Algebra and Geometry

lecture 3: algebras defined by generators and relations

Misha Verbitsky

Université Libre de Bruxelles

October 20, 2016

Algebra over a field (reminder)

Fix a ground field k. Recall that a map $(V_1 \times V_2) \xrightarrow{\mu} V_3$ of vector spaces is called **bilinear** of for any $v_1 \in V_1$, $v_2 \in V_2$, the maps $\mu(v_1, \cdot) : V_2 \longrightarrow V_3$, $\mu(\cdot, v_2) : V_1 \longrightarrow V_3$ (one element is fixed) is k-linear.

To express this, we use the tensor product sign, and write μ : $V_1 \otimes V_2 \longrightarrow V_3$.

DEFINITION: Let *A* be a vector space over *k*, and $\mu : A \otimes A \longrightarrow A$ a bilinear map (called "multiplication"). The pair (A, μ) is called **algebra over a** field *k* if μ is associative: $\mu(a_1, \mu(a_2, a_3)) = \mu(\mu(a_1, a_2), a_3))$. The product in algebra is written as $a \cdot b$ or ab. If, in addition, there is an element $1 \in A$ such that $\mu(1, a) = \mu(a, 1) = a$ for all $a \in A$, this element is called **unity**, a and *A* an algebra with unity.

DEFINITION: A homomorphism of algebras $r : A \rightarrow A'$ is a linear map which is compatible with a product. **Isomorphism** of algebras is an invertible homomorphism. **Subalgebra** of an algebra A is a vector subspace which is closed under multiplication.

Algebraic and transcendental numbers

DEFINITION: Let $k \subset K$ be a field contained in a bigger field. In this case we say that k is a subfield of K, and K is extension of k. An element $x \in K$ is called algebraic over k if x is a root of a non-zero polynomial with coefficients in k.

DEFINITION: Algebraic number is an element of \mathbb{C} which is algebraic over \mathbb{Q} . **Transcendental number** is an element which is not algebraic.

REMARK: The set of algebraic numbers is countable. Indeed, there is a countable number of non-zero polynomials in $\mathbb{Q}[t]$, each of them has finitely many roots, hence their roots also can be counted. Since \mathbb{C} is non-countable, **there are a continually many transcendental numbers**.

Algebra, lecture 3

M. Verbitsky

Algebraic elements in a field extension

CLAIM: Let $x \in K$ be an element which is algebraic over $k \subset K$. Then the algebra $k[x] := \langle 1, x, x^2, x^3, ..., x^n, ... \rangle$ generated by x is finite-dimensional over k.

Proof: Indeed, if x is a root of $P(t) = t^n + \sum_{i=0}^{n-1} a_i t^i$, then x^n is expressed as a linear combination of smaller degrees: $x^n = -\sum_{i=0}^{n-1} a_i x^i$. Then the same is true for x^{n+1} and so on:

$$x^{n+1} = -\sum_{i=0}^{n-1} a_i x^{i+1} = -\sum_{i=1}^{n-1} a_i x^i + a_{n-1} \sum_{i=0}^{n-1} a_i x^i$$

and so on: the algebra k[x] is *n*-dimensional over k.

The converse is also true, by the same argument:

CLAIM: Let $k \subset K$ and $x \in K$ be an element such that k[x] is finitedimensional over k. Then x is algebraic over k.

EXERCISE: Prove it!

COROLLARY: Suppose that x is algebraic over k. Then all elements of k[x] are algebraic over k.

Finite extensions

PROPOSITION: Let $x \in K$ be an algebraic element over $k \subset K$. Then k[x] is a field.

Proof: Multiplication by x defines an invertible map $L_x : k[x] \longrightarrow k[x]$, mapping z to xz. Since k[x] is finite-dimensional, L_x is invertible. Then there exists $v \in k[x]$ such that $L_x(v) = 1$, giving xv = 1.

DEFINITION: A finite extension is a field extension $K \supset k$ which is finitedimensional as a vector space over k.

