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Tensor product (reminder)

DEFINITION: Let R be a ring, and M, M’ modules over R. We denote by
M ®pr M’ an R-module generated by symbols m®@m/, m € M, m' € M’, modulo
relations

r(m®@m’) = (rm) @ m' = m® (rm/),

(m+m)m =mem'+m;m/,

m® (m'+mi) =mem'+m®m]. Such an R-module is called the tensor
product of M and M’ over R.

REMARK: Suppose that M is generated over R by a set {m; € M}, and M’
generated by {m} € M'}. Then M @i M’ is generated by {m; ® m’}.

EXERCISE: Find two non-zero R-modules A, B such that AQpr B = 0 when
a. R=2%.
b. R= C°M the ring of smooth functions on a manifold.

c. R = CJ[t] (polynomial ring).
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Bilinear maps (reminder)

DEFINITION: Let Mjy,M>, M be modules over a ring R. Bilinear map
(M, M>) 2, M is a map satisfying o(rm,m') = o(m,rm’) = rp(m,m’),
p(m+my,m") = p(m,m’) + p(my,m’), p(m,m' +m7) = p(m,m’') + p(m,m?7).

THEOREM: (Universal property of the tensor product)
For any bilinear map B : M; X M> — M there exists a unigue homomor-
phism b: M7 ® M> — M, making the following diagram commutative:

M1><M2

M ® Mo

REMARK: If R is the field k, R-modules are vector spaces, and the previous
theorem proves that Bil(Mq x M»>, k) = (M1 ® M>)*. For finite-dimensional
M;, it gives M1 ® My = (M1 ® M»>)** = Bil(M1 x M»>, k)*.
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Universal property of the tensor product and categories

DEFINITION: Initial object of a category C is an object X € ©O6(C) such
that for any Y € ©O6(C) there exists a unique morphism X — Y.

EXAMPLE: Zero space is an initial object in the category of vector spaces.
The ring Z is an initial object in the category of rings with unit.

EXERCISE: Prove that initial object is unique.

DEFINITION: Let Mq,M> are R-modules, and ¢ the following category.
Objects of C are pairs (R-module M, bilinear map My x My — M). Mor-
phisms of ¢ are homomorphisms M Ly M making the following diagram

commutative:
My x My — M

ol |+

M1 X M2 — M’
CLAIM: (Universal property of the tensor product)
Tensor product My, x M- is the initial object in C.

COROLLARY: Tensor product is uniquely determined by the universal
property.

Indeed, the initial object is unique.
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Exactness of the tensor product (reminder)

THEOREM: Let M{ — M, — M3 — 0 be an exact sequence of R-modules.
Then the sequence

M1®RM—>M2®RM—>M3®RM—>O (>|<)

IS exact.

Proof: Follows from the universal property and left exactness of the interior
Hom functors. m

COROLLARY: Let I C Rbeanidealinaring. Then Mgr(R/I) = M/IM.

Proof: Apply the functor M to the exact sequence0 — I — R— R/I — 0.
We obtain IM — M — (R/I)®p M — 0. =
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Tensor product of rings: geometric meaning

EXERCISE: Let f: X — Y be a morphism of algebraic varieties, y € Y a
point. Prove that f—1(y) is affine.

QUESTION: How one describes the ring of regular functions on f~1(y)?
HINT: Use the tensor product of rings!

EXERCISE: Let X Cc C", Y C CF pe algebraic subvarieties. Prove that
X x Y is also algebraic.

HINT: Use the tensor product of rings!
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Tensor product of rings

DEFINITION: Let A,B be rings, C — A, ¢ — B homomorphisms. Con-
sider A and B as C-modules, and let A ®c B be their tensor product. Define
the ring multiplication on A~ B as a®b-d @ ¥ = ad’ @ bb/. This defines
tensor product of rings.

EXAMPLE: CJty,...,t] ®c Clz1,...,2n] = C|[t1, ..., tg, 21, ..., 2n]. Indeed, if we
denote by Cy4[t1, ..., t;] the space of polynomials of degree d, then Cylt1, ..., tL]®¢c
Cyglz1, .-, 2n] is polynomials of degree d in {t;} and d" in {z}.

EXAMPLE: For any homomorphism ¢ : C— A, the ring A®o (C/I) is a
quotient of A by the ideal A-p(I). This follows from M ®gr(R/I) = M/IM.

PROPOSITION: (associativity of ®)
Let C — A,C — B,C" — B, C’ — D be ring homomorphisms. Then (A Q¢

B)®c D =A®c (B®c D).

Proof: Universal property of ® implies that Hom((A ®¢c B) ® D, M) =
Hom(A ®¢c (B ®c D), M) is the space of polylinear maps A B® D — M
satisfying ¢(ca,b,d) = ¢(a,cb,d) and ¢(a,c’d, d) = ¢(a,b,c/'d). However, an ob-
ject X of category is defined by the functor Hom(X,-) uniquely (prove it).
u

.
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Tensor product of rings and preimage of a point

DEFINITION: Recall that the spectrum of a finitely generated ring R is
the corresponding algebraic variety, denoted by Spec(R)

PROPOSITION: Let f: X —Y be a morphism of affine varieties, f* :
Oy — Ox the corresponding ring homomorphism, y € Y a point, and my its
maximal ideal. Denote by R; the quotient of R := Ox ®gy (Oy/my) by its
nilradical. Then Spec(R1) = f~1(y).

Proof. Step 1: If a € Oy vanishes in y, f*(«) vanishes in all points of f~1(y).
This implies that the set V; of common zeros of the ideal I := Oy - f*my
contains f~1(y).

