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Hilbert spaces (reminder)

DEFINITION: Hilbert space is a complete, infinite-dimensional Hermitian
space which is second countable (that is, has a countable dense set).

DEFINITION: Orthonormal basis in a Hilbert space H is a set of pairwise
orthogonal vectors {xq} which satisfy |zo| = 1, and such that H is the closure
of the subspace generated by the set {z.}.

THEOREM: Any Hilbert space has a basis, and all such bases are
countable.

Proof: A basis is found using Zorn lemma. If it's not countable, open balls
with centers in z4 and radius € < 2—1/2 don't intersect, which means that the
second countability axiom is not satisfied. m

THEOREM: AIll Hilbert spaces are isometric.
Proof: Each Hilbert space has a countable orthonormal basis. =

EXAMPLE: Let M be a space with measure, and L2(M) be the quotient of

the space of measurable, square-integrable functions by the space of functions

which vanish almost everywhere. Define the scalar product on L2(M) by

(f,9) := [y fg. Then L?(M) is a Hilbert space (F. Riesz, E. S. Fischer).
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Real Hilbert spaces

DEFINITION: A Euclidean space is a vector space over R equipped with a
positive definite scalar product g. Real Hilbert space is a complete, infinite-
dimensional Euclidean space which is second countable (that is, has a count-
able dense set).

DEFINITION: Orthonormal basis in a Hilbert space H is a set of pairwise
orthogonal vectors {xq} which satisfy |zo| = 1, and such that H is the closure
of the subspace generated by the set {z.}.

THEOREM: Any real Hilbert space has a basis, and all such bases are
countable.

Proof: A basis is found using Zorn lemma. If it's not countable, open balls
with centers in =, and radius € < 271/2 don't intersect, which means that the
second countability axiom is not satisfied. =

THEOREM: All real Hilbert spaces are isometric.
Proof: Each Hilbert space has a countable orthonormal basis. =

REMARK: Further on, all linear operators on Hilbert spaces are tacitly
assumed continuous.
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Adjoint maps

EXERCISE: Let (H,g) be a Hilbert space. Show that the map = — ¢g(z,-)
defines an isomorphism H — H*.

DEFINITION: Let A: H — H be a continuous linear endomorphism of a
Hilbert space (H,g). Then A — A(A(:)) is a an adjoint map A*: H* — H*.
Identifying H and H™ as above, we interpret A* as an endomorphism of H.

REMARK: The map A* satisfies g(xz, A(y)) = g(A*(x),y). This relation is
often taken as a definition of the adjoint map.

DEFINITION: An operator U : H — H isorthogonal if g(z,y) = g(U(x),U(y))
for all z,y € H.

CLAIM: An invertible operator U is orthogonal if and only if U* = U1,

Proof: Indeed, orthogonality is equivalent to g(x,y) = g(U*U(x),vy), which is
equivalent to U*U = Id because the form g(-,y) is non-zero for non-zero y. m
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Orthogonal maps and direct sum decompositions

LEMMA: Let U : H— H be an invertible orthogonal map. Denote by HY
the kernel of 1 — U, that is, the space of U-invariant vectors, and let Hy be
the closure of the image of 1 — U. Then H = HY @ H; is an orthogonal
direct sum decomposition.

Proof. Step 1: Clearly, HY C is a closed subspace. Let z €¢ HY. Then

(U*—1)(z) =WU*-1DU()=W0"1-1DU@E)=(1-U)z=0.
This gives g(z, (U - 1)y) = g((U* — 1)x,y) = 0, hence x1 Hy. We obtain that
HY 1 H;.
Step 2: It remains to show only that H{ = Hy. Any vector = which is
orthogonal to Hy satisfies 0 = g(z, (U — 1)y) = g((U* — 1)x,y), giving
0=(U*-1)(2) =UWU*-1)(x) =UW0U 1 -1)(2) = (1 - U)a,

hence x € Hyy. ®
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Von Neumann erodic theorem

Corollary 1: Let U : H — H be an invertible orthogonal map, and U, :=
%Z?:_& Ui(a:). Consider the orthogonal projection to P : H— HY. Then
limy, Up(x) = P(x), for all z € H.

