Algebraic geometry

Lecture 3: irreducible varietiees and Noetherian rings

Misha Verbitsky

Université Libre de Bruxelles

October 13, 2015

Algebraic sets in \mathbb{C}^n (reminder)

REMARK: In most situations, you can replace your ground field \mathbb{C} by any other field. However, there are cases when chosing \mathbb{C} as a ground field simplifies the situation. Moreover, using \mathbb{C} is essentially the only way to apply topological arguments which help us to develop the geometric intuition.

DEFINITION: A subset $Z \subset \mathbb{C}^n$ is called **an algebraic set** if it can be goven as a set of solutions of a system of polynomial equations $P_1(z_1, ..., z_n) =$ $P_2(z_1, ..., z_n) = ... = P_k(z_1, ..., z_n) = 0$, where $P_i(z_1, ..., z_n) \in \mathbb{C}[z_1, ..., z_n]$ are polynomials.

DEFINITION: Algebraic function on an algebraic set $Z \subset \mathbb{C}^n$ is a restriction of a polynomial function to Z. An algebraic set with a ring of algebraic functions on it is called an affine variety.

DEFINITION: Two affine varieties A, A' are **isomorphic** if there exists a bijective polynomial map $A \longrightarrow A'$ such that its inverse is also polynomial.

Maximal ideals (reminder)

REMARK: All rings are assumed to be commutative and with unit.

DEFINITION: An ideal *I* in a ring *R* is a subset $I \subsetneq R$ closed under addition, and such that for all $a \in I, f \in R$, the product fa sits in *I*. The quotient group R/I is equipped with a structure of a ring, called **the quotient ring**.

DEFINITION: A maximal ideal is an ideal $I \subset R$ such that for any other ideal $I' \supset I$, one has I = I'.

EXERCISE: Prove that an ideal $I \subset R$ is maximal if and only if R/I is a field.

THEOREM: Let $I \subset R$ be an ideal in a ring. Then I is contained in a maximal ideal.

Proof: One applies the Zorn lemma to the set of all ideals, partially ordered by inclusion. ■

Algebraic geometry, Fall 2015 (ULB)

Hilbert's Nullstellensatz (reminder)

EXAMPLE: Let A be an affine variety, \mathcal{O}_A the ring of polynomial functions on A, $a \in A$ a point, and $I_a \subset \mathcal{O}_A$ an ideal of all functions vanishing in a. **Then** I_a **is a maximal ideal.**

DEFINITION: The ideal I_a is called the (maximal) ideal of the point $a \in A$.

THEOREM: (Hilbert's Nullstellensatz)

Let $A \subset \mathbb{C}^n$ be an affine variety, and \mathcal{O}_A the ring of polynomial functions on *A*. Then every maximal ideal in *A* is an ideal of a point $a \in A$: $I = I_a$.

DEFINITION: Let $I \subset \mathbb{C}[t_1, ..., t_n]$ be an ideal. Denote the set of common zeros for *I* by V(I), with

$$V(I) = \{(z_1, ..., z_n) \in \mathbb{C}^n \mid f(z_1, ..., z_n) = 0 \forall f \in I\}.$$

For $Z \subset \mathbb{C}^n$ an algebraic subset, denote by Ann(A) the set of all polynomials $P(t_1, ..., t_n)$ vanishing in Z.

THEOREM: (strong Nullstellensatz). For any ideal $I \subset \mathbb{C}[t_1, ..., t_n]$ such that $\mathbb{C}[t_1, ..., t_n]/I$ has no nilpotents, one has Ann(V(I)) = I.

Categorical equivalence (reminder)

DEFINITION: Category of affine varieties over \mathbb{C} : its objects are algebraic subsets in \mathbb{C}^n , morphisms – polynomial maps.

DEFINITION: Finitely generated ring over \mathbb{C} is a quotient of $\mathbb{C}[t_1, ..., t_n]$ by an ideal.

DEFINITION: Let R be a ring. An element $x \in R$ is called **nilpotent** if $x^n = 0$ for some $n \in \mathbb{Z}^{>0}$. A ring which has no nilpotents is called **reduced**, and an ideal $I \subset R$ such that R/I has no nilpotents is called **a radical ideal**.

