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Algebra over a field

Fix a ground field k. Recall that a map (V1 × V2)
µ−→ V3 of vector spaces is

called bilinear of for any v1 ∈ V1, v2 ∈ V2, the maps µ(v1, ·) : V2 −→ V3, µ(·, v2) :

V1 −→ V3 (one element is fixed) is k-linear.

To express this, we use the tensor product sign, and write mu : V1⊗V2 −→ V3.

DEFINITION: Let A be a vector space over k, and µ : A⊗A−→A a bilinear

map (called “multiplication”). The pair (A,µ) is called algebra over a

field k if µ is associative: µ(a1, µ(a2, a3)) = µ(µ(a1, a2), a3)). The product in

algebra is written as a · b or ab. If, in addition, there is an element 1 ∈ A such

that µ(1, a) = µ(a,1) = a for all a ∈ A, this element is called unity, a and A

an algebra with unity.

DEFINITION: A homomorphism of algebras r : A−→A′ is a linear map

which is compatible with a product. Isomorphism of algebras is an invertible

homomorphism. Subalgebra of an algebra A is a vector subspace which is

closed under multiplication.
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Matrix algebra

EXAMPLE: Let V be a vector space, and End(V ) the space of endomor-

phisms, with µ(a, b) = a · b the composition. Then End(V ) is an algebra.

DEFINITION: In this situation End(V ) is called matrix algebra, and de-

noted Mat(V ).

EXERCISE: Prove that End(V ) is non-commutative.

EXERCISE: Let A be an algebra with unity. Prove that A can be realized

as a subalgebra in Mat(V ) for some vector space V .
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Division algebras

DEFINITION: An algebra A with unity is called division algebra if A\0 with
its multiplicative structure is a group. In other words, A is a division algebra
if all non-zero elements of A are invertible.

EXAMPLE: Let H be a 4-dimensional space over R with basis 1, I, J,K.
Consider multiplication defined on the basis by I2 = J2 = K2 = −1 and
I · J = −J · I = K. Then H is called the quaternion algebra.

DEFINITION: Define the conjugation map on H by a+bI+cJ+dK −→ a−
bI − cJ − dK, denoted by z −→ z.

CLAIM: (properties of quaternionic conjugation)
1. x · y = y · x.
2. zz = a2 + b2 + c2 + d2, for any z = a+ bI + cJ + dK. Prove this!.

COROLLARY: Non-zero quaternions are a group with respect to mul-
tiplication.

Proof: Since multiplication of quaternions is already associative, it remains
only to check that any quaternion is invertible. However, z · zzz = 1, and
the quaternion zz is invertible, because it is real.
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Group of unitary quaternions

DEFINITION: A quaternion z is called unitary if |z|2 := zz = 1. The
group of unitary quaternions is denoted by U(1,H). This is a group of all
quaternions satisfying z−1 = z.

CLAIM: Let imH := R3 be the space aI+bJ+cK of all imaginary quaternions.
The map x, y −→ −Re(xy) defines scalar product on imH.

CLAIM: This scalar product is positive definite.

Proof: Indeed, if z = aI + bJ + cK, Re(z2) = −a2 − b2 − c2.

COROLLARY: Consider the action of U(1,H) on ImH with h ∈ U(1,H)
mapping z ∈ ImH to hzh. Since hzh = hzh, this quaternion also imaginary.
Also, |hzh|2 = hzhhzh = h|z|2h = |z|2. This implies that U(1,H) acts on
the space imH by isometries.

DEFINITION: Denote the group of all oriented linear isometries of R3 by
SO(3). This group is called the group of rotations of R3.

REMARK: We have just defined a group homomorphism U(1,H)−→ SO(3)
mapping h, z to hzh.
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Group of rotations of R3

Similar to complex numbers which can be used to describe rotations of R2,

quaternions can be used to describe rotations of R3.

THEOREM: Let U(1,H) be the group of unitary quaternions acting on

R3 = ImH as above: h(x) := hxh. Then the corresponding group homo-

morphism defines an isomorphism Ψ : U(1,H)/{±1} −̃→ SO(3).

COROLLARY: The group SO(3) is identified with the real projective

space RP3.

Proof: Indeed, U(1,H) is identified with a 3-sphere, and RP3 := S3/{±1}.

Proof. Step 1: First, any quaternion h which lies in the kernel of the

homomorpism U(1,H)−→ SO(3) commmutes with all imaginary quaternions,

Such a quaternion must be real (check this). Since |h| = 1, we have h = ±1.

This implies that Ψ is injective.

It remains only to prove that Ψ is surjective.
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Group of rotations of R3 (2)

THEOREM: Let U(1,H) be the group of unitary quaternions acting on

R3 = ImH as above: h(x) := hxh. Then the corresponding group homo-

morphism defines an isomorphism Ψ : U(1,H)/{±1} −̃→ SO(3).

(It remains only to prove that Ψ is surjective)

Step 2: Suppose that τ ∈ SO(3) is a rotation around axis l on 2πα degrees.

Denote by L ∈ S2 ⊂ ImH a unit vector in the line l. We are going to prove

that that Ψ(exp(αL)) = ±τ (sign is determined by the choice of one of

two unit vectors in l).