Proof:. By the previous lemma, it suffices to show that Iim, U, = 0 on Hj.
However, the vectors of form x = (1 — U)(y) are dense in Hy, and for such
x we have Unp(z) = Upn(1 —U)(y) = 1_nUn(y), and it converges to O because
U™ =1 =

THEOREM: Let (M,un) be a measured space and T': M — M a map
preserving the measure. Consider the space L2(M) of functions f: M — R
with f2 integrable, and let T* : L2(M) — L2(M) map f to T*f. Then
the series T,,(f) := 1 >0 (T%)'(f) converges in L?(M) to a T*-invariant
function.

Proof: Corollary 1 implies that T,,(f) converges to P(f). m



Von Neumann ergodic theorem Misha Verbitsky

The Hopf Argument

DEFINITION: Let M be a metric space with a Borel measure and F' :
M — M a continuous map preserving measure. The “stable foliation” is
an equivalence relation on M, with z ~ y when lim; d(F"(x), F"(y)) = 0. The
“leaves’” of stable foliation are the equivalence classes.

THEOREM: (Hopf Argument) Any measurable, F-invariant function is
constant on the leaves of stable foliation outside of a measure O set.

Proof: Let A(f) = Iimn%Z?:_&(Fi)*f be the map defined above. Since
A(f) = f for any F-invariant f, it suffices to prove that A(f) is constant on
leaves of the stable foliation only for f € im A. The Lipschitz L2-integrable
functions are dense in L1(M) by Stone-Weierstrass. Therefore it suffices
to show that A(f) is constant on leaves of the stable foliation when f is
C-Lipschitz for some C' > 0 and square integrable.

For any sequence «; € R converging to 0O, the sequence %Z?:_é «; also con-
verges to 0. Therefore, whenever xz ~ y, one has

A(f)(@) — A ) =1lim > f(F'(z)) — f(F'(y)) =0
i=0

because a; = |f(F'(z)) — f(F'(y))| < Cd(F'(x), F*(y)) converges to 0. m
’
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Stable and unstable foliations

DEFINITION: Let M be a metric space with a Borel measure and F :
M — M a homeomorphism preserving measure. The *“unstable foliation”
is a stable foliation for F—1.

DEFINITION: The map F' is called pseudo-Anosov if any leaf of stable
foliation intersects any leaf of unstable foliation.

COROLLARY: A pseudo-Anosov map F: M — M is always ergodic.

Proof: F' is ergodic if all F-invariant f € LQ(M) are constant. However,
al such f are constant on leaves of stable foliation and leaves on unstable
foliation and these leaves intersect. =

EXAMPLE: (Anosov diffeomorphism)

Let A: T2 — T2 be a linear map of a torus defined by A € SL(2,7), with
real eigenvalues o > 1 and g8 €]0,1[, The eigenspace corresponding to 8 gives
a stable foliation, the eigenspace corresponding to o the unstable foliation,
hence A is ergodic.

3
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Arnold’s cat map

DEFINITION: The Arnold’s cat map is A : T2 — T2 defined by A €

SL(2,7),
2 1
4= [1 1] |
The eigenvalues of A are roots of det(¢tld —A) = (t—2)(t—1)—1 =t2—3¢t—1.
This is a quadratic equation with roots a4+ = 3i2‘/§. On the vectors tangent

to the eigenspace of a_, the map A™ acts as (a_)", hence the stable foliation
IS tangent to these vectors. Similarly, unstable foliation is tangent to the
eigenspace of a.
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Boolean algebras

DEFINITION: The set of subsets of X is denoted by 2% Boolean algebra
of subsets if X is a subset of 2*¢ closed under boolean operations of union,
intersection and complement.

DEFINITION: Let M be a set A o-algebra of subsets of X is a Boolean
algebra 20 ¢ 2% such that for any countable family Aq, ..., An, ... € A the union
U2 1 A; is also an element of L.

DEFINITION: A function p: 2 — RU {oco} is called finitely additive if for
all non-intersecting A,B € U, u(AJIB) = u(A) + n(B). The sign [[ denotes
union of non-intersecting sets. p is called o-additive if u([1°21 4;) = > u(A;)
for any pairwise disjoint countable family of subsets A; € 2.