THEOREM: Let \mathcal{C}_R be a category of finitely generated rings over \mathbb{C} without non-zero nilpotents and $\mathcal{A}_H - \text{category}$ of affine varieties. Consider the functor $\Phi : \mathcal{A}_H \longrightarrow \mathcal{C}_R^{op}$ mapping an algebraic variety X to the ring \mathcal{O}_X of polynomial functions on X. Then Φ is an equivalence of categories.

REMARK: Nulstellensatz implies that points of X are in bijective correspondence with maximal ideals of \mathcal{O}_X . Prove it!

Smooth points

DEFINITION: Let $A \subset \mathbb{C}^n$ is an algebraic subset. A point $a \in A$ is called **smooth**, or **smooth in a variety of dimension** K if there exists a neighbourhood U of $a \in \mathbb{C}^n$ such that $A \cap U$ is a smooth 2k-dimensional real submanifold. A point is called **singular** if such diffeomorphism does not exist. A variety is called **smooth** if it has no singularities, and **singular** otherwise.

PROPOSITION: For any algebraic variety A and any smooth point $a \in A$, a diffeomorphism between a neighbourhood of a and an open ball **can be chosen polynomial**.

Proof. Step 1: Inverse function theorem. Let $a \in M$ be a point on a smooth k-dimensional manifold and $f_1, ..., f_k$ functions on M such that their differentials $df_1, ..., df_k$ are linearly independent in a. Then $f_1, ..., f_k$ define a coordinate system in a neighbourhood of a, giving a diffeomorphism of this neighbourhood to an open ball.

Step 2: If $a \in A \subset \mathbb{C}^n$ is a smooth point of a *k*-dimensional embedded manifold, there exists *k* complex linear functions on \mathbb{C}^n which are linearly independent on T_aA .

Step 3: These function define diffeomorphism from a neighbourhood of A to an open subset of \mathbb{C}^k .

Maximal ideal of a smooth point

REMARK: The set of smooth points of *A* is open.

CLAIM: Let \mathfrak{m}_x be a maximal ideal of a smooth point of a k-dimensional manifold M. Then $\dim_{\mathbb{C}} \mathfrak{m}_x/\mathfrak{m}_x^2 = k$.

Proof: Consider a map $d_x : \mathfrak{m}_x \longrightarrow T_x^*M$ mapping a function f to $df|_x$. Clearly, d_x is surjective, and satisfies ker $d_x = \mathfrak{m}_x^2$ (prove it!)

CLAIM: A manifold $A \subset \mathbb{C}^2$ given by equation xy = 0 is not smooth in a := (0, 0).

Proof. Step 1: $\mathfrak{m}_a/\mathfrak{m}_a^2$ is the quotient of the space of all polynomials, vanishing in a, that is, degree ≥ 1 , by all polynomials of degree ≥ 2 , hence it is 2-dimensional.

Step 2: Therefore, if *a* is smooth point of *A*, *A* is 2-dimensional in a neighbourhood of (0,0). **However, outside if** *a*, *A* **is a line, hence 1**-**dimensional:** contradiction.

Hard to prove, but intiutively obvious observations

EXERCISE: Prove that the set of smooth points of an affine variety is algebraic.

Really hard exercise: Prove that any affine variety over \mathbb{C} contains a smooth point.

EXERCISE: Using these two exercises, **prove that the set of smooth points of** *A* **is dense in** *A*.

Irreducible varietiees

DEFINITION: A affine manifold A is called **reducible** if it can be expressed as a union $A = A_1 \cup A_2$ of affine varieties, such that $A_1 \not\subset A_2$ and $A_2 \not\subset A_1$. If such a decomposition is impossible, A is called **irreducible**.

CLAIM: An affine variety A is **irreducible** if and only if its ring of polynomial functions \mathcal{O}_A has no zero divizors.

Proof: If $A = A_1 \cup A_2$ is a decomposition of A into a non-trivial union of subvarieties, choose a non-zero function $f \in \mathcal{O}_A$ vanishing at A_1 and g vanishing at A_2 . The product of these non-zero functions vanishes in $A = A_1 \cup A_2$, hence fg = 0 in \mathcal{O}_A . Conversely, if fg = 0, we decompose $A = V_f \cup V_g$.

