the stable foliation is tangent to these vectors. Similarly, unstable foliation is tangent to the eigenspace of α_{+} .

Boolean algebras

DEFINITION: The set of subsets of X is denoted by 2^X . Boolean algebra of subsets if X is a subset of 2^X closed under boolean operations of union, intersection and complement.

DEFINITION: Let M be a set **A** σ -algebra of subsets of X is a Boolean algebra $\mathfrak{A} \subset 2^X$ such that for any countable family $A_1, ..., A_n, ... \in \mathfrak{A}$ the union $\bigcup_{i=1}^{\infty} A_i$ is also an element of \mathfrak{A} .

DEFINITION: A function $\mu : \mathfrak{A} \longrightarrow \mathbb{R} \cup \{\infty\}$ is called **finitely additive** if for all non-intersecting $A, B \in \mathfrak{U}, \ \mu(A \coprod B) = \mu(A) + \mu(B)$. The sign \coprod denotes union of non-intersecting sets. μ is called σ -additive if $\mu(\coprod_{i=1}^{\infty} A_i) = \sum \mu(A_i)$ for any pairwise disjoint countable family of subsets $A_i \in \mathfrak{A}$.

DEFINITION: A measure in a σ -algebra $\mathfrak{A} \subset 2^X$ is a σ -additive function $\mu : \mathfrak{A} \longrightarrow \mathbb{R} \cup \{\infty\}.$

EXAMPLE: Let X be a topological space. The **Borel** σ -algebra is a smallest σ -algebra $\mathfrak{A} \subset 2^X$ containing all open subsets. **Borel measure** is a measure on Borel σ -algebra.

Misha Verbitsky

Ergodic measures

REMARK: Let M, μ be a space with measure. We say that "property *P* holds for almost all $x \in M$ " when property *P* holds for all $x \in M$ outside of a measure 0 subset.

DEFINITION: Let Γ be a group acting on a measured space (M, μ) and preserving its σ -algebra. We say that the Γ -action is **ergodic** if for each Γ -invariant, measurable set $U \subset M$, either $\mu(U) = 0$ or $\mu(M \setminus U) = 0$. In this case μ is called **an ergodic measure**.

THEOREM: Let M be a second countable topological space, and μ a Borel measure on M. Let Γ be a group acting on M by homeomorphisms. Suppose that any non-empty open subset of M has positive measure, and action of Γ is ergodic. Then for almost all $x \in M$, the orbit $\Gamma \cdot x$ is dense in M.

Proof. Step 1: Let U_i be a countable base of topology on M. The orbit $\Gamma \cdot x$ is dense in M if $(\Gamma \cdot x) \cap U_i \neq 0$ for all i. This is equivalent to $x \in \Gamma \cdot U_i$. Therefore, the set of all x with dense orbits is $\bigcap_i (\Gamma \cdot U_i)$.

Step 2: Since $\Gamma \cdot U_i$ is Γ -invariant and has positive measure, it has full measure because of ergodicity. Then $\bigcap_i (\Gamma \cdot U_i)$ is an intersection of sets which have full measure.

Ergodic measures and integrable functions

Rule of a thumb: If your group action preserves measure and almost all its orbits are dense, it is most likely ergodic. **Not always!**

THEOREM: Let (M, μ) be a space with finite measure, and Γ a group acting on M and preserving the measure. Then the following are equivalent.

(a) The action of Γ is ergodic.

(b) For each integrable, Γ -invariant function $f : M \longrightarrow \mathbb{R}$, f is constant almost everywhere.

Proof: To obtain (a) from (b), take the characteristic function χ_U of a Γ -invariant set $U \subset M$. Then it is constant almost everywhere, hence U is of full measure (in this case $\chi_U = 1$ almost everywhere) or measure zero, in later case $\chi_U = 0$ almost everywhere.