Step 3: Indeed, Ψ(exp(αL)) preserves l, and any isometry of R3 which fixes

a line is a rotation around this line as an axis. It remains to determine the

degree of rotation. What is clear that t
ψ−→ Ψ(exp(tL)) is a homomorphism

from R to the group Ul of rotations around the axis l. However, L2 = −1,

because L = −L, hence the algebra generated by L is isomorphic to complex

numbers, which gives exp(2πL) = 1, and we obtain that ψ defines a map

from R/2πZ to Ul. Then ψ(t) is necessarily a rotation around l on angle

t, which gives Ψ(exp(αL)).
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The group SO(4)

Consider the following scalar product on H = R4: g(x, y) = Re(xy). Clearly, it

is positive definite. Let U(1,H)×U(1,H) act on H as follows: h1, h2, z −→ h1zh2,

with z ∈ H and h1, h2 ∈ U(1,H). Clearly, |h1zh2|2 = h1zh2h2zh1 = h1zzh1 =

zz, hence the group U(1,H) × U(1,H) acts on H = R4 by isometries.

Clearly, ker Ψ contains a pair (−1,−1) ⊂ U(1,H) × U(1,H). We denote the

group generated by (−1,−1) as {±1} ⊂ U(1,H)× U(1,H).

THEOREM: Denote by SO(4) the group of linear orthogonal automorphisms

of R4, and let Ψ : U(1,H)× U(1,H)/{±1} −→ SO(4) be the group homomor-

phism constructed above, h1, h2(x) = h1xh2. Then Ψ is an isomorphism.

Proof. Step 1: Again, let (h1, h2) ∈ ker Ψ. Since Ψ(h1, h2)(1) = 1, tjis

gives h2 = h1 = h−1
1 . However, h1zh

−1
1 = z means that h1 commutes with z,

which implies that h1 commutes with all quaternions, hence it is real. Then

h1 = ±1. This proves injectivity of Ψ.
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The group SO(4) (2)

THEOREM: Denote by SO(4) the group of linear orthogonal automorphisms

of R4, and let Ψ : U(1,H)× U(1,H)/{±1} −→ SO(4) be the group homomor-

phism constructed above, h1, h2(x) = h1xh2. Then Ψ is an isomorphism.

It remains only to prove injectivity of Ψ.

Step 2: The classification of elements of SO(4) similar to that of SO(3) is

possible: Any orthogonal endomorphism of R4 is a rotation along two

orthogonal 2-dimensional planes; prove it. However, unlike in dim = 3

case, the explicit form of inverse map Ψ−1 is complicated. I give a “heuristic”

(not very rigorous, because I omit the proof of the key lemma) argument using

dimension count.
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The group SO(4) (3): dimension of SO(4).

DEFINITION: An matrix Lie group is a subgroup G ⊂ GL(V ) of the group

GL(V ) of all invertible linear automorphisms of GL(V ) which is locally home-

omorphic to Rk, and k is its dimension.

LEMMA: Let G0 ⊂ G matrix Lie groups of the same dimension. Assume

that G is connected. Then G0 = G.

Step 3: The dimension of the space Gr2(R4) of 2-planes in R4 is counted as

follows. Firstly we chose a line l in this plane. It is given by a point in RP3,

this is 3 dimensions. Secondly, we chose another line orthogonal to the first:

2 more dimensions. To cancel the ambiguity of the choice of the first line,

we identify all pairs of directions in R2, acting by rotations of R2; minus 1

dimension. This gives dim Gr2(R4) = 3 + 2− 1 = 4.

An element of SO(4) is determined by a plane and a pair of rotation angles,

which gives dimSO(4) = 4 + 2 = 6. We obtain dim(U(1,H) × U(1,H)) =

dimSO(4) = 6, and by the lemma above, Ψ : U(1,H)× U(1,H)−→ SO(4)

has to be surjective.
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More algebras: hypercomplex numbers

DEFINITION: Center of a group G is the set of all s ∈ G such that sg = gs

for all g ∈ G. Central subgroup is a subgroup of a center.

DEFINITION: Central extension of a group G0 is a group G1 with central

subgroup Z, such that G1/Z = G0.

DEFINITION: Let G be a finite group containing a central element denoted

by −1 and with all elements of order at most 4. Denote elements of this

group by ±1,±I1,±I2, ...,±In. Let HG be the vector space over R with basis

1, I1, ..., In and multiplication determined by the table of multiplication in G:

IkIl = ±Iµ(i,j). Then HG is called algebra of hypercomplex numbers.

EXAMPLE: Let G = Z/4 = {±1,±I}. Then HG = C.

EXAMPLE: Let G = {±1,±I,±J,±K} ⊂ H. (this group is called quaternion

group). Then HG = H (by definition).

REMARK: Since all elements of G/ ± 1 have order 2, this group is abelian

and its order is 2n. Then G has order 2n+1.
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Split quaternions

EXAMPLE: Let G = {±1,±R,±T,±S}, with relations R2 = T2 = 1, S2 = −1,

RT = −TR = S. Then HG is called algebra of split quaternions.

CLAIM: Algebra of split quaternions is isomorphic to Mat(R2).

Proof: Let R =

(
1 0
0 −1

)
, T =

(
0 1
1 0

)
, S =

(
0 1
−1 0

)
. Then ±1,±R,±T,±S is

a basis in Mat(R2) which satisfies R2 = T2 = 1, S2 = −1, RT = −TR = S.
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