Irreducibility for smooth varieties

EXERCISE: Let M be an algebraic variety which is smooth and connected. **Prove that it is irreducible.**

COROLLARY: Let *A* be an affine manifold such that its set A_0 of smooth points is dense in *A* and connected. Then *A* is irreducible.

Proof: If f and g are non-zero function such that fg = 0, the ring of polynomial functions on A_0 contains zero divizors. However, on a smooth, connected complex manifold the ring of polynomial functions has no zero divisors by analytic continuity principle.

EXERCISE: Let $X \longrightarrow Y$ be a morphism of affine manifols, where X is irreducible, and its image in Y is dense. **Prove that** Y is also irreducible.

Noetherian rings and irreducible components

DEFINITION: A ring is called **Noetherian** if any increasing chain of ideals stabilizes: for any chain $I_1 \subset I_2 \subset I_3 \subset ...$ one has $I_n = I_{n+1} = I_{n+2} = ...$

DEFINITION: An irreducible component of an algebraic set A is an irreducible algebraic subset $A' \subset A$ such that $A = A' \cup A''$, and $A' \not \subset A''$.

Remark 1: Let $A_1 \supset A_2 \supset ... \supset A_n \supset ...$ be a decreasing chain of algebraic subsets in an algebraic variety. **Then the corresponding ideals form an increasing chain of ideals:** Ann $(A_1) \subset Ann(A_2) \subset Ann(A_3) \subset ...$

THEOREM: Let *A* be an affine variety, and \mathcal{O}_A its ring of polynomial functions. Assume that \mathcal{O}_A is Noetherian. Then *A* is a union of its irreducible components, which are finitely many.

Proof: See the next slide. ■

Remark 2: From the noetherianity and Remark 1 it follows that *A* cannot contain a strictly decreasing infinite chain of algebraic subvarieties.

Noetherian rings and irreducible components (2)

THEOREM: Let A be an affine variety, and \mathcal{O}_A its ring of polynomial functions. Assume that \mathcal{O}_A is Noetherian. Then A is a union of its irreducible components, which are finitely many.

Proof. Step 1: Each point $a \in A$ belongs to a certain irreducible component. Indeed, suppose that such a component does not exist. Then for each decomposition $A = A_1 \cup A_2$ of A onto algebraic sets, the set A_i containing a can be split non-trivially onto a union of algebraic sets, the component containing a can also be split, and so on, *ad infinitum*. This gives a strictly decreasing infinity sequence, a contradiction (Remark 2).

Step 2: We proved existence of an irreducible decomposition, and **it remains** only to show that number of irreducible components of A is finite. Let $A = \bigcup A_i$ be an irreducible decomposition. Then each A_i is not contained in the union of the rest of A_i .

Step 3: Let algebraic closure of a set $X \subset \mathbb{C}^n$ be the intersection of all algebraic subsets containing X. Clearly, it is algebraic (prove it!) Since $A = A_i \cup \bigcup_{j \neq i} A_j$, the algebraic closure B_i of $A \setminus A_i$ does not contain A_i . and the sequence $B_1 \supset B_1 \cap B_2 \supset B_1 \cap B_2 \cap B_3 \subset \dots$ decreases strictly, unless there are only finitely many irreducible components. Applying Remark 2 again, we obtain that the number of B_i is finite.

Noetherian rings

DEFINITION: A finitely generated ring is a quotient of a polynomial ring.

THEOREM: (Hilbert's Basis Theorem) Any finitely generated ring over a field is Noetherian.

Proof: Later in this lecture.

COROLLARY: For any affine manifold, **its ring of functions is Noetherian**, hence the the irreducible decomposition exists and is finite.

REMARK: It suffices to prove Hilbert's Basis Theorem for the ring of polynomials. Indeed, any finitely generaed ring is a quotient of the polynomial ring, but the set of ideals of the quotient ring A/I is injectively mapped to the set of ideals of R.

REMARK: Therefore, Hilbert's Basis Theorem would follow if we prove that R[t] is Noetherian for any Noetherian ring R.

EXERCISE: Find an example of a ring which is not Noetherian.