DEFINITION: A measure in a o-algebra 24 ¢ 2% is a o-additive function
p: A —RU{c0}.

EXAMPLE: Let X be a topological space. The Borel o-algebra is a smallest
o-algebra A C 2X containing all open subsets. Borel measure is a measure

on Borel o-algebra.
10



Von Neumann ergodic theorem Misha Verbitsky

Ergodic measures

REMARK: Let M,u be a space with measure. We say that “property P
holds for almost all - € M"” when property P holds for all x € M outside of
a measure O subset.

DEFINITION: Let I' be a group acting on a measured space (M, u) and
preserving its o-algebra. We say that the -action is ergodic if for each [ -
invariant, measurable set U C M, either u(U) = 0 or u(M\U) = 0. In this
case u is called an ergodic measure.

THEOREM: Let M be a second countable topological space, and u a Borel
measure on M. Let [ be a group acting on M by homeomorphisms. Suppose
that any non-empty open subset of M has positive measure, and action of I
is ergodic. Then for almost all - € M, the orbit [ -z iIs dense in M.

Proof. Step 1: Let U; be a countable base of topology on M. The orbit
-z is dense in M if (I'-2)NU; = 0 for all <. This is equivalent to z € I - Uj;.
Therefore, the set of all x with dense orbits is N,(I" - U;).

Step 2: Since I -U; is '-invariant and has positive measure, it has full measure
because of ergodicity. Then N,(I"-U;) is an intersection of sets which have
full measure. =

11
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Ergodic measures and integrable functions

Rule of a thumb: If your group action preserves measure and almost all its
orbits are dense, it is most likely ergodic. Not always!

THEOREM: Let (M, 1) be a space with finite measure, and I a group acting
on M and preserving the measure. Then the following are equivalent.

(a) The action of I is ergodic.

(b) For each integrable, -invariant function f: M — R, f is constant
almost everywhere.

Proof: To obtain (a) from (b), take the characteristic function x; of a I'-
invariant set U C M. Then it is constant almost everywhere, hence U is of
full measure (in this case xiy = 1 almost everywhere) or measure zero, in later
case xy = 0 almost everywhere.

To obtain (b) from (a), let ¢ be the average value of f on M, M =
f~([e+e,00[), and M- := f~1(] — c0,c+¢€]). Both sets are -invariant and
not of full measure, hence they have measure zero. This means that for all

e>0,c—e< f(x) <c—H+e for almost all z. m
12
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Geodesic flow

DEFINITION: Let M be a manifold. Spherical tangent bundle SM C T M
IS the space of all tangent vectors of length 1.

DEFINITION: Consider the map

Wi(v, ) = (exp(tv), dexp(tv)(v))
mapping v € T,M,t € R to dexp(tv)(v)) &€ Texp(t)M; here
dexp(tv) T M —)Texp(t,u)M

is the differential of the exponent map exp : T,M — M. This defines an
action of R on SM, t — W, € Diff(SM). This action is called the geodesic
flow.

REMARK: Geodesic flow takes a unit tangent vector, takes a naturally
parametrized geodesic tangent to this vector, and moves this vector
along this geodesic.

THEOREM: Geodesic flow preserves the Riemannian volume form on
SM.

Proof: Left as an exercise. m
13
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Space forms (reminder)

DEFINITION: Simply connected space form is a homogeneous manifold
of one of the following types:

positive curvature: S"™ (an n-dimensional sphere), equipped with an
action of the group SO(n 4+ 1) of rotations

zero curvature: R"™ (an n-dimensional Euclidean space), equipped with
an action of isometries

negative curvature: SO(1,n)/O(n), equipped with the natural SO(1,n)-
action. This space is also called hyperbolic space, and in dimension 2 hy-
perbolic plane or Poincare plane or Bolyai-Lobachevsky plane

14
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Riemannian metric on space forms

LEMMA: Let G = SO(n) act on R"™ in a natural way. Then there exists a
unique G-invariant symmetric 2-form: the standard Euclidean metric.

