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Algebra over a field (reminder)

Fix a ground field k. Recall that a map (V1 × V2)
µ−→ V3 of vector spaces is

called bilinear of for any v1 ∈ V1, v2 ∈ V2, the maps µ(v1, ·) : V2 −→ V3, µ(·, v2) :

V1 −→ V3 (one element is fixed) is k-linear.

To express this, we use the tensor product sign, and write µ : V1⊗ V2 −→ V3.

DEFINITION: Let A be a vector space over k, and µ : A⊗A−→A a bilinear

map (called “multiplication”). The pair (A,µ) is called algebra over a

field k if µ is associative: µ(a1, µ(a2, a3)) = µ(µ(a1, a2), a3)). The product in

algebra is written as a · b or ab. If, in addition, there is an element 1 ∈ A such

that µ(1, a) = µ(a,1) = a for all a ∈ A, this element is called unity, a and A

an algebra with unity.

DEFINITION: A homomorphism of algebras r : A−→A′ is a linear map

which is compatible with a product. Isomorphism of algebras is an invertible

homomorphism. Subalgebra of an algebra A is a vector subspace which is

closed under multiplication.
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Algebraic and transcendental numbers

DEFINITION: Let k ⊂ K be a field contained in a bigger field. In this case

we say that k is a subfield of K, and K is extension of k. An element

x ∈ K is called algebraic over k if x is a root of a non-zero polynomial with

coefficients in k.

DEFINITION: Algebraic number is an element of C which is algebraic over

Q. Transcendental number is an element which is not algebraic.

REMARK: The set of algebraic numbers is countable. Indeed, there is a

countable number of non-zero polynomials in Q[t], each of them has finitely

many roots, hence their roots also can be counted. Since C is non-countable,

there are a continually many transcendental numbers.
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Algebraic elements in a field extension

CLAIM: Let x ∈ K be an element which is algebraic over k ⊂ K. Then the
algebra k[x] := 〈1, x, x2, x3, ..., xn, ...〉 generated by x is finite-dimensional
over k.

Proof: Indeed, if x is a root of P (t) = tn +
∑n−1
i=0 ait

i, then xn is expressed as
a linear combination of smaller degrees: xn = −

∑n−1
i=0 aix

i. Then the same is
true for xn+1 and so on:

xn+1 = −
n−1∑
i=0

aix
i+1 = −

n−1∑
i=1

aix
i + an−1

n−1∑
i=0

aix
i

and so on: the algebra k[x] is n-dimensional over k.

The converse is also true, by the same argument:

CLAIM: Let k ⊂ K and x ∈ K be an element such that k[x] is finite-
dimensional over k. Then x is algebraic over k.

EXERCISE: Prove it!

COROLLARY: Suppose that x is algebraic over k. Then all elements of
k[x] are algebraic over k.
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Finite extensions

PROPOSITION: Let x ∈ K be an algebraic element over k ⊂ K. Then k[x]

is a field.

Proof: Multiplication by x defines an invertible map Lx : k[x]−→ k[x], map-

ping z to xz. Since k[x] is finite-dimensional, Lx is invertible. Then there

exists v ∈ k[x] such that Lx(v) = 1, giving xv = 1.

DEFINITION: A finite extension is a field extension K ⊃ k which is finite-

dimensional as a vector space over k.

REMARK: As we just proved, all elements of a finite extension are

algebraic over k.
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Field of algebraic numbers

LEMMA: Let K1 ⊂ K2 ⊂ K3 be fields such that K2 is finite-dimensional over
K1, and K3 is finite-dimensional over K2. Then K3 is finite-dimensional
over K1.

EXERCISE: Prove it!

PROPOSITION: A sum and a product of two algebraic numbers is
algebraic.

Proof: Let α, β be algebraic over k elements of its extension K ⊃ k. Then
K1 := k[α] is a finite extension of k, and K2 := K1[β] is finite over K1.
Applying the precious lemma, we obtain that K2 = k[α, β] is finite-dimensional
over k, and hence all its elements are algebraic.

REMARK: We obtained that the set of algebraic numbers in C is closed un-
der all field operation (addition, substraction, multiplication, division), which
defines the field algebraic numbers, denoted by Q.

EXERCISE: Using “fundamental theorem of algebra”, prove that Q is alge-
braically closed, that is, for each polynomial P (t) ∈ Q[t] of degree > 0, the
equation P (t) = 0 has solutions in Q.
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Algebra of polylinear forms

DEFINITION: Let V be a vector space over a field k. A polylinear n-form,

or n-linear form ϕ on V is a map

ϕ : V × V × V × · · · × V︸ ︷︷ ︸
n times

−→ k,

linear in each argument. We write this as ϕ : V ⊗ V ⊗ V ⊗ · · · ⊗ V −→ k. It is

convenient to denote the space of n-linear forms as (V ∗)⊗
n
. In this notation,

(V ∗)⊗
0

is k (the ground field).