Finitely generated ideals

DEFINITION: Finitely generated ideal in a ring is an ideal $\langle a_1, ..., a_n \rangle$ of sums $\sum b_i a_i$, where $\{a_i\}$ is a fixed finite set of elements of R, called generators of R.

LEMMA: Let $I \subset R$ be a finitely generated ideal, and $I_0 \subset I_1 \subset I_2 \subset ...$ an increasing chain of ideals, such that $\bigcup_n I_n = I$. Then this chain stabilises.

Proof: Let $I = \langle a_1, ..., a_n \rangle$, and I_N be an ideal in the chain $I_0 \subset I_1 \subset I_2 \subset ...$ which contains all a_i . Then $I_N = I$.

CLAIM: A ring R is Noetherian if and only if all its ideals are finitely generated.

Proof: For any chain of ideals $I_0 \subset I_1 \subset I_2 \subset ...$, finite generatedness of $I = \bigcup I_i$ guarantees stabilization of this chain, as follows from Lemma above.

Conversely, if R is Noetherian, and I any ideal, take $I_0 = 0$ and let $I_k \subset I$ be obtained by adding to I_{k-1} an element of I not containing in I_{k-1} . Since the chain $\{I_k\}$ stabilizes, I is finitely generated.

Noetherian modules

DEFINITION: A module over a ring R is a vector space M equipped with an algebra homomorphism $R \longrightarrow End(M)$.

EXAMPLE: A subspace $I \subset R$ in a ring is an ideal if and only if I is an *R*-submodule of *R*, considered as an *R*-module.

DEFINITION: A module M over R is called **Noetherian** if any increasing chain of submodules of M stabilizes.

REMARK: Any submodules and quotient modules of a Noetherian *R*-module are again Noetherian.

Algebraic geometry, Fall 2015 (ULB)

M. Verbitsky

Finitely generated *R***-modules**

DEFINITION: An *R*-module is called **finitely generated** if it is a quotient of **a free module** R^n by its submodule.

EXERCISE: Show that a module M is Noetherian iff any $M' \subset M$ is finitely generated. Use this to prove that direct sums of Noetherian modules are Noetherian.

LEMMA: A ring *R* is Noetherian if and only if it is Noetherian as an *R*-module.

Proof: Ideals in R is the same as R-submodules of R, stabilization of a chain of R-submodules in R is literally the same as stabilization of a chain of ideals in R.

REMARK: Let *M* be a module over R[t] which is Noetherian as an *R*-module, **Then it is Noetherian as** R[t]-module.

COROLLARY: If *R* is Noetherian, then $R[t]/(t^N) = R^N$ is a Noetherian *R*-module. Therefore, **the ring** $R[t]/(t^N)$ **is Noetherian.**

Proof of Hilbert's basis theorem

PROPOSITION: Let R be a Noetherian ring. Then the polynomial ring R[t] is also Noetherian.

Proof. Step 1: Let $I \subset R[t]$ be an ideal. We need to show that it is finitely generated. Consider the ideal $I_0 \subset R$ generated by all leading coefficients of all $P(t) \in I$. Since R is Noetherian, I_0 is finitely generated: $I_0 = \langle a_1, ..., a_n \rangle$, where all a_i are leading coefficients of $P_i(t) \in I$.

Step 2: Let *N* be the maximum of all degrees of P_i . For each $Q(t) \in I$ with the leading coefficient $\sum a_i b_i$ there exists a polynomial $P_Q(t)$ of degree no bigger than *N* with the same leading coefficient: $P_Q(T) = \sum_i P_i(t)b_i t^{N-\deg P_i}$.

Step 3: Let $\tilde{Q}(t)$ be the remainder of the long division of $Q(t) \in I$ by $P_Q(y)$. Then $\tilde{Q}(t) = Q(t) \mod \langle P_1(t), ..., P_n(t) \rangle$, and deg $\tilde{Q}(t) < N$.

Step 4: We have constructed an *R*-module embedding

$$M := I/\langle P_1(t), ..., P_n(t) \rangle \longrightarrow R[t]/(t^N).$$

Since M is a submodule of $R[t]/(t^N)$, it is a Noetherian module, as shown above, hence finitely generated. Pick a set of polynomials $Q_1(t), ..., Q_m(t) \in I$, generating M. Then $\{Q_i(t), P_i(t)\}$ generate I.