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Algebra over a field

Fix a ground field k. Recall that a map (V1 x V5) L>V3 of vector spaces is
called bilinear of for any vy € V7, vo € V5, the maps u(vy,:) : Vo — Va, u(-,vo) :
Vi1 — V3 (one element is fixed) is k-linear.

To express this, we use the tensor product sign, and write mu : V1 Vo — V3.

DEFINITION: Let A be a vector space over k, and u: AR A — A a bilinear
map (called “multiplication”). The pair (A,u) is called algebra over a
field k if u is associative: p(aq,pu(ar,a3)) = pu(u(ay,ans),asz)). The product in
algebra is written as a-b or ab. If, in addition, there is an element 1 € A such
that u(1,a) = pu(a,1) = a for all a € A, this element is called unity, a and A
an algebra with unity.

DEFINITION: A homomorphism of algebras r: A— A’ is a linear map
which is compatible with a product. Isomorphism of algebras is an invertible
homomorphism. Subalgebra of an algebra A is a vector subspace which is
closed under multiplication.
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Matrix algebra

EXAMPLE: Let V be a vector space, and End(V) the space of endomor-
phisms, with u(a,b) = a-b the composition. Then End(V) is an algebra.

DEFINITION: In this situation End(V) is called matrix algebra, and de-
noted Mat(V).

EXERCISE: Prove that End(V) is non-commutative.

EXERCISE: Let A be an algebra with unity. Prove that A can be realized
as a subalgebra in Mat(V) for some vector space V.
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Division algebras

DEFINITION: An algebra A with unity is called division algebra if A\O with
its multiplicative structure is a group. In other words, A is a division algebra
if all non-zero elements of A are invertible.

EXAMPLE: Let H be a 4-dimensional space over R with basis 1,1, J, K.
Consider multiplication defined on the basis by [? = J2 = K2 = —1 and
I-J=—J-1 =K. Then H is called the quaternion algebra.

DEFINITION: Define the conjugation map on H by a+bl+cJ+dK — a—
bl — cJ — dK, denoted by z — Z.

CLAIM: (properties of quaternionic conjugation)
l. Tvy=79y-7=.
2. 22=a’+b%+ 2+ d?, for any z=a + bl 4+ ¢J + dK. Prove this!.

COROLLARY: Non-zero quaternions are a group with respect to mul-
tiplication.

Proof: Since multiplication of quaternions is already associative, i_t remains
only to check that any quaternion is invertible. However, =z - % = 1, and
the quaternion zz is invertible, because it is real. =
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Group of unitary quaternions

DEFINITION: A quaternion z is called unitary if |z|2 := 2z = 1. The
group of unitary quaternions is denoted by U(1,H). This is a group of all
quaternions satisfying 21 =7z,

CLAIM: Let imH := R3 be the space al+bJ+cK of all imaginary quaternions.
The map z,y — — Re(xy) defines scalar product on im H.

CLAIM: This scalar product is positive definite.
Proof: Indeed, if z=al +bJ + cK, Re(z?) = —a?2 — b2 —c2. m

COROLLARY: Consider the action of U(1,H) on ImH with h € U(1,H)
mapping z € IMmH to hzh. Since hzh = hzh, this quaternion also imaginary.
Also, |hzh|? = hzhhzh = h|z|°h = |z|2. This implies that U(1,H) acts on
the space imH by isometries.

DEFINITION: Denote the group of all oriented linear isometries of R3 by
SO(3). This group is called the group of rotations of R3.

REMARK: We have just defined a group homomorphism U(1,H) — SO(3)
mapping h, z to hzh.
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Group of rotations of R3

Similar to complex numbers which can be used to describe rotations of IR%Q,
quaternions can be used to describe rotations of R3.

THEOREM: Let U(1,H) be the group of unitary quaternions acting on
R3 = Im H as above: h(z) := hzh. Then the corresponding group homo-
morphism defines an isomorphism WV : U(1,H)/{+1} = SO(3).

COROLLARY: The group SO(3) is identified with the real projective
space RP3.
Proof: Indeed, U(1,H) is identified with a 3-sphere, and RP3 := S3/{il}.n

Proof. Step 1: First, any quaternion h which lies in the kernel of the
homomorpism U(1,H) — SO(3) commmutes with all imaginary quaternions,
Such a quaternion must be real (check this). Since |h| = 1, we have h = +1.
This implies that W is injective.

It remains only to prove that W is surjective.
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Group of rotations of R3 (2)

THEOREM: Let U(1,H) be the group of unitary quaternions acting on
R3 = Im H as above: h(z) := hzh. Then the corresponding group homo-
morphism defines an isomorphism W : U(1,H)/{£1} = SO(3).

(It remains only to prove that WV is surjective)

Step 2: Suppose that 7 € SO(3) is a rotation around axis [ on 27« degrees.
Denote by L € S2 ¢ ImH a unit vector in the line I. We are going to prove
that that W(exp(alL)) = =7 (sign is determined by the choice of one of
two unit vectors in ).