To obtain (b) from (a), let c be the average value of f on M, $M_{\varepsilon}^{+} := f^{-1}([c + \varepsilon, \infty[), \text{ and } M_{\varepsilon}^{-} := f^{-1}(] - \infty, c + \varepsilon])$. Both sets are Γ -invariant and not of full measure, hence they have measure zero. This means that for all $\varepsilon > 0, c - \varepsilon < f(x) < c + \varepsilon$ for almost all x.

Misha Verbitsky

Geodesic flow

DEFINITION: Let *M* be a manifold. Spherical tangent bundle $SM \subset TM$ is the space of all tangent vectors of length 1.

DEFINITION: Consider the map

 $\Psi_t(v, x) = (\exp(tv), d\exp(tv)(v))$

mapping $v \in T_x M, t \in \mathbb{R}$ to $d \exp(tv)(v)) \in T_{\exp(tv)} M$; here

$$d \exp(tv) : T_x M \longrightarrow T_{\exp(tv)} M$$

is the differential of the exponent map $\exp : T_x M \longrightarrow M$. This defines an action of \mathbb{R} on SM, $t \longrightarrow \Psi_t \in \text{Diff}(SM)$. This action is called **the geodesic** flow.

REMARK: Geodesic flow takes a unit tangent vector, takes a naturally parametrized geodesic tangent to this vector, and moves this vector along this geodesic.

THEOREM: Geodesic flow preserves the Riemannian volume form on SM.

Proof: Left as an exercise.

Space forms (reminder)

DEFINITION: Simply connected space form is a homogeneous manifold of one of the following types:

positive curvature: S^n (an *n*-dimensional sphere), equipped with an action of the group SO(n+1) of rotations

zero curvature: \mathbb{R}^n (an *n*-dimensional Euclidean space), equipped with an action of isometries

negative curvature: SO(1,n)/O(n), equipped with the natural SO(1,n)-action. This space is also called **hyperbolic space**, and in dimension 2 **hyperbolic plane** or **Poincaré plane** or **Bolyai-Lobachevsky plane**

Riemannian metric on space forms

LEMMA: Let G = SO(n) act on \mathbb{R}^n in a natural way. Then there exists a unique *G*-invariant symmetric 2-form: the standard Euclidean metric.

Proof: Let g, g' be two *G*-invariant symmetric 2-forms. Since S^{n-1} is an orbit of *G*, we have g(x,x) = g(y,y) for any $x, y \in S^{n-1}$. Multiplying g' by a constant, we may assume that g(x,x) = g'(x,x) for any $x \in S^{n-1}$. Then $g(\lambda x, \lambda x) = g'(\lambda x, \lambda x)$ for any $x \in S^{n-1}$, $\lambda \in \mathbb{R}$; however, all vectors can be written as λx .

COROLLARY: Let M = G/H be a simply connected space form. Then M admits a unique, up to a constant multiplier, G-invariant Riemannian form.

Proof: The isotropy group is SO(n-1) in all three cases, and the previous lemma can be applied.

REMARK: From now on, the space forms are assumed to be homogeneous Riemannian manifolds.

Upper half-plane as a space form

DEFINITION: Poincaré half-plane is the upper half-plane equipped with an $PSL(2,\mathbb{R})$ -invariant metric. By constructtion, **t is isometric to the Poincare disk and to the hyperbolic space form.**

THEOREM: Let (x, y) be the usual coordinates on the upper half-plane \mathbb{H} . **Then the Riemannian structure** s on \mathbb{H} is written as $s = const \frac{dx^2 + dy^2}{y^2}$.

Proof: Since the complex structure on \mathbb{H} is the standard one and all Hermitian structures are proportional, we obtain that $s = \mu(dx^2 + dy^2)$, where $\mu \in C^{\infty}(\mathbb{H})$. It remains to find μ , using the fact that s is $PSL(2,\mathbb{R})$ -invariant.

