Algebraic geometry: test assignment 1

Rules: Please solve this in class, 10:00-12:00, Tuesday 29.09.2015, and bring the results to my pigeonhole in the mail room at 9-th floor.

Exercise 1.1. Prove that the group of automorphisms of the field \mathbb{R} (real numbers) over \mathbb{Q} (rationals) is trivial.

Exercise 1.2. Let F_1 , F_2 be finite fields with 8 and 16 elements. Find an embedding of F_1 to F_2 , or prove that it does not exist.

Exercise 1.3. An element *a* of the field $\mathbb{Z}/p\mathbb{Z}$ is called **quadratic residue** if $a = x^2$ has a solution modulo *p*. Find the product of all non-zero quadratic residues in $\mathbb{Z}/p\mathbb{Z}$ for all *p*.

Definition 1.1. Let *I* be a set of functions on a space *M*. We denote by V(I) the set of all points $x \in M$ where all $f \in I$ vanish ("the set of common zeros").

Exercise 1.4 (*). Let I be an ideal in the ring $C^0(M)$ of continuous, real-valued functions on a compact topological space M. Prove that V(I) is non-empty.

Exercise 1.5. Show that there exists a non-trivial ideal I in the ring $C(\mathbb{Z})$ of functions on a discrete set \mathbb{Z} with V(I) empty.