
Algebraic geometry, Fall 2015 (ULB) M. Verbitsky

Algebraic geometry
Lecture 6: tensor product of rings

Misha Verbitsky
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Tensor product (reminder)

DEFINITION: Let R be a ring, and M,M ′ modules over R. We denote by

M ⊗RM ′ an R-module generated by symbols m⊗m′, m ∈M,m′ ∈M ′, modulo

relations

r(m⊗m′) = (rm)⊗m′ = m⊗ (rm′),

(m+m1)⊗m′ = m⊗m′+m1 ⊗m′,
m ⊗ (m′+ m′1) = m ⊗m′+ m ⊗m′1. Such an R-module is called the tensor

product of M and M ′ over R.

REMARK: Suppose that M is generated over R by a set {mi ∈M}, and M ′

generated by {m′j ∈M
′}. Then M ⊗RM ′ is generated by {mi ⊗m′j}.

EXERCISE: Find two non-zero R-modules A,B such that A⊗RB = 0 when

a. R = Z.

b. R = C∞M the ring of smooth functions on a manifold.

c. R = C[t] (polynomial ring).
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Bilinear maps (reminder)

DEFINITION: Let M1,M2,M be modules over a ring R. Bilinear map

µ(M1,M2)
ϕ−→ M is a map satisfying ϕ(rm,m′) = ϕ(m, rm′) = rϕ(m,m′),

ϕ(m+m1,m
′) = ϕ(m,m′) +ϕ(m1,m

′), ϕ(m,m′+m′1) = ϕ(m,m′) +ϕ(m,m′1).

THEOREM: (Universal property of the tensor product)
For any bilinear map B : M1 ×M2 −→M there exists a unique homomor-
phism b : M1 ⊗M2 −→M, making the following diagram commutative:

M1 ×M2
B

-M1 ⊗M2

M

b

?

τ

-

REMARK: If R is the field k, R-modules are vector spaces, and the previous

theorem proves that Bil(M1 ×M2, k) = (M1 ⊗M2)∗. For finite-dimensional

Mi, it gives M1 ⊗M2 = (M1 ⊗M2)∗∗ = Bil(M1 ×M2, k)∗.
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Universal property of the tensor product and categories

DEFINITION: Initial object of a category C is an object X ∈ Ob(C) such
that for any Y ∈ Ob(C) there exists a unique morphism X −→ Y .

EXAMPLE: Zero space is an initial object in the category of vector spaces.
The ring Z is an initial object in the category of rings with unit.

EXERCISE: Prove that initial object is unique.

DEFINITION: Let M1,M2 are R-modules, and C the following category.
Objects of C are pairs (R-module M, bilinear map M1 × M2 −→M). Mor-
phisms of C are homomorphisms M

ϕ−→ M ′ making the following diagram
commutative:

M1 ×M2 −−→ M

Id

y yϕ
M1 ×M2 −−→ M ′

CLAIM: (Universal property of the tensor product)
Tensor product M1 ×M2 is the initial object in C.

COROLLARY: Tensor product is uniquely determined by the universal
property.

Indeed, the initial object is unique.
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Exactness of the tensor product (reminder)

THEOREM: Let M1 −→M2 −→M3 −→ 0 be an exact sequence of R-modules.

Then the sequence

M1 ⊗RM −→M2 ⊗RM −→M3 ⊗RM −→ 0 (∗)

is exact.

Proof: Follows from the universal property and left exactness of the interior

Hom functors.

COROLLARY: Let I ⊂ R be an ideal in a ring. Then M⊗R (R/I) = M/IM.

Proof: Apply the functor ⊗RM to the exact sequence 0−→ I −→R−→R/I −→ 0.

We obtain IM −→M −→ (R/I)⊗RM −→ 0.
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Tensor product of rings: geometric meaning

EXERCISE: Let f : X −→ Y be a morphism of algebraic varieties, y ∈ Y a

point. Prove that f−1(y) is affine.

QUESTION: How one describes the ring of regular functions on f−1(y)?

HINT: Use the tensor product of rings!

EXERCISE: Let X ⊂ Cn, Y ⊂ Ck be algebraic subvarieties. Prove that

X × Y is also algebraic.

