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The Plan.

1. Algebraic sets.

2. Ideals; existence of maximal ideals.

3. Hilbert's Nullstellensatz.

4. Continuum-dimensional spaces and the proof of Nullstellensatz.

Preliminaries: I assume knowledge of groups, rings, fields, vector spaces,
basic set theory (surjective, injective, bijective maps, cardinals, equivalence
classes), topological spaces, and Hausdorff spaces. It is possible that at
a later point we shall need implicit map theorem. For today’s lecture (and
only) we use advanced set theory, such as Zorn lemma.
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Algebraic sets in C"

REMARK: In most situations, you can replace your ground field C by any
other field. However, there are cases when chosing C as a ground field sim-
plifies the situation. Moreover, using C is essentially the only way to apply
topological arguments which help us to develop the geometric intuition.

DEFINITION: A subset Z C C" is called an algebraic set if it can be goven
as a set of solutions of a system of polynomial equations Pi(z1,...,2n) =
P>(z1y..0y2n) = ... = P.(z1,...,2n) = 0, where P;(z1,...,2n) € Clz1,...,2n] are
polynomials.

EXERCISE: Prove that finite unions and finite intersections of algebraic
sets are again algebraic sets.

DEFINITION: Let A C C™, A’ C C™ be algebraic sets. An polynomial map
0. A— A’ is a map from A to A’ which is given in coordinates by a set of
polynomial functions ¢1,...,on : C"™" — C.

Algebraic geometry is (roughly speaking) the study of algebraic sets
and polynomial maps between algebraic sets.
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Affine varieties

DEFINITION: Algebraic function on an algebraic set Z C C" is a restriction
of a polynomial function to Z. An algebraic set with a ring of algebraic
functions on it is called an affine variety.

DEFINITION: Two affine varieties A, A’ are isomorphic if there exists a
bijective polynomial map A — A’ such that its inverse is also polynomial.

REMARK: The cornerstone observation of algebraic geometry (essentially
due to Hilbert and Emmy Noether): an affine variety is determined, up to
iIsomorphism, by its ring of polynomial functions.

To explain this, I would need to introduce some notions of commutative
algebra.
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Maximal ideals
REMARK: All rings are assumed to be commutative and with unit.

DEFINITION: Anideal [ in aring Ris a subset I C R closed under addition,
and such that for all a € I, f € R, the product fa sits in I.

REMARK: The quotient group R/I is equipped with a structure of a ring,
called the quotient ring.

DEFINITION: A maximal ideal is an ideal I C R such that for any other
ideal I’ D I, one has I = T'.

EXERCISE: Let a € R be an element of a ring which is not invertible. Prove
that a is contained in an ideal I C R.

Using this exercise, one obtains the following statement.

EXERCISE: Prove that an ideal I C R is maximal if and only if R/I is a
field.
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Existence of maximal ideals

THEOREM: Let I C R be an ideal in a ring. Then I is contained in a
maximal ideal.

Proof: One applies the Zorn lemma to the set of all ideals, partially ordered
by inclusion. m

CLAIM: Let A be an affine variety, O4 the ring of polynomial functions on
A, a € A a point, and I, C O4 an ideal of all functions vanishing in a. Then
I, 1S a maximal ideal.

Proof: For any f € Oy4, the function f — f(a) belongs to I;, hence the
quotient O4/I is isomorphic to C. =

DEFINITION: The ideal I, is called the (maximal) ideal of the point
a € A.



Algebraic sets and algebraic maps M. Verbitsky

Basis for an infinite-dimensional space

THEOREM: (Hilbert’s Nulistellensatz)
Let A be an affine variety, and O4 the ring of polynomial functions on A.
Then every maximal ideal in A is an ideal of a point a € A: [ = I,.

The proof (which works only over C) is based on the following concept.

DEFINITION: Let V be a vector space (possibly, infinite-dimensional). Ba-
sis (in the sence of Cauchy) of V is a set of vectors S in V such that any
finite subset Sg C S is linearly independent, and any vector in V is expressed
as a linear combination of some vectors in S.