DEFINITION: Given polylinear j- and i-forms ϕ and ψ on V , the map ϕ⊗ψ :

V × V × V × . . .︸ ︷︷ ︸
i+j

−→ k is given by

(ϕ⊗ ψ)(v1, v2, . . . , vi+j) = ϕ(v1, . . . , vi)ϕ(vi+1, . . . , vi+j)

is clearly polylinear. This gives a multiplicative structure on the space
⊕∞
i=0(V ∗)⊗

i
,

which is clearly associative. We call
⊕∞
i=0(V ∗)⊗

i
the algebra of polylinear

forms.
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Tensor algebra

Let V × W map to V ⊗ W by putting v, w to v ⊗ w. Clearly, this map is

bilinear. Similarly, one has a bilinear map V ⊗m × V ⊗n −→ V ⊗m+n putting

x1 ⊗ ...⊗ xn, y1 ⊗ ...⊗ yn to x1 ⊗ ...⊗ xn ⊗ y1 ⊗ ...⊗ yn.

DEFINITION: Let V be a vector space over k. Tensor algebra, or free

algebra generated by V is T (V ) :=
⊕
i V
⊗i equipped with the multiplicative

structure defined above,

EXERCISE: Prove that T (V ∗) is the algebra of polylinear forms on V

defined above.

REMARK: If x1, ..., xr is a basis in V , then the basis in V ⊗
n

is formed by

all different monomials of the form xi1 ⊗ xi2 ⊗ ...⊗ xin.
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Universal property of tensor algebra

CLAIM: Let ϕ : V −→A be a linear map from a vector space V to an algebra

A (with unit). Then ϕ can be uniquely extended to a homomorphism

Φ : T (V )−→A respecting a unit.

Proof. Step 1: Uniqueness is clear: indeed, T (V ) is multiplicatively gen-

erated by V (and unit).

Step 2: The vector space T (V ) is a quotient of the space Tf(V ) freely

generated by the symbols x1⊗x2⊗...⊗xn, xi ∈ V by the space Tb(V ) generated

by “bilinear relations” of type

x1⊗x2⊗...⊗(xi+x′i)⊗...⊗xn = x1⊗x2⊗...⊗xi⊗...⊗xn+x1⊗x2⊗...⊗x′i⊗...⊗xn.

and

x1 ⊗ x2 ⊗ ...⊗ axi ⊗ ...⊗ xn = a · x1 ⊗ x2 ⊗ ...⊗ xi ⊗ ...⊗ xn

The map ϕ is extended to Tf(V ) by putting

Φ(x1 ⊗ x2 ⊗ ...⊗ xn) = ϕ(x1)ϕ(x2)...ϕ(xn).

This map vanishes on Tw(V ), because the product map A⊗ A⊗ ...⊗ A−→A

satisfies the bilinear relations.
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Two-sided ideals

DEFINITION: Let A be an algebra and J ⊂ A its subspace. Then J is caled

left ideal if for all a ∈ A, j ∈ J, one has ja ∈ J, and right ideal if one has

aj ∈ J. J is called two-sided ideal if is is both right and left ideal.

REMARK: Let J ⊂ A be a two-sided ideal, x, y ∈ A/J some vectors, and

x̃, ỹ Define the product xy ∈ A/J by putting x · y to the class represented by

x̃, ỹ. Since ja ∈ J and aj ∈ J, this gives a bilinear map A/J ⊗ A/J −→A/J,

defining an associative multiplicative structure on A/J.

CLAIM: In these assumptions, A/J is an algebra, with the product defined

as above.

EXERCISE: Prove it.
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Algebra defined by generators and relations

DEFINITION: Let V be a vector space over k (“the space of generators”),

and W ⊂ T (V ) another vector space (“the space of relations”). Consider

a quotient A of T (V ) by the subspace T (V )WT (V ) generated by the vectors

v ⊗ w ⊗ v′, where w ∈W and v, v′ ∈ T (V ).

CLAIM: There is a natural product structure on the space A := T (V )
T (V )WT (V ).

Proof: T (V )WT (V ) is a 2-sided ideal.

DEFINITION: In this situation, we say that A is an algebra defined by

generators and relations.

EXERCISE: Prove that any algebra can be defined by generators and

relations.
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Finitely presented algebras

DEFINITION: An algebra is called finitely generated if it can be defined by

generators and relations, and the space of generators is finitely-dimensional.

An algebra is called finitely presented if the space W of relations is finitely-

dimensional.

EXERCISE: Find an algebra which is finitely-generated, but not finitely

presented.

EXERCISE: Prove that any finitely-dimensional algebra is finitely pre-

sented.

EXERCISE: Represent the algebra of Laurent polynomials k[t, t−1] by gen-

erators and relations.

EXERCISE: Represent the polynomial algbera k[x, y] by generators and re-

lations.
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Clifford algebras

Let V be a vector space with bilinear symmetric form g : V ⊗V −→ R. Consider

the algebra Cl(V ) generated by V and defined by relations

v1 · v2 + v2 · v1 = g(v1, v2) · 1,

for all v1, v2 ∈ V . This algebra is called a Clifford alfebra over k.

EXERCISE: Represent complex numbers as a Clifford algebra over R.

EXERCISE: Represent quaternions as a Clifford algebra over R.
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