For each $a \in \mathbb{R}$, the parallel transport $x \longrightarrow x + a$ fixes s, hence μ is a function of y. For any $\lambda \in \mathbb{R}^{>0}$, the map $H_{\lambda}(x) = \lambda x$, being holomorphic, also fixes s; since $\mathbb{H}_{\lambda}(dx^2 + dy^2) = \lambda^2 dx^2 + dy^2$, we have $\mu(\lambda x) = \lambda^{-2}\mu(x)$.

Absolute

Let $V = \mathbb{R}^d$ be a vector space with bilinear form of signature (1,d-1). Denote by V^+ the positive cone of V, that is, one of two connected components of $\{v \in V \mid (v,v) > 0\}$. Consider the hyperbolic space $\mathbb{H} = SO^+(1,d-1)/SO(d-1)$ as projectivization of V^+ , $\mathbb{H} = \mathbb{P}V^+ = V^+/\mathbb{R}^{>0}$. Let $\overline{\mathbb{H}}$ be the closure of $\mathbb{P}V^+ \subset \mathbb{P}V = \mathbb{R}P^2$.

DEFINITION: The infinite circle $\partial \Delta$ considered as a boundary of the disk $\mathbb{P}V^+ = \mathbb{H}$ is called **the absolute** of the projective plane.

REMARK: Any isometry of the disk is naturally extended to the absolute. Indeed, $SO^+(1, d-1)$ acts on the real projective space $\mathbb{R}P^{d-1}$, and absolute is the boundary of $\mathbb{P}V^+$ in $\mathbb{R}P^{d-1}$.

Convergence of geodesics

REMARK: From now on, all geodesics are considered with their natural parametrization.

REMARK: From the description of geodesics in Poincare disc, it is clear that for any geodesic $\gamma :]\infty, \infty[\longrightarrow \Delta$ the limit points $\gamma_+ := \lim_{t \mapsto \infty} \gamma(t)$ and $\gamma_- := \lim_{t \mapsto -\infty} \gamma(t)$ are well defined in the absolute $\partial \Delta$, and, moreover, the points $\gamma_+, \gamma_- \in \partial \Delta$ determine the geodesic uniquely.

REMARK: The Poincaré metric on \mathbb{H} is $d_P = \frac{dx^2 + dy^2}{y^2}$. Therefore, $u \stackrel{\lim}{\longrightarrow} \infty d_P((t_1, u_1 + u), (t_2, u_2 + u)) = 0.$

This gives the following

COROLLARY: Let γ, δ be geodesics such that their $+\infty$ -limits $\gamma_+, \delta_+ \in \partial \Delta$ are equal, and $t_1 \in \mathbb{R}$ any number. Then there exists $t_2 \in \mathbb{R}$ such that the tangent vectors $\dot{\gamma}(t_1), \dot{\delta}(t_2) \in S\Delta$ belong to the same leaf of the stable foliation.

Geodesic flow on a Riemann surface

THEOREM: (E. Hopf) Let *M* be a complete Riemannian manifold of finite volume and constant negative curvature. Then the geodesic flow is ergodic.

Proof: We need to check that the geodesic flow is pseudo-Anosov, and apply Hopf's theorem.

Proof. Step 1: Any such *M* is obtained as a quotient of the hyperbolic plane Δ/Γ , where Γ is a discrete group acting on Δ by isometries.

Step 2: To prove Hopf Theorem it would suffice to show that a function which is (*) constant on orbits of the geodesic flow and on almost all leaves of stable foliation on $S\Delta$ and (**) on orbits of the geodesic flow and on almost all leaves of unstable foliation is necessarily constant. This follows from the Hopf argument.

Step 3: For (*) f should be constant on all S_{α} , where S_{α} is all $v \in T_x \Delta$ such that the geodesic tangent to v end up in a point $\alpha \in \partial \Delta$. For (**), f should be constant on all U_{β} , where U_{β} is all vectors $v \in T_x \Delta$ such that the geodesic tangent to v begins in $\beta \in \partial \Delta$. The sets S_{α} , U_{β} intersect in a geodesic connecting α to β which exists whenever $\alpha \neq \beta$.