Step 3: Indeed, W(exp(aL)) preserves [, and any isometry of R3 which fixes
a line is a rotation around this line as an axis. It remains to determine the
degree of rotation. What is clear that ¢ 2, W(exp(tL)) is a homomorphism
from R to the group U; of rotations around the axis [. However, [2 = —1,
because . = —L, hence the algebra generated by L is isomorphic to complex
numbers, which gives exp(27L) = 1, and we obtain that ¢ defines a map
from R/2xn7Z to U;. Then v (t) is necessarily a rotation around [ on angle
t, which gives W(exp(alL)). =

-
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The group SO(4)

Consider the following scalar product on H = R%: g(x,y) = Re(ay). Clearly, it
is positive definite. Let U(1,H)xU(1,H) act on H as follows: hy, ho, 2 — hyzho,
with z € H and hy,ho € U(1,H). Clearly, |hizho|?2 = hizhohoZhi = h12Zh] =
2z, hence the group U(1,H) x U(1,H) acts on H = R* by isometries.
Clearly, ker W contains a pair (—=1,—-1) C U(1,H) x U(1,H). We denote the
group generated by (—1,—1) as {1} C U(1,H) x U(1,H).

THEOREM: Denote by SO(4) the group of linear orthogonal automorphisms
of R4, and let W : U(1,H) x U(1,H)/{£1} — SO(4) be the group homomor-
phism constructed above, hi, ho(x) = hizho. Then W is an isomorphism.

Proof. Step 1: Again, let (h1,ho) € kerW. Since W(hy,hy)(1) = 1, tjis
gives ho = hy = hfl. However, hlzhfl = z means that h; commutes with z,
which implies that h; commutes with all quaternions, hence it is real. Then
h1 = £1. This proves injectivity of W.
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The group SO(4) (2)

THEOREM: Denote by SO(4) the group of linear orthogonal automorphisms
of R4, and let W: U(1,H) x U(1,H)/{£1} — SO(4) be the group homomor-
phism constructed above, hi, ho(x) = hizho. Then W is an isomorphism.

It remains only to prove injectivity of W,

Step 2: The classification of elements of SO(4) similar to that of SO(3) is
possible: Any orthogonal endomorphism of R% is a rotation along two
orthogonal 2-dimensional planes; prove it. However, unlike in dim = 3
case, the explicit form of inverse map w—1is complicated. I give a “heuristic”
(not very rigorous, because I omit the proof of the key lemma) argument using
dimension count.



Algebra, lecture 2 M. Verbitsky

The group SO(4) (3): dimension of SO(4).

DEFINITION: An matrix Lie group is a subgroup G C GL(V) of the group
GL(V) of all invertible linear automorphisms of GL(V') which is locally home-
omorphic to R*, and k is its dimension.

LEMMA: Let Gy C G matrix Lie groups of the same dimension. Assume
that G is connected. Then Gg = G.

Step 3: The dimension of the space Gro(R*) of 2-planes in R* is counted as
follows. Firstly we chose a line [ in this plane. It is given by a point in RP3,
this is 3 dimensions. Secondly, we chose another line orthogonal to the first:
2 more dimensions. To cancel the ambiguity of the choice of the first line,
we identify all pairs of directions in R2, acting by rotations of R2; minus 1
dimension. This gives dim Gro(R*) =3 4+2 -1 = 4.

An element of SO(4) is determined by a plane and a pair of rotation angles,
which gives dimSO(4) = 4+ 2 = 6. We obtain dm((U(1,H) x U(1,H)) =
dimSO(4) = 6, and by the lemma above, V: U(1,H) x U(1,H) — SO(4)
has to be surjective. =
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More algebras: hypercomplex numbers

DEFINITION: Center of a group G is the set of all s € G such that sg = gs
for all g € G. Central subgroup is a subgroup of a center.

DEFINITION: Central extension of a group Gg is a group G1 with central
subgroup Z, such that G1/7Z = Gp.

DEFINITION: Let GG be a finite group containing a central element denoted
by —1 and with all elements of order at most 4. Denote elements of this
group by +1,+1y,%1o,...,+1I,. Let Hy be the vector space over R with basis
1,14, ..., I, and multiplication determined by the table of multiplication in G-
I.1; = i[u(i,j). Then Hg is called algebra of hypercomplex numbers.

EXAMPLE: Let G =Z/4 = {£1,+I}. Then Hy = C.

EXAMPLE: Let G = {#£1,+1,4+J,£K} C H. (this group is called quaternion
group). Then Hy = H (by definition).

REMARK: Since all elements of G/ + 1 have order 2, this group is abelian

and its order is 2. Then G has order 2711,
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Split quaternions

EXAMPLE: Let G = {£+1,+R,+T,+S}, with relations R2 =T2 =1,58% = —1,
RT = -TR=S5. Then Hg is called algebra of split quaternions.

CLAIM: Algebra of split quaternions is isomorphic to Mat(R?).

_ (1 0 (0 1 (0 1 .
Proof: LetR_<O _1>,T_<1 O>’5_<—1 O)' Then £1, +R,£T1,+S is

a basis in Mat(R?2) which satisfies R2=T72=1,52=—-1, RT=-TR=2S. n
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