Algebra and Geometry

lecture 3: algebras defined by generators and relations

Misha Verbitsky

Université Libre de Bruxelles
October 20, 2016

Algebra over a field (reminder)

Fix a ground field k. Recall that a map $\left(V_{1} \times V_{2}\right) \xrightarrow{\mu} V_{3}$ of vector spaces is called bilinear of for any $v_{1} \in V_{1}, v_{2} \in V_{2}$, the maps $\mu\left(v_{1}, \cdot\right): V_{2} \longrightarrow V_{3}, \mu\left(\cdot, v_{2}\right)$: $V_{1} \longrightarrow V_{3}$ (one element is fixed) is k-linear.

To express this, we use the tensor product sign, and write $\mu: V_{1} \otimes V_{2} \longrightarrow V_{3}$.

DEFINITION: Let A be a vector space over k, and $\mu: A \otimes A \longrightarrow A$ a bilinear map (called "multiplication"). The pair (A, μ) is called algebra over a field k if μ is associative: $\left.\mu\left(a_{1}, \mu\left(a_{2}, a_{3}\right)\right)=\mu\left(\mu\left(a_{1}, a_{2}\right), a_{3}\right)\right)$. The product in algebra is written as $a \cdot b$ or $a b$. If, in addition, there is an element $1 \in A$ such that $\mu(1, a)=\mu(a, 1)=a$ for all $a \in A$, this element is called unity, a and A an algebra with unity.

DEFINITION: A homomorphism of algebras $r: A \longrightarrow A^{\prime}$ is a linear map which is compatible with a product. Isomorphism of algebras is an invertible homomorphism. Subalgebra of an algebra A is a vector subspace which is closed under multiplication.

Algebraic and transcendental numbers

DEFINITION: Let $k \subset K$ be a field contained in a bigger field. In this case we say that k is a subfield of K, and K is extension of k. An element $x \in K$ is called algebraic over k if x is a root of a non-zero polynomial with coefficients in k.

DEFINITION: Algebraic number is an element of \mathbb{C} which is algebraic over \mathbb{Q}. Transcendental number is an element which is not algebraic.

REMARK: The set of algebraic numbers is countable. Indeed, there is a countable number of non-zero polynomials in $\mathbb{Q}[t]$, each of them has finitely many roots, hence their roots also can be counted. Since \mathbb{C} is non-countable, there are a continually many transcendental numbers.

Algebraic elements in a field extension

CLAIM: Let $x \in K$ be an element which is algebraic over $k \subset K$. Then the algebra $k[x]:=\left\langle 1, x, x^{2}, x^{3}, \ldots, x^{n}, \ldots\right\rangle$ generated by x is finite-dimensional over k.

Proof: Indeed, if x is a root of $P(t)=t^{n}+\sum_{i=0}^{n-1} a_{i} t^{i}$, then x^{n} is expressed as a linear combination of smaller degrees: $x^{n}=-\sum_{i=0}^{n-1} a_{i} x^{i}$. Then the same is true for x^{n+1} and so on:

$$
x^{n+1}=-\sum_{i=0}^{n-1} a_{i} x^{i+1}=-\sum_{i=1}^{n-1} a_{i} x^{i}+a_{n-1} \sum_{i=0}^{n-1} a_{i} x^{i}
$$

and so on: the algebra $k[x]$ is n-dimensional over k.
The converse is also true, by the same argument:
CLAIM: Let $k \subset K$ and $x \in K$ be an element such that $k[x]$ is finitedimensional over k. Then x is algebraic over k.

EXERCISE: Prove it!
COROLLARY: Suppose that x is algebraic over k. Then all elements of $k[x]$ are algebraic over k.

Finite extensions

PROPOSITION: Let $x \in K$ be an algebraic element over $k \subset K$. Then $k[x]$ is a field.

Proof: Multiplication by x defines an invertible map $L_{x}: k[x] \longrightarrow k[x]$, mapping z to $x z$. Since $k[x]$ is finite-dimensional, L_{x} is invertible. Then there exists $v \in k[x]$ such that $L_{x}(v)=1$, giving $x v=1$.

