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Algebra over a field (reminder)

Fix a ground field k. Recall that a map (V1 x V5) L>V3 of vector spaces is
called bilinear of for any vy € V7, vo € V5, the maps u(vy,:) : Vo — Va, u(-,vo) :
Vi1 — V3 (one element is fixed) is k-linear.

To express this, we use the tensor product sign, and write u: V3 ® Vo — V3.

DEFINITION: Let A be a vector space over k, and u: AR A — A a bilinear
map (called “multiplication”). The pair (A,u) is called algebra over a
field k if u is associative: p(aq,pu(ar,a3)) = pu(u(ay,ans),asz)). The product in
algebra is written as a-b or ab. If, in addition, there is an element 1 € A such
that u(1,a) = pu(a,1) = a for all a € A, this element is called unity, a and A
an algebra with unity.

DEFINITION: A homomorphism of algebras r: A— A’ is a linear map
which is compatible with a product. Isomorphism of algebras is an invertible
homomorphism. Subalgebra of an algebra A is a vector subspace which is
closed under multiplication.
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Algebraic and transcendental numbers

DEFINITION: Let £ C K be a field contained in a bigger field. In this case
we say that k£ is a subfield of K, and K is extension of k. An element
x € K is called algebraic over k if x is a root of a non-zero polynomial with
coefficients in k.

DEFINITION: Algebraic number is an element of C which is algebraic over
Q. Transcendental number is an element which is not algebraic.

REMARK: The set of algebraic numbers is countable. Indeed, there is a
countable number of non-zero polynomials in Q[t], each of them has finitely
many roots, hence their roots also can be counted. Since C is non-countable,
there are a continually many transcendental numbers.
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Algebraic elements in a field extension

CLAIM: Let x € K be an element which is algebraic over £k C K. Then the
algebra k[z] := (1,z,22,23,...,z",...) denerated by z is finite-dimensional
over k.

Proof: Indeed, if z is a root of P(t) =t" + Z?:_& a;tt, then z" is expressed as
a linear combination of smaller degrees: z™ = —Z?{‘;& a;x'. Then the same is
true for 2™t and so on:

n—1 _ n—1 _ n—1 _
"l = > a;x' Tl = — > aittap—1 > ai’
and so on: the algebra k[x] is n-dimensional over k. =
The converse is also true, by the same argument:

CLAIM: Let £ C K and z € K be an element such that k[z] is finite-
dimensional over k. Then z is algebraic over k.

EXERCISE: Prove it!

COROLLARY: Suppose that z is algebraic over k. Then all elements of
k[x] are algebraic over k.
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Finite extensions

PROPOSITION: Let z € K be an algebraic element over £k C K. Then k[z]
iIs a field.

Proof: Multiplication by z defines an invertible map L : k[x] — k[x], map-
ping z to zz. Since k[z] is finite-dimensional, L, is invertible. Then there
exists v € k[x] such that Ly(v) =1, givingzv =1. =

DEFINITION: A finite extension is a field extension K D k which is finite-
dimensional as a vector space over k.

REMARK: As we just proved, all elements of a finite extension are
algebraic over k.
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Field of algebraic numbers

LEMMA: Let K1 C Ko C K3 be fields such that K5 is finite-dimensional over
Ky, and K3 is finite-dimensional over Ko. Then K3 is finite-dimensional
over Kj.

EXERCISE: Prove it!

PROPOSITION: A sum and a product of two algebraic numbers is
algebraic.

Proof: Let «, 8 be algebraic over k£ elements of its extension K D k. Then
K1 = k[a] is a finite extension of k, and K, := Ky[8] is finite over Kj.
Applying the precious lemma, we obtain that K> = k[«, 8] is finite-dimensional
over k, and hence all its elements are algebraic. m

REMARK: We obtained that the set of algebraic numbers in C is closed un-
der all field operation (addition, substraction, multiplication, division), which
defines the field algebraic numbers, denoted by Q.

EXERCISE: Using “fundamental theorem of algebra”, prove that Q is alge-
braically closed, that is, for each polynomial P(t) € Q[t] of degree > 0, the
equation P(t) = 0 has solutions in Q.
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Algebra of polylinear forms

DEFINITION: Let V be a vector space over a field k. A polylinear n-form,
or n-linear form ¢ on V is a map

p: VXVXVX...xV —k,

n times
linear in each argument. We write thisas ¢ : VVIVR:---QV — k. It is
convenient to denote the space of n-linear forms as (V*)‘X’n. In this notation,
(V*)®° is k (the ground field).