HINT: Use the tensor product of rings!
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Tensor product of rings

DEFINITION: Let A,B be rings, C −→A, C −→B homomorphisms. Con-
sider A and B as C-modules, and let A⊗C B be their tensor product. Define
the ring multiplication on A ⊗C B as a ⊗ b · a′ ⊗ b′ = aa′ ⊗ bb′. This defines
tensor product of rings.

EXAMPLE: C[t1, ..., tk] ⊗C C[z1, ..., zn] = C[t1, ..., tk, z1, ..., zn]. Indeed, if we
denote by Cd[t1, ..., tk] the space of polynomials of degree d, then Cd[t1, ..., tk]⊗C
Cd′[z1, ..., zn] is polynomials of degree d in {ti} and d′ in {zi}.

EXAMPLE: For any homomorphism ϕ : C−→A, the ring A⊗C (C/I) is a
quotient of A by the ideal A ·ϕ(I). This follows from M ⊗R (R/I) = M/IM .

PROPOSITION: (associativity of ⊗)
Let C −→A,C −→B,C′ −→B,C′ −→D be ring homomorphisms. Then (A⊗C
B)⊗C′ D = A⊗C (B ⊗C′ D).

Proof: Universal property of ⊗ implies that Hom((A ⊗C B) ⊗C′ D,M) =
Hom(A ⊗C (B ⊗C′ D),M) is the space of polylinear maps A ⊗ B ⊗ D −→M

satisfying ϕ(ca, b, d) = ϕ(a, cb, d) and ϕ(a, c′b, d) = ϕ(a, b, c′d). However, an ob-
ject X of category is defined by the functor Hom(X, ·) uniquely (prove it).
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Tensor product of rings and preimage of a point

DEFINITION: Recall that the spectrum of a finitely generated ring R is
the corresponding algebraic variety, denoted by Spec(R)

PROPOSITION: Let f : X −→ Y be a morphism of affine varieties, f∗ :
OY −→OX the corresponding ring homomorphism, y ∈ Y a point, and my its
maximal ideal. Denote by R1 the quotient of R := OX ⊗OY (OY /my) by its
nilradical. Then Spec(R1) = f−1(y).

Proof. Step 1: If α ∈ OY vanishes in y, f∗(α) vanishes in all points of f−1(y).
This implies that the set VI of common zeros of the ideal I := OX · f∗my
contains f−1(y).

Step 2: If f(x) 6= y, take a function β ∈ OY vanishing in y and non-zero in
f(x). Since ϕ∗(β)(x) 6= 0 and β(y) = 0, this gives x /∈ VI. We proved that
the set of common zeros of the ideal I = OX · f∗my is equal to f−1(y).

Step 3: Now, strong Nullstellensatz implies that Of−1(y) is a quotient of
R = OX/I by nilradical.

EXERCISE: Give an example when R = OX/I is non-reduced (contains
nilpotents).
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Tensor product of rings and product of varieties

LEMMA: A⊗C B ⊗B B′ = A⊗C B′.
Proof: Follows from associativity of tensor product and B ⊗B B′ = B′.

LEMMA: A⊗C (B/I) = A⊗CB/(1⊗ I), where 1⊗ I denotes the ideal A⊗C I.
Proof: Using M ⊗R (R/I) = M/IM , we obtain

A⊗C (B/I) = (A⊗C B)⊗B (B/I) = (A⊗C B)/(1⊗ I)

Lemma 1: Let A,B be finitely generated rings without nilpotents, R :=
A⊗C B, and N ⊂ R nilradical. Then Spec(R/N) = Spec(A)× Spec(B).

Proof. Step 1: Let A = C[t1, ..., tn]/I,B = C[z1, ..., zk]/J. Then C[t1, ..., tn]⊗C
C[z1, ..., zk] = C[t1, ..., tn, z1, ..., zk]. Applying the previous lemma twice, we
obtain A⊗CB = C[t1, ..., tn, z1, ..., zk]/(I + J). Here I + J means I ⊗ 1⊕ 1⊗ J.

Step 2: The set VI+J of common zeros of I + J is Spec(A) × Spec(B) ⊂
Cn × Ck.

Step 3: Hilbert Nullstellensatz implies Spec(R/N) = VI+J = Spec(A) ×
Spec(B).