DEFINITION: A finite extension is a field extension $K \supset k$ which is finitedimensional as a vector space over k.

REMARK: As we just proved, all elements of a finite extension are algebraic over k.

Field of algebraic numbers

LEMMA: Let $K_{1} \subset K_{2} \subset K_{3}$ be fields such that K_{2} is finite-dimensional over K_{1}, and K_{3} is finite-dimensional over K_{2}. Then K_{3} is finite-dimensional over K_{1}.

EXERCISE: Prove it!

PROPOSITION: A sum and a product of two algebraic numbers is algebraic.

Proof: Let α, β be algebraic over k elements of its extension $K \supset k$. Then $K_{1}:=k[\alpha]$ is a finite extension of k, and $K_{2}:=K_{1}[\beta]$ is finite over K_{1}. Applying the precious lemma, we obtain that $K_{2}=k[\alpha, \beta]$ is finite-dimensional over k, and hence all its elements are algebraic.

REMARK: We obtained that the set of algebraic numbers in \mathbb{C} is closed under all field operation (addition, substraction, multiplication, division), which defines the field algebraic numbers, denoted by $\overline{\mathbb{Q}}$.

EXERCISE: Using "fundamental theorem of algebra", prove that $\overline{\mathbb{Q}}$ is algebraically closed, that is, for each polynomial $P(t) \in \bar{Q}[t]$ of degree >0, the equation $P(t)=0$ has solutions in $\overline{\mathbb{Q}}$.

Algebra of polylinear forms

DEFINITION: Let V be a vector space over a field k. A polylinear n-form, or n-linear form φ on V is a map

$$
\varphi: \underbrace{V \times V \times V \times \cdots \times V}_{n \text { times }} \longrightarrow k
$$

linear in each argument. We write this as $\varphi: V \otimes V \otimes V \otimes \cdots \otimes V \longrightarrow k$. It is convenient to denote the space of n-linear forms as $\left(V^{*}\right)^{\otimes^{n}}$. In this notation, $\left(V^{*}\right)^{\otimes^{0}}$ is k (the ground field).

DEFINITION: Given polylinear j - and i-forms φ and ψ on V, the map $\varphi \otimes \psi$: $\underbrace{V \times V \times V \times \ldots}_{i+j} \longrightarrow k$ is given by

$$
(\varphi \otimes \psi)\left(v_{1}, v_{2}, \ldots, v_{i+j}\right)=\varphi\left(v_{1}, \ldots, v_{i}\right) \varphi\left(v_{i+1}, \ldots, v_{i+j}\right)
$$

is clearly polylinear. This gives a multiplicative structure on the space $\oplus_{i=0}^{\infty}\left(V^{*}\right)^{\otimes^{i}}$, which is clearly associative. We call $\oplus_{i=0}^{\infty}\left(V^{*}\right)^{\otimes^{i}}$ the algebra of polylinear forms.

Tensor algebra

Let $V \times W$ map to $V \otimes W$ by putting v, w to $v \otimes w$. Clearly, this map is bilinear. Similarly, one has a bilinear map $V^{\otimes m} \times V^{\otimes n} \longrightarrow V^{\otimes m+n}$ putting $x_{1} \otimes \ldots \otimes x_{n}, y_{1} \otimes \ldots \otimes y_{n}$ to $x_{1} \otimes \ldots \otimes x_{n} \otimes y_{1} \otimes \ldots \otimes y_{n}$.

DEFINITION: Let V be a vector space over k. Tensor algebra, or free algebra generated by V is $T(V):=\oplus_{i} V^{\otimes^{i}}$ equipped with the multiplicative structure defined above,

EXERCISE: Prove that $T\left(V^{*}\right)$ is the algebra of polylinear forms on V defined above.

REMARK: If x_{1}, \ldots, x_{r} is a basis in V, then the basis in $V^{\otimes^{n}}$ is formed by all different monomials of the form $x_{i_{1}} \otimes x_{i_{2}} \otimes \ldots \otimes x_{i_{n}}$.

Universal property of tensor algebra

CLAIM: Let $\varphi: V \longrightarrow A$ be a linear map from a vector space V to an algebra A (with unit). Then φ can be uniquely extended to a homomorphism $\Phi: T(V) \longrightarrow A$ respecting a unit.

