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Algebraic sets in Cn (reminder)

REMARK: In most situations, you can replace your ground field C by any

other field. However, there are cases when chosing C as a ground field sim-

plifies the situation. Moreover, using C is essentially the only way to apply

topological arguments which help us to develop the geometric intuition.

DEFINITION: A subset Z ⊂ Cn is called an algebraic set if it can be goven

as a set of solutions of a system of polynomial equations P1(z1, ..., zn) =

P2(z1, ..., zn) = ... = Pk(z1, ..., zn) = 0, where Pi(z1, ..., zn) ∈ C[z1, ..., zn] are

polynomials.

DEFINITION: Algebraic function on an algebraic set Z ⊂ Cn is a restriction

of a polynomial function to Z. An algebraic set with a ring of algebraic

functions on it is called an affine variety.

DEFINITION: Two affine varieties A,A′ are isomorphic if there exists a

bijective polynomial map A−→A′ such that its inverse is also polynomial.
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Maximal ideals (reminder)

REMARK: All rings are assumed to be commutative and with unit.

DEFINITION: An ideal I in a ring R is a subset I ( R closed under addition,

and such that for all a ∈ I, f ∈ R, the product fa sits in I. The quotient group

R/I is equipped with a structure of a ring, called the quotient ring.

DEFINITION: A maximal ideal is an ideal I ⊂ R such that for any other

ideal I ′ ⊃ I, one has I = I ′.

EXERCISE: Prove that an ideal I ⊂ R is maximal if and only if R/I is a

field.

THEOREM: Let I ⊂ R be an ideal in a ring. Then I is contained in a

maximal ideal.

Proof: One applies the Zorn lemma to the set of all ideals, partially ordered

by inclusion.
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Hilbert’s Nullstellensatz (reminder)

EXAMPLE: Let A be an affine variety, OA the ring of polynomial functions
on A, a ∈ A a point, and Ia ⊂ OA an ideal of all functions vanishing in a.
Then Ia is a maximal ideal.

DEFINITION: The ideal Ia is called the (maximal) ideal of the point
a ∈ A.

THEOREM: (Hilbert’s Nullstellensatz)
Let A ⊂ Cn be an affine variety, and OA the ring of polynomial functions on
A. Then every maximal ideal in A is an ideal of a point a ∈ A: I = Ia.

DEFINITION: Let I ⊂ C[t1, ..., tn] be an ideal. Denote the set of common
zeros for I by V (I), with

V (I) = {(z1, ..., zn) ∈ Cn | f(z1, ..., zn) = 0∀f ∈ I}.

For Z ⊂ Cn an algebraic subset, denote by Ann(A) the set of all polynomials
P (t1, ..., tn) vanishing in Z.

THEOREM: (strong Nullstellensatz). For any ideal I ⊂ C[t1, ..., tn] such
that C[t1, ..., tn]/I has no nilpotents, one has Ann(V (I)) = I.
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Categorical equivalence (reminder)

DEFINITION: Category of affine varieties over C: its objects are algebraic

subsets in Cn, morphisms – polynomial maps.

DEFINITION: Finitely generated ring over C is a quotient of C[t1, ..., tn]

by an ideal.

DEFINITION: Let R be a ring. An element x ∈ R is called nilpotent if

xn = 0 for some n ∈ Z>0. A ring which has no nilpotents is called reduced,

and an ideal I ⊂ R such that R/I has no nilpotents is called a radical ideal.

THEOREM: Let CR be a category of finitely generated rings over C without

non-zero nilpotents and Aff – category of affine varieties. Consider the functor

Φ : Aff −→ C
op
R mapping an algebraic variety X to the ring OX of polynomial

functions on X. Then Φ is an equivalence of categories.

REMARK: Nulstellensatz implies that points of X are in bijective corre-

spondence with maximal ideals of OX. Prove it!
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Smooth points

DEFINITION: Let A ⊂ Cn is an algebraic subset. A point a ∈ A is called
smooth, or smooth in a variety of dimension K if there exists a neighbour-
hood U of a ∈ Cn such that A∩U is a smooth 2k-dimensional real submanifold.
A point is called singular if such diffeomorphism does not exist. A variety is
called smooth if it has no singularities, and singular otherwise.

PROPOSITION: For any algebraic variety A and any smooth point a ∈ A,
a diffeomorphism between a neighbourhood of a and an open ball can be
chosen polynomial.

Proof. Step 1: Inverse function theorem. Let a ∈ M be a point on a
smooth k-dimensional manifold and f1, ..., fk functions on M such that their
differentials df1, ..., dfk are linearly independent in a. Then f1, ..., fk define a
coordinate system in a neighbourhood of a, giving a diffeomorphism of
this neighbourhood to an open ball.

Step 2: If a ∈ A ⊂ Cn is a smooth point of a k-dimensional embedded
manifold, there exists k complex linear functions on Cn which are linearly
independent on TaA.