DEFINITION: Given polylinear j- and -forms ¢ and ¥y on V, the map ¢p®y

VXXV xVx...—kis given by
i+

(90 X QP)(UL’UQ, <. 7vz'—|—j) — 90(/017 co 7/02')90(/07;4—17 R 7vi—|—j)

IS clearly polylinear. This gives a multiplicative structure on the space GB,?;O(V*)@,

which is clearly associative. We call @;};O(V*)@i the algebra of polylinear
forms.
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Tensor algebra

Let V X W map to V@ W by putting v,w to v ® w. Clearly, this map is
bilinear. Similarly, one has a bilinear map V®m x V®n _ y®m+n pytting

DEFINITION: Let V be a vector space over k. Tensor algebra, or free
algebra generated by V is T(V) := &; V®" equipped with the multiplicative
structure defined above,

EXERCISE: Prove that T'(V*) is the algebra of polylinear forms on V
defined above.

REMARK: If z1,....z, is @ basis in V, then the basis in V®" is formed by
all different monomials of the form z;, ® z;, ® ... ® ;.
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Universal property of tensor algebra

CLAIM: Let o: V — A be a linear map from a vector space V to an algebra
A (with unit). Then ¢ can be uniquely extended to a homomorphism
b T(V) — A respecting a unit.

Proof. Step 1: Uniqueness is clear: indeed, T'(V) is multiplicatively gen-
erated by V (and unit).

Step 2: The vector space T (V) is a quotient of the space Ty(V) freely
generated by the symbols 1 ®z2®...Qxn, x; € V by the space T,(V') generated
by “bilinear relations” of type

T1R22R..0(z;+2)®..0%n = 21Q029®...0,®...Q0Tn+21RT2R...0T, R... Q.
and

T1RT2X ... R0ar; K ... T —a-T1RXT2X ... 0T; ... ¥ T
The map ¢ is extended to Tf(V) by putting

P(r1 @12 ® ... ®Tp) = @(x1)@(x2)...0(TN).

This map vanishes on T, (V), because the product map AR AR .. A— A
satisfies the bilinear relations. =
9



Algebra, lecture 3 M. Verbitsky

Two-sided ideals

DEFINITION: Let A be an algebra and J C A its subspace. Then J is caled
left ideal if for all a € A,57 € J, one has ja € J, and right ideal if one has
aj € J. J is called two-sided ideal if is is both right and left ideal.

REMARK: Let J C A be a two-sided ideal, z,y € A/J some vectors, and
z,y Define the product zy € A/J by putting x -y to the class represented by
x,y. Since ja € J and aj € J, this gives a bilinear map A/J® A/J — A/J,
defining an associative multiplicative structure on A/J.

CLAIM: In these assumptions, A/J is an algebra, with the product defined
as above.

EXERCISE: Prove it.
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Algebra defined by generators and relations

DEFINITION: Let V be a vector space over k£ ( “the space of generators’ ),
and W C T(V) another vector space (“the space of relations” ). Consider
a quotient A of T'(V) by the subspace T(V)WT (V) generated by the vectors
v®@w v, where w € W and v,v € T(V).

CLAIM: There is a natural product structure on the space A := (V)

= TOOWT(V)"

Proof: T(V)WT (V) is a 2-sided ideal. =

DEFINITION: In this situation, we say that A is an algebra defined by
generators and relations.

EXERCISE: Prove that any algebra can be defined by generators and
relations.
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Finitely presented algebras

DEFINITION: An algebra is called finitely generated if it can be defined by
generators and relations, and the space of generators is finitely-dimensional.
An algebra is called finitely presented if the space W of relations is finitely-
dimensional.

EXERCISE: Find an algebra which is finitely-generated, but not finitely
presented.

EXERCISE: Prove that any finitely-dimensional algebra is finitely pre-
sented.

EXERCISE: Represent the algebra of Laurent polynomials k[t,t—1] by gen-
erators and relations.

EXERCISE: Represent the polynomial algbera k[xz,y] by generators and re-
lations.
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Clifford algebras

Let V be a vector space with bilinear symmetric form g : V®V — R. Consider
the algebra CI(V) generated by V and defined by relations

v1 - vp +vo - v = g(vy,v2) - 1,

for all v1,v> € V. This algebra is called a Clifford alfebra over k.
EXERCISE: Represent complex numbers as a Clifford algebra over R.

EXERCISE: Represent quaternions as a Clifford algebra over R.
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