EXERCISE: Using Zorn lemma, prove that any vector space admits a
basis.

EXERCISE: Let 5,5’ be two basises (bases) in V. Then S and S’ have
the same cardinality; in particular, one of them is countable when another
IS countable.

DEFINITION: Dimension of an infinite-dimensional space is cardinality of
its basis.
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Hilbert’s Nullstellensatz

THEOREM: (Hilbert's Nullstellensatz)
Let A C C" be an affine variety, and O 4 the ring of polynomial functions on
A. Then every maximal ideal in A is an ideal of a point ac A: [ = 1,.

Proof. Step 1: For an ideal I C Oy4, consider the set of common zeros
of I:

V(D) :={ac A | Vfecl,f(a)=0}

If V(I) containsa € A, one has I C I,. This means that for any maximal ideal
I C Oy, the set V(1) is empty, or contains precisely one point; in the second
case, one has I = I,. Therefore, to prove the Nullstellensatz, one needs
only to show that V(I) is non-empty.

Idea of a proof: The quotient k£ := O4/I is countably-dimensional, but there
are no countably-dimensional fields over C except C itself. In the later case,
existence of common zeros is essentially a tautology.
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Digression: dimension of the field of rational functions.

Lemma 1: Let C(¢) be the field of rational functions (fraction field of the
rings of polynomials). Then C(¢) is continuum-dimensional over C.

Proof: For any set aj,...,ap € C of pairwise distinct points, the ratio-

nal functions { t_la_} c C(t) are linearly independent over C. Indeed, if
>k, -2 =0, one has

SE Nt —a)(t—a2)...(F—a;) ... (t—an) _
(I (¢ — a7))

(we denote by (t — a;) a multiplier which is omitted), and this gives

0.

k —_—
P(t):=> XN({t—-a)(t—ap)...(t—a;)...(t —an) = 0.
=1

However, P(a1) = A (a1 —as)(a1 —a3)...(a1 —an) 7= 0, hence P(t) # 0.

This implies that C(¢t) contains a continuous, linearly independent family of
rational functions, and its dimension is at least continuum. It is at most
continuum, because cardinality of C(¢) is continuum (prove it). m
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Hilbert’s Nullstellensatz (2)

THEOREM: (Hilbert’s Nulistellensatz)
Let A C C" be an affine variety, and O4 the ring of polynomial functions on
A. Then every maximal ideal in A is an ideal of a point ac A: [ = 1,.

(Step 1:) Need only to show that the set of common zeros of [ is
non-empty.

Step 2: The quotient k£ := Oy4/1 is a field, because I is maximal. Also, it
contains C (the field of constant functions). Since C is algebraically closed,
any element t € £\C is transcendental over C. This means that C =k or
k C C(t), where C(t) denotes the field of rational functions.

Step 3: Since O4 is generated by coordinate monomials, O 4 is countably-
dimensional over C. Clearly, the same is true for k = O4/1.

Step 4: By Lemma 1, kK cannot contain the field of rational functions. There-
fore, kK = C.
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Hilbert’s Nullstellensatz (2)

THEOREM: (Hilbert’s Nullstellensatz)
Let A C C" be an affine variety, and O4 the ring of polynomial functions on
A. Then every maximal ideal in A is an ideal of a point ac A: I = I,.

(Step 1:) Need only to show that the set of common zeros of [ is
non-empty.

(Step 2-4:) We have shown that k = 0,/I =C.

Step 5: It remains to produce a point a = (a1, ...,an) € A such that a € V(I).
Consider the homomorphism ¢ : O4 — O4/I = C constructed above, and
let a1 = p(z1),....,an = p(zn), Where z;, are coordinate functions. For any
polynomial P(z1,...,2n) € I, one has

0 = p(P) = P(p(21),9(22), ..., 0(2n)) = P(a).
Therefore, all functions P ¢ [ satisfy P(a) = 0. =
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