Задачи к экзамену по курсу "Дифференциальная геометрия и потоки Риччи", весна 2010.

Для сдачи экзамена с оценкой 5-k достаточно решить 9-2k задач из списка.

Задача 1.1. Киллингово векторное поле X на римановом многообразии (M,g) это векторное поле, удовлетворяющее $\mathrm{Lie}_X\,g=0$. Докажите, что X киллингово тогда и только тогда, когда $g(\nabla_Y X,Z)=-g(\nabla_Z X,Y)$ для любых векторных полей Y и Z.

Задача 1.2. Постройте на (S^3,g) (с обычной метрикой) ортогональную связность ∇ , кручение которой удовлетворяет $g(T_{\nabla}(X,Y),Z) = -2\operatorname{Vol}_g$. Докажите, что она единственна. Найдите кривизну.

Задача 1.3. Произведение Кулкарни-Номидзу симметрических 2-форм h и k записывается формулой

$$(h \diamond k)(x, y, z, t) = h(x, z)k(y, t) + h(y, t)k(x, z) - h(x, t)k(y, z) - h(y, z)k(x, t).$$

Докажите, что $h \diamond k$ лежит в пространстве алгебраических тензоров кривизны. Докажите, что такие тензоры порождают пространство алгебраических тензоров кривизны.

Задача 1.4. Пусть g есть метрический тензор. Докажите, что $h \mapsto h \diamond g$ инъективно на $\mathsf{Sym}^2 \, T^* M$, и сопряженное с этим отображение есть естественная проекция алгебраических тензоров кривизны на кривизну Риччи.

Задача 1.5. Докажите, что тензор кривизны n-мерной сферы со стандартной метрикой g равен $cg \diamond g, c \in \mathbb{R}$.

Задача 1.6. Пусть $\phi: M \longrightarrow N$ – гомеоморфизм связных римановых многообразий, который является изометрией в хотя бы одной точке, и сохраняет тензор кривизны. Докажите, что это изометрия.

Задача 1.7. Пусть M – полное, односвязное риманово многообразие, причем в разложении Риччи тензора кривизны M встречается только скалярная кривизна. Докажите, что M изометрично сфере, гиперболическому пространству либо \mathbb{R}^n .

Задача 1.8. Пусть G = SU(3) с метрикой g, которая инвариантна относительно правого и левого действия SU(3) на себе. Докажите, что g определено однозначно с точностью до постоянного множителя. Рассмотрим подмножество $T^2 \subset G$, состоящее из диагональных матриц. Докажите, что это плоский тор, который лежит в G как вполне геодезическое подмногообразие.

Задача 1.9. Пусть M — риманово многообразие, $\dim M \geqslant 4$. Докажите, что M конформно плоско, то есть у каждой точки M есть окрестность, в которой метрика делается плоской после умножения на положительную функцию, тогда и только тогда, когда кривизна Вейля W равна нулю (то есть когда зануляются все компоненты кривизны, кроме скалярной и кривизны Риччи).

Задача 1.10. Пусть (M,g) – риманово многообразие, ∇_{LC} – связность Леви-Чивита, а ∇ – ортогональная связность на TM. Рассмотрим форму $_1 \in \Lambda^2 M \otimes \Lambda^1 M$, где $T_1(X,Y,Z) = g(T_{\nabla}(X,Y),Z)$, а $T_{\nabla} \in \Lambda^2 M \otimes TM$ есть тензор кручения ∇ . Предположим, что T_1 антисимметрично. Докажите, что $\mathrm{Ric}(\nabla) = \mathrm{Ric}(\nabla_{LC})$.

Определение 1.1. 2-форма на векторном пространстве V называется **невырожденной**, если она симплектична. Для i>2, i-форма ρ называется **невырожденной**, если для каждого нигде не зануляющегося векторного поля X, контракция ρ с X невырождена на ортогональном дополнении к X.

Задача 1.11. Найдите все i, n, для которых на n-мерном пространстве есть невырожденные i-формы.

Задача 1.12. Пусть ρ – невырожденная в каждой точке i-форма на римановом многообразии M, ∇ – связность Леви-Чивита, а $\nabla(\rho) = 0$. Пусть $2 < i < \dim M$. Докажите, что M Риччи-плоско.

Задача 1.13. Пусть M — риманово многообразие, а объем шара радиуса r в M такой же, как в \mathbb{R}^n , для всех $r \in [0, \varepsilon[$. Докажите, что M риччи-плоско.

Задача 1.14. Приведите пример последовательности полных двумерных римановых многообразий, которая не имеет подпоследовательности, сходящейся по Громову-Хаусдорфу.

Задача 1.15. Пусть B — замкнутый трехмерный шар со стандартной метрикой. Найдите для каждого ε риманово многообразие B_{ε} , гомеоморфное B и удовлетворяющее $d_{GH}(B,B_{\varepsilon})<\varepsilon$, таким образом, что B_{ε} лежит в ε -окрестности своей границы.

Задача 1.16. Постройте последовательность римановых метрик на трехмерной сфере, такую, что ее предел по Громову-Хаусдорфу – трехмерный шар.

Указание. Воспользуйтесь предыдущей задачей

Задача 1.17. Пусть B — векторное расслоение со связностью ∇ , d^{∇} : $B \otimes \Lambda^i M \longrightarrow B \otimes \Lambda^{i+1} M$ ее продолжение, полученное по правилу Лейбница, а $R \in \Lambda^2 M \otimes \operatorname{End} B$ кривизна. Докажите дифференциальное тождество Бьянки, $d^{\nabla} R = 0$. Выведите из него, что на любом римановом многообразии имеет место равенство $ds = -2\delta\operatorname{Ric}$, где s есть скалярная кривизна, а δ : $\operatorname{Sym}^2 T^* M \longrightarrow T^* M$ композиция $\nabla : \operatorname{Sym}^2 T^* M \longrightarrow \operatorname{Sym}^2 T^* M \otimes \Lambda^1 M$ и спаривания $\operatorname{Sym}^2 T^* M \otimes \Lambda^1 M \longrightarrow *$.

Задача 1.18. Пусть (M,g) – n-многообразие, удовлетворяющее $\mathrm{Ric}=\lambda g$, где $\lambda\in C^\infty M$, а n>2. Докажите, что λ постоянна.

Задача 1.19. Рассмотрим функционал $S(g) = \int s \operatorname{Vol}_g$, сопоставляющий метрике интеграл от ее скалярной кривизны. Докажите, что $dS(h) = \int_M \langle \frac{s}{2}g - \operatorname{Ric}, h \rangle \operatorname{Vol}_g$.

Задача 1.20. Рассмотрим пространство \mathcal{M}_1 метрик g на компактном многообразии M, таких, что $\int_M \mathrm{Vol}_g = 1$. Докажите, что критические точки S на \mathcal{M}_1 – это в точности эйнштейновы метрики.

 $^{^{1}}$ Метрика называется **эйнштейновой**, если удовлетворяет $\mathrm{Ric}_{g}=\lambda g.$