Step 3: These function define diffeomorphism from a neighbourhood of
A to an open subset of Ck.
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Maximal ideal of a smooth point

REMARK: The set of smooth points of A is open.

CLAIM: Let mx be a maximal ideal of a smooth point of a k-dimensional

manifold M . Then dimCmx/m2
x = k.

Proof: Consider a map dx : mx −→ T ∗xM mapping a function f to df |x. Clearly,

dx is surjective, and satisfies ker dx = m2
x (prove it!)

CLAIM: A manifold A ⊂ C2 given by equation xy = 0 is not smooth in

a := (0,0).

Proof. Step 1: ma/m2
a is the quotient of the space of all polynomials,

vanishing in a, that is, degree > 1, by all polynomials of degree > 2, hence it

is 2-dimensional.

Step 2: Therefore, if a is smooth point of A, A is 2-dimensional in a

neighbourhood of (0,0). However, outside if a, A is a line, hence 1-

dimensional: contradiction.
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Hard to prove, but intiutively obvious observations

EXERCISE: Prove that the set of smooth points of an affine variety is

algebraic.

Really hard exercise: Prove that any affine variety over C contains a

smooth point.

EXERCISE: Using these two exercises, prove that the set of smooth

points of A is dense in A.
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Irreducible varietiees

DEFINITION: A affine manifold A is called reducible if it can be expressed

as a union A = A1 ∪A2 of affine varieties, such that A1 6⊂ A2 and A2 6⊂ A1. If

such a decomposition is impossible, A is called irreducible.

CLAIM: An affine variety A is irreducible if and only if its ring of polynomial

functions OA has no zero divizors.

Proof: If A = A1 ∪ A2 is a decomposition of A into a non-trivial union

of subvarieties, choose a non-zero function f ∈ OA vanishing at A1 and g

vanishing at A2. The product of these non-zero functions vanishes in A =

A1 ∪ A2, hence fg = 0 in OA. Conversely, if fg = 0, we decompose

A = Vf ∪ Vg.
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Irreducibility for smooth varieties

EXERCISE: Let M be an algebraic variety which is smooth and connected.

Prove that it is irreducible.

COROLLARY: Let A be an affine manifold such that its set A0 of smooth

points is dense in A and connected. Then A is irreducible.

Proof: If f and g are non-zero function such that fg = 0, the ring of poly-

nomial functions on A0 contains zero divizors. However, on a smooth,

connected complex manifold the ring of polynomial functions has no

zero divisors by analytic continuity principle.

EXERCISE: Let X −→ Y be a morphism of affine manifols, where X is

irreducible, and its image in Y is dense. Prove that Y is also irreducible.
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Noetherian rings and irreducible components

DEFINITION: A ring is called Noetherian if any increasing chain of ideals

stabilizes: for any chain I1 ⊂ I2 ⊂ I3 ⊂ ... one has In = In+1 = In+2 = ...

DEFINITION: An irreducible component of an algebraic set A is an irre-

ducible algebraic subset A′ ⊂ A such that A = A′ ∪A′′, and A′ 6⊂ A′′.

Remark 1: Let A1 ⊃ A2 ⊃ ... ⊃ An ⊃ ... be a decreasing chain of algebraic

subsets in an algebraic variety. Then the corresponding ideals form an

increasing chain of ideals: Ann(A1) ⊂ Ann(A2) ⊂ Ann(A3) ⊂ ...

THEOREM: Let A be an affine variety, and OA its ring of polynomial func-

tions. Assume that OA is Noetherian. Then A is a union of its irreducible

components, which are finitely many.

Proof: See the next slide.

Remark 2: From the noetherianity and Remark 1 it follows that A cannot

contain a strictly decreasing infinite chain of algebraic subvarieties.
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Noetherian rings and irreducible components (2)

THEOREM: Let A be an affine variety, and OA its ring of polynomial func-
tions. Assume that OA is Noetherian. Then A is a union of its irreducible
components, which are finitely many.

Proof. Step 1: Each point a ∈ A belongs to a certain irreducible com-
ponent. Indeed, suppose that such a component does not exist. Then for
each decomposition A = A1∪A2 of A onto algebraic sets, the set Ai contain-
ing a can be split non-trivially onto a union of algebraic sets, the component
containing a can also be split, and so on, ad infinitum. This gives a strictly
decreasing infinity sequence, a contradiction (Remark 2).

Step 2: We proved existence of an irreducible decomposition, and it remains
only to show that number of irreducible components of A is finite. Let
A =

⋃
Ai be an irreducible decomposition. Then each Ai is not contained in

the union of the rest of Ai.