Step 2: If f(x) # y, take a function B € Oy vanishing in y and non-zero in
f(x). Since p*(B)(x) # 0 and B(y) = 0, this gives = ¢ V;. We proved that
the set of common zeros of the ideal I = Oy - f*m, is equal to f~1(y).

Step 3: Now, strong Nullstellensatz implies that @f—l(y) IS a quotient of
R = Ox/I by nilradical. =

EXERCISE: Give an example when R = Ox/I is non-reduced (contains
nilpotents).
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Tensor product of rings and product of varieties

LEMMA: AR B®g B = A®c B.
Proof: Follows from associativity of tensor product and B®g B’ = B’.

LEMMA: AR (B/I) = A®cB/(1®1), where 1® I denotes the ideal A®q 1.
Proof: Using M ®r (R/I) = M/IM, we obtain

A®c (B/I) =(A®cB)®p(B/I) =(A®cB)/(1®1) =

Lemma 1: Let A, B be finitely generated rings without nilpotents, R =
A®c B, and N C R nilradical. Then Spec(R/N) = Spec(A) x Spec(B).

Proof. Step 1: Let A =Cltq1,...,tn]/I,B = Clz1,...,2;]/J. Then C[t1, ..., tn] ¢
Clz1, ..., 2] = CJtq1,...,tn, 21,---,2k]. Applying the previous lemma twice, we
obtain ARc B=Clt1,....,tn, 21, .., 2t]/(I+J). Here I+ J means I® 141 ® J.

Step 2: The set Vj1; of common zeros of I + J is Spec(A) x Spec(B) C
C™ x C*.

Step 3: Hilbert Nullstellensatz implies Spec(R/N)
Spec(B). m

V[_|_J = SDQC(A) X

REMARK: We shall see that a tensor product R :
rings is reduced.

A ®c B of reduced
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Tensor product of rings and product of varieties (2)

LEMMA: For any finitely-generated ring A over C, intersection P of all its
maximal ideals is its nilradical.

Proof: Let A = CJt1,...,tn]/I, and Z = V; the set of common zeros. Strond
Nullstellensatz implies that f € A is nilpotent if and only ig f = 0 in each
point of Z. This is equivalent to f e P. m

EXERCISE: Prove this lemma without Nullstellensatz and not assuming
that A is finitely generated.

REMARK: Let A, B be finite generated rings over Cm B — A a homomor-
phism, and m C B a maximal ideal. Then the ring A®p (B/m) can contain
nilpotents, even if A and B have no zero divisors.

EXERCISE: Give an example of such rings A, B.

THEOREM: Let A, B be finitely-generated, reduced rings over C, and R :=
A ®¢ B their product. Then R is reduced (that is, has no nilpotents).

Proof: see the next slide.

COROLLARY: Spec(A) x Spec(B) = Spec(A ®¢ B).
10
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Tensor product of rings and product of varieties (2)

THEOREM: Let A, B be finitely-generated, reduced rings over C, and R :=
A ®c B their product. Then R is reduced.

Proof. Step 1: By the previous lemma, it suffices to show that the inter-
section P of maximal ideals of R is O.

Step 2: Let X,Y denote the varieties Spec(A),Spec(B). Lemma 1 implies
that maximal ideals of R are points of X x Y.

Step 3: Every such ideal is given as m; ® Oy +Ox ® my, where x € X,y € Y.
Then

X XY Y X Y

This follows from Ny 1®@my =(1xmy ®1 =0 since A and B are reduced. m
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Preimage and diagonal

Claim 2: Let f: X — Y be a morphism of algebraic varieties, f*: Oy — Oy
the corresponding ring homomorphism, Z C Y a subvariety, and I its ideal.
Denote by R; the quotient of a ring R := Ox Qoy (Oy /1) = Ox/f*(Iz) by
its nilradical. Then Spec(R1) = f~1(2).

Proof: Clearly, the set of common zeros of the ideal J := f*(Iy) contains
f~1(Z). On the other hand, for any point = € X such that f(z) ¢ Z there
exist a function g € J such that g(z) % 0. Therefore, f~1(Z) = V;, and
strong Nullstellensatz implies that @f—l(Z) = R;. =

Claim 3: Let M be an algebraic variety, and A C M x M the diagonal, and
I C Oy ®c Opf the ideal generated by r® 1 —1®r for all r € Op;. Then Op
IS @M RC @M/I.

Proof. Step 1: By definition of the tensor product, Oy Qc Ops/I = Oy R0,
O)r = Oy, hence it is reduced. If we prove that A = V;, the statement of
the claim would follow from strong Nullstellensatz.

Step 2: Clearly, A C V;. To prove the converse, let (m,m’) € M x M be
a point not on diagonal, and f € Oy; a function which satisfies f(m) =
0,f(m')#0. Then f®1 -1 f is non-zero on (m,m’). =
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Fibered product

DEFINITION: Let X =% M,Y =% M be maps of sets. Fibered product
X XY is the set of all pairs (x,y) € X xY such that nyx(x) = 7y (y).

CLAIM: Let X *% MY Y5 M be morphism of algebraic varieties, R :
Ox ®o,; Yy, and R; the quotient of R by its nilradical. Then Spec(R;)
X X M Y.

Proof: Let I be the ideal of diagonal in Oy Qc Opf. Since I is generated by
r@l—1®r (Claim 3), R=0Ox ®c Oy /(rx X wy)*(I). Applying Claim 2, we
obtain that Spec(Ry) = (rx x my) " H(A). m

13