REMARK: As we just proved, all elements of a finite extension are algebraic over k.

Field of algebraic numbers

LEMMA: Let $K_1 \subset K_2 \subset K_3$ be fields such that K_2 is finite-dimensional over K_1 , and K_3 is finite-dimensional over K_2 . Then K_3 is finite-dimensional over K_1 .

EXERCISE: Prove it!

PROPOSITION: A sum and a product of two algebraic numbers is algebraic.

Proof: Let α , β be algebraic over k elements of its extension $K \supset k$. Then $K_1 := k[\alpha]$ is a finite extension of k, and $K_2 := K_1[\beta]$ is finite over K_1 . Applying the precious lemma, we obtain that $K_2 = k[\alpha, \beta]$ is finite-dimensional over k, and hence **all its elements are algebraic.**

REMARK: We obtained that the set of algebraic numbers in \mathbb{C} is closed under all field operation (addition, substraction, multiplication, division), which defines **the field algebraic numbers**, denoted by $\overline{\mathbb{Q}}$.

EXERCISE: Using "fundamental theorem of algebra", prove that $\overline{\mathbb{Q}}$ is algebraically closed, that is, for each polynomial $P(t) \in \overline{Q}[t]$ of degree > 0, the equation P(t) = 0 has solutions in $\overline{\mathbb{Q}}$.

Algebra of polylinear forms

DEFINITION: Let V be a vector space over a field k. A polylinear *n*-form, or *n*-linear form φ on V is a map

$$\varphi: \underbrace{V \times V \times V \times \cdots \times V}_{n \text{ times}} \longrightarrow k,$$

linear in each argument. We write this as $\varphi : V \otimes V \otimes V \otimes \cdots \otimes V \longrightarrow k$. It is convenient to denote the space of *n*-linear forms as $(V^*)^{\otimes^n}$. In this notation, $(V^*)^{\otimes^0}$ is k (the ground field).

DEFINITION: Given polylinear *j*- and *i*-forms φ and ψ on *V*, the map $\varphi \otimes \psi$: $\underbrace{V \times V \times V \times \ldots}_{i+j} \longrightarrow k$ is given by

$$(\varphi \otimes \psi)(v_1, v_2, \ldots, v_{i+j}) = \varphi(v_1, \ldots, v_i)\varphi(v_{i+1}, \ldots, v_{i+j})$$

is clearly polylinear. This gives a multiplicative structure on the space $\bigoplus_{i=0}^{\infty} (V^*)^{\otimes^i}$, which is clearly associative. We call $\bigoplus_{i=0}^{\infty} (V^*)^{\otimes^i}$ the algebra of polylinear forms.

Tensor algebra

Let $V \times W$ map to $V \otimes W$ by putting v, w to $v \otimes w$. Clearly, this map is bilinear. Similarly, one has a bilinear map $V^{\otimes m} \times V^{\otimes n} \longrightarrow V^{\otimes m+n}$ putting $x_1 \otimes ... \otimes x_n, y_1 \otimes ... \otimes y_n$ to $x_1 \otimes ... \otimes x_n \otimes y_1 \otimes ... \otimes y_n$.

DEFINITION: Let V be a vector space over k. Tensor algebra, or free algebra generated by V is $T(V) := \bigoplus_i V^{\otimes^i}$ equipped with the multiplicative structure defined above,

EXERCISE: Prove that $T(V^*)$ is the algebra of polylinear forms on V defined above.

REMARK: If $x_1, ..., x_r$ is a basis in V, then the basis in V^{\otimes^n} is formed by all different monomials of the form $x_{i_1} \otimes x_{i_2} \otimes ... \otimes x_{i_n}$.

Algebra, lecture 3

M. Verbitsky

Universal property of tensor algebra

CLAIM: Let $\varphi : V \longrightarrow A$ be a linear map from a vector space V to an algebra A (with unit). Then φ can be uniquely extended to a homomorphism $\Phi : T(V) \longrightarrow A$ respecting a unit.