REMARK: We shall see that a tensor product R := A ⊗C B of reduced
rings is reduced.
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Tensor product of rings and product of varieties (2)

LEMMA: For any finitely-generated ring A over C, intersection P of all its
maximal ideals is its nilradical.

Proof: Let A = C[t1, ..., tn]/I, and Z = VI the set of common zeros. Strond
Nullstellensatz implies that f ∈ A is nilpotent if and only ig f = 0 in each
point of Z. This is equivalent to f ∈ P .

EXERCISE: Prove this lemma without Nullstellensatz and not assuming
that A is finitely generated.

REMARK: Let A,B be finite generated rings over Cm B −→A a homomor-
phism, and m ⊂ B a maximal ideal. Then the ring A ⊗B (B/m) can contain
nilpotents, even if A and B have no zero divisors.

EXERCISE: Give an example of such rings A,B.

THEOREM: Let A,B be finitely-generated, reduced rings over C, and R :=
A⊗C B their product. Then R is reduced (that is, has no nilpotents).

Proof: see the next slide.

COROLLARY: Spec(A)× Spec(B) = Spec(A⊗C B).
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Tensor product of rings and product of varieties (2)

THEOREM: Let A,B be finitely-generated, reduced rings over C, and R :=

A⊗C B their product. Then R is reduced.

Proof. Step 1: By the previous lemma, it suffices to show that the inter-

section P of maximal ideals of R is 0.

Step 2: Let X,Y denote the varieties Spec(A),Spec(B). Lemma 1 implies

that maximal ideals of R are points of X × Y .

Step 3: Every such ideal is given as mx ⊗OY + OX ⊗ my, where x ∈ X, y ∈ Y .

Then

P =
⋂

X×Y
(mx⊗OY +OX⊗my) =

⋂
Y

⋂
X

mx ⊗OY

 + OX ⊗ my

 =
⋂
Y

OX⊗my = 0.

This follows from
⋂
Y 1⊗ my =

⋂
X mx ⊗ 1 = 0 since A and B are reduced.
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Preimage and diagonal

Claim 2: Let f : X −→ Y be a morphism of algebraic varieties, f∗ : OY −→OX
the corresponding ring homomorphism, Z ⊂ Y a subvariety, and IZ its ideal.
Denote by R1 the quotient of a ring R := OX ⊗OY (OY /IZ) = OX/f

∗(IZ) by
its nilradical. Then Spec(R1) = f−1(Z).

Proof: Clearly, the set of common zeros of the ideal J := f∗(IZ) contains
f−1(Z). On the other hand, for any point x ∈ X such that f(x) /∈ Z there
exist a function g ∈ J such that g(x) 6= 0. Therefore, f−1(Z) = VJ, and
strong Nullstellensatz implies that Of−1(Z) = R1.

Claim 3: Let M be an algebraic variety, and ∆ ⊂ M ×M the diagonal, and
I ⊂ OM ⊗C OM the ideal generated by r ⊗ 1− 1⊗ r for all r ∈ OM . Then O∆
is OM ⊗C OM/I.

Proof. Step 1: By definition of the tensor product, OM ⊗COM/I = OM ⊗OM
OM = OM , hence it is reduced. If we prove that ∆ = VI, the statement of
the claim would follow from strong Nullstellensatz.

Step 2: Clearly, ∆ ⊂ VI. To prove the converse, let (m,m′) ∈ M ×M be
a point not on diagonal, and f ∈ OM a function which satisfies f(m) =
0, f(m′) 6= 0. Then f ⊗ 1− 1⊗ f is non-zero on (m,m′).
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Fibered product

DEFINITION: Let X
πX−→ M,Y

πY−→ M be maps of sets. Fibered product

X ×M Y is the set of all pairs (x, y) ∈ X × Y such that πX(x) = πY (y).

CLAIM: Let X
πX−→ M,Y

πY−→ M be morphism of algebraic varieties, R :=

OX ⊗OM
OY , and R1 the quotient of R by its nilradical. Then Spec(R1) =

X ×M Y .

Proof: Let I be the ideal of diagonal in OM ⊗C OM . Since I is generated by

r ⊗ 1− 1⊗ r (Claim 3), R = OX ⊗C OY /(πX × πY )∗(I). Applying Claim 2, we

obtain that Spec(R1) = (πX × πY )−1(∆).
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