Step 3: Let algebraic closure of a set X ⊂ Cn be the intersection of all
algebraic subsets containing X. Clearly, it is algebraic (prove it!) Since
A = Ai ∪

⋃
j 6=iAj, the algebraic closure Bi of A\Ai does not contain Ai. and

the sequence B1 ⊃ B1 ∩ B2 ⊃ B1 ∩ B2 ∩ B3 ⊂ ... decreases strictly, unless
there are only finitely many irreducible components. Applying Remark 2
again, we obtain that the number of Bi is finite.
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Noetherian rings

DEFINITION: A finitely generated ring is a quotient of a polynomial ring.

THEOREM: (Hilbert’s Basis Theorem)

Any finitely generated ring over a field is Noetherian.

Proof: Later in this lecture.

COROLLARY: For any affine manifold, its ring of functions is Noethe-

rian, hence the the irreducible decomposition exists and is finite.

REMARK: It suffices to prove Hilbert’s Basis Theorem for the ring of poly-

nomials. Indeed, any finitely generaed ring is a quotient of the polynomial

ring, but the set of ideals of the quotient ring A/I is injectively mapped

to the set of ideals of R.

REMARK: Therefore, Hilbert’s Basis Theorem would follow if we prove

that R[t] is Noetherian for any Noetherian ring R.

EXERCISE: Find an example of a ring which is not Noetherian.
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Finitely generated ideals

DEFINITION: Finitely generated ideal in a ring is an ideal 〈a1, ..., an〉 of
sums

∑
biai, where {ai} is a fixed finite set of elements of R, called generators

of R.

LEMMA: Let I ⊂ R be a finitely generated ideal, and I0 ⊂ I1 ⊂ I2 ⊂ ... an
increasing chain of ideals, such that

⋃
n In = I. Then this chain stabilises.

Proof: Let I = 〈a1, ..., an〉, and IN be an ideal in the chain I0 ⊂ I1 ⊂ I2 ⊂ ...

which contains all ai. Then IN = I.

CLAIM: A ring R is Noetherian if and only if all its ideals are finitely
generated.

Proof: For any chain of ideals I0 ⊂ I1 ⊂ I2 ⊂ ..., finite generatedness of
I =

⋃
Ii guarantees stabilization of this chain, as follows from Lemma

above.

Conversely, if R is Noetherian, and I any ideal, take I0 = 0 and let Ik ⊂ I be
obtained by adding to Ik−1 an element of I not containing in Ik−1. Since
the chain {Ik} stabilizes, I is finitely generated.
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Noetherian modules

DEFINITION: A module over a ring R is a vector space M equipped with

an algebra homomorphism R−→ End(M).

EXAMPLE: A subspace I ⊂ R in a ring is an ideal if and only if I is an

R-submodule of R, considered as an R-module.

DEFINITION: A module M over R is called Noetherian if any increasing

chain of submodules of M stabilizes.

REMARK: Any submodules and quotient modules of a Noetherian R-module

are again Noetherian.
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Finitely generated R-modules

DEFINITION: An R-module is called finitely generated if it is a quotient

of a free module Rn by its submodule.

EXERCISE: Show that a module M is Noetherian iff any M ′ ⊂ M is

finitely generated. Use this to prove that direct sums of Noetherian

modules are Noetherian.

LEMMA: A ring R is Noetherian if and only if it is Noetherian as an

R-module.

Proof: Ideals in R is the same as R-submodules of R, stabilization of a chain

of R-submodules in R is literally the same as stabilization of a chain of ideals

in R.

REMARK: Let M be a module over R[t] which is Noetherian as an R-module,

Then it is Noetherian as R[t]-module.

COROLLARY: If R is Noetherian, then R[t]/(tN) = RN is a Noetherian

R-module. Therefore, the ring R[t]/(tN) is Noetherian.
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Proof of Hilbert’s basis theorem

PROPOSITION: Let R be a Noetherian ring. Then the polynomial ring
R[t] is also Noetherian.

Proof. Step 1: Let I ⊂ R[t] be an ideal. We need to show that it is finitely
generated. Consider the ideal I0 ⊂ R generated by all leading coefficients of
all P (t) ∈ I. Since R is Noetherian, I0 is finitely generated: I0 = 〈a1, ..., an〉,
where all ai are leading coefficients of Pi(t) ∈ I.

Step 2: Let N be the maximum of all degrees of Pi. For each Q(t) ∈
I with the leading coefficient

∑
aibi there exists a polynomial PQ(t) of

degree no bigger than N with the same leading coefficient: PQ(T ) =∑
i Pi(t)bit

N−degPi.

Step 3: Let Q̃(t) be the remainder of the long division of Q(t) ∈ I by PQ(y).
Then Q̃(t) = Q(t) mod 〈P1(t), ..., Pn(t)〉, and deg Q̃(t) < N .

Step 4: We have constructed an R-module embedding

M := I/〈P1(t), ..., Pn(t)〉 −→R[t]/(tN).

Since M is a submodule of R[t]/(tN), it is a Noetherian module, as shown
above, hence finitely generated. Pick a set of polynomials Q1(t), ..., Qm(t) ∈ I,
generating M . Then {Qi(t), Pi(t)} generate I.
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