Proof: Let g,¢ be two G-invariant symmetric 2-forms. Since S 1 is an
orbit of G, we have g(z,z) = ¢(y,y) for any z,y € S*~1. Multiplying ¢ by
a constant, we may assume that g(z,z) = ¢'(z,z) for any z € S"~1. Then
gz, \x) = ¢z, \z) for any = € S 1, X\ € R; however, all vectors can be
written as \z. m

COROLLARY: Let M = G/H be a simply connected space form. Then M
admits a unique, up to a constant multiplier, G-invariant Riemannian
form.

Proof: The isotropy group is SO(n — 1) in all three cases, and the previous
lemma can be applied. =

REMARK: From now on, the space forms are assumed to be homo-
geneous Riemannian manifolds.
15



Von Neumann ergodic theorem Misha Verbitsky

Upper half-plane as a space form

DEFINITION: Poincaré half-plane is the upper half-plane equipped with an
PSL(2,R)-invariant metric. By constructtion, t is isometric to the Poincare
disk and to the hyperbolic space form.

THEOREM: Let (x,y) be the usual coordinates on the upper half-plane H.
2 2
Then the Riemannian structure s on H is written as s = wnst%.

Proof: Since the complex structure on H is the standard one and all Hermitian
structures are proportional, we obtain that s = u(dz?+dy?), where p € C°(H).
It remains to find p, using the fact that s is PSL(2,R)-invariant.

For each a € R, the parallel transport x — x4 a fixes s, hence p is a function

of y. For any A € R>9, the map Hy(x) = Az, being holomorphic, also fixes s;
since H, (dz? + dy?) = X\2dz? + dy?, we have p(\z) = A 2u(z). m

16
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Absolute

Let V = RY be a vector space with bilinear form of signature (1,d-1). Denote
by VT the positive cone of V, that is, one of two connected components of
{veV | (v,v)>0}. Consider the hyperbolic space H = SO1(1,d—1)/SO(d—
1) as projectivization of VT, H=PV+ = VT /R>0. Let H be the closure of
PVt c PV = RP2.

DEFINITION: The infinite circle 0A considered as a boundary of the disk
PVT = H is called the absolute of the projective plane.

REMARK: Any isometry of the disk is naturally extended to the ab-

solute. Indeed, SO"’(l,d— 1) acts on the real projective space IRiPd—l, and
absolute is the boundary of PV T in RP4—1,

17
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Convergence of geodesics

REMARK: From now on, all geodesics are considered with their natural
parametrization.

REMARK: From the description of geodesics in Poincare disc, it is clear

that for any geodesic v : Joo,00[ — A the limit points 4 = tlim ~(t) and
=00
N = tlim ~(t) are well defined in the absolute 904, and, moreover, the
——00

points v4,v- € OA determine the geodesic uniquely.

: - < : : _ dx?4dy?
REMARK: The Poincaré metric on H is dp = —Z T herefore,

lim _dp((t1,u1 +u), (t2,ux +u)) = 0.

U —— X0
This gives the following

COROLLARY: Let v,6 be geodesics such that their +oo-limits v4,64 € 0A
are equal, and t1 € R any number. Then there exists ¢, € R such that the
tangent vectors (t1),0(t2) € SA belong to the same leaf of the stable

foliation. m
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Geodesic flow on a Riemann surface

THEOREM: (E. Hopf) Let M be a complete Riemannian manifold of fi-
nite volume and constant negative curvature. Then the geodesic flow is

ergodic.

Proof: We need to check that the geodesic flow is pseudo-Anosov, and apply
Hopf’'s theorem.

Proof. Step 1: Any such M is obtained as a quotient of the hyperbolic
plane A/I", where I is a discrete group acting on A by isometries.

Step 2: To prove Hopf Theorem it would suffice to show that a function
which is (*) constant on orbits of the geodesic flow and on almost all leaves
of stable foliation on SA and (**) on orbits of the geodesic flow and on
almost all leaves of unstable foliation is necessarily constant. This follows
from the Hopf argument.

Step 3: For (*) f should be constant on all Su, where S, is all v € T, A such
that the geodesic tangent to v end up in a point o € 9A. For (**), f should
be constant on all UB' where UB Is all vectors v € T,;/A\ such that the geodesic
tangent to v begins in 8 € 0A. The sets S,, UB intersect In a geodesic
connecting a to g which exists whenever aa = 5. =
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