Proof. Step 1: Uniqueness is clear: indeed, T(V) is multiplicatively generated by V (and unit).

Step 2: The vector space T(V) is a quotient of the space $T_f(V)$ freely generated by the symbols $x_1 \otimes x_2 \otimes ... \otimes x_n$, $x_i \in V$ by the space $T_b(V)$ generated by "bilinear relations" of type

 $x_1 \otimes x_2 \otimes \ldots \otimes (x_i + x'_i) \otimes \ldots \otimes x_n = x_1 \otimes x_2 \otimes \ldots \otimes x_i \otimes \ldots \otimes x_n + x_1 \otimes x_2 \otimes \ldots \otimes x'_i \otimes \ldots \otimes x_n.$ and

$$x_1 \otimes x_2 \otimes \ldots \otimes ax_i \otimes \ldots \otimes x_n = a \cdot x_1 \otimes x_2 \otimes \ldots \otimes x_i \otimes \ldots \otimes x_n$$

The map φ is extended to $T_f(V)$ by putting

$$\Phi(x_1 \otimes x_2 \otimes ... \otimes x_n) = \varphi(x_1)\varphi(x_2)...\varphi(x_n).$$

This map vanishes on $T_w(V)$, because the product map $A \otimes A \otimes ... \otimes A \longrightarrow A$ satisfies the bilinear relations.

Two-sided ideals

DEFINITION: Let A be an algebra and $J \subset A$ its subspace. Then J is called **left ideal** if for all $a \in A, j \in J$, one has $ja \in J$, and **right ideal** if one has $aj \in J$. J is called **two-sided ideal** if is is both right and left ideal.

REMARK: Let $J \subset A$ be a two-sided ideal, $x, y \in A/J$ some vectors, and \tilde{x}, \tilde{y} Define the product $xy \in A/J$ by putting $x \cdot y$ to the class represented by \tilde{x}, \tilde{y} . Since $ja \in J$ and $aj \in J$, **this gives a bilinear map** $A/J \otimes A/J \longrightarrow A/J$, defining an associative multiplicative structure on A/J.

CLAIM: In these assumptions, A/J is an algebra, with the product defined as above.

EXERCISE: Prove it.

Algebra defined by generators and relations

DEFINITION: Let V be a vector space over k ("the space of generators"), and $W \subset T(V)$ another vector space ("the space of relations"). Consider a quotient A of T(V) by the subspace T(V)WT(V) generated by the vectors $v \otimes w \otimes v'$, where $w \in W$ and $v, v' \in T(V)$.

CLAIM: There is a natural product structure on the space $A := \frac{T(V)}{T(V)WT(V)}$.

Proof: T(V)WT(V) is a 2-sided ideal.

DEFINITION: In this situation, we say that A is an algebra defined by generators and relations.

EXERCISE: Prove that any algebra can be defined by generators and relations.

Finitely presented algebras

DEFINITION: An algebra is called **finitely generated** if it can be defined by generators and relations, and the space of generators is finitely-dimensional. An algebra is called **finitely presented** if the space *W* of relations is finitely-dimensional.

EXERCISE: Find an algebra which is finitely-generated, but not finitely presented.

EXERCISE: Prove that any finitely-dimensional algebra is finitely presented.

EXERCISE: Represent the algebra of Laurent polynomials $k[t, t^{-1}]$ by generators and relations.

EXERCISE: Represent the polynomial algebra k[x, y] by generators and relations.

Clifford algebras

Let V be a vector space with bilinear symmetric form $g: V \otimes V \longrightarrow \mathbb{R}$. Consider the algebra Cl(V) generated by V and defined by relations

 $v_1 \cdot v_2 + v_2 \cdot v_1 = g(v_1, v_2) \cdot 1,$

for all $v_1, v_2 \in V$. This algebra is called a **Clifford alfebra** over k.

EXERCISE: Represent complex numbers as a Clifford algebra over \mathbb{R} .

EXERCISE: Represent quaternions as a Clifford algebra over \mathbb{R} .