Proof. Step 1: Uniqueness is clear: indeed, $T(V)$ is multiplicatively generated by V (and unit).

Step 2: The vector space $T(V)$ is a quotient of the space $T_{f}(V)$ freely generated by the symbols $x_{1} \otimes x_{2} \otimes \ldots \otimes x_{n}, x_{i} \in V$ by the space $T_{b}(V)$ generated by "bilinear relations" of type
$x_{1} \otimes x_{2} \otimes \ldots \otimes\left(x_{i}+x_{i}^{\prime}\right) \otimes \ldots \otimes x_{n}=x_{1} \otimes x_{2} \otimes \ldots \otimes x_{i} \otimes \ldots \otimes x_{n}+x_{1} \otimes x_{2} \otimes \ldots \otimes x_{i}^{\prime} \otimes \ldots \otimes x_{n}$. and

$$
x_{1} \otimes x_{2} \otimes \ldots \otimes a x_{i} \otimes \ldots \otimes x_{n}=a \cdot x_{1} \otimes x_{2} \otimes \ldots \otimes x_{i} \otimes \ldots \otimes x_{n}
$$

The map φ is extended to $T_{f}(V)$ by putting

$$
\Phi\left(x_{1} \otimes x_{2} \otimes \ldots \otimes x_{n}\right)=\varphi\left(x_{1}\right) \varphi\left(x_{2}\right) \ldots \varphi\left(x_{n}\right)
$$

This map vanishes on $T_{w}(V)$, because the product map $A \otimes A \otimes \ldots \otimes A \longrightarrow A$ satisfies the bilinear relations.

Two-sided ideals

DEFINITION: Let A be an algebra and $J \subset A$ its subspace. Then J is caled left ideal if for all $a \in A, j \in J$, one has $j a \in J$, and right ideal if one has $a j \in J . J$ is called two-sided ideal if is is both right and left ideal.

REMARK: Let $J \subset A$ be a two-sided ideal, $x, y \in A / J$ some vectors, and \tilde{x}, \tilde{y} Define the product $x y \in A / J$ by putting $x \cdot y$ to the class represented by \tilde{x}, \tilde{y}. Since $j a \in J$ and $a j \in J$, this gives a bilinear map $A / J \otimes A / J \longrightarrow A / J$, defining an associative multiplicative structure on A / J.

CLAIM: In these assumptions, A / J is an algebra, with the product defined as above.

EXERCISE: Prove it.

Algebra defined by generators and relations

DEFINITION: Let V be a vector space over k ("the space of generators"), and $W \subset T(V)$ another vector space ("the space of relations"). Consider a quotient A of $T(V)$ by the subspace $T(V) W T(V)$ generated by the vectors $v \otimes w \otimes v^{\prime}$, where $w \in W$ and $v, v^{\prime} \in T(V)$.

CLAIM: There is a natural product structure on the space $A:=\frac{T(V)}{T(V) W T(V)}$.
Proof: $T(V) W T(V)$ is a 2-sided ideal.

DEFINITION: In this situation, we say that A is an algebra defined by generators and relations.

EXERCISE: Prove that any algebra can be defined by generators and relations.

Finitely presented algebras

DEFINITION: An algebra is called finitely generated if it can be defined by generators and relations, and the space of generators is finitely-dimensional. An algebra is called finitely presented if the space W of relations is finitelydimensional.

EXERCISE: Find an algebra which is finitely-generated, but not finitely presented.

EXERCISE: Prove that any finitely-dimensional algebra is finitely presented.

EXERCISE: Represent the algebra of Laurent polynomials $k\left[t, t^{-1}\right]$ by generators and relations.

EXERCISE: Represent the polynomial algbera $k[x, y]$ by generators and relations.

Clifford algebras

Let V be a vector space with bilinear symmetric form $g: V \otimes V \longrightarrow \mathbb{R}$. Consider the algebra $\mathrm{Cl}(V)$ generated by V and defined by relations

$$
v_{1} \cdot v_{2}+v_{2} \cdot v_{1}=g\left(v_{1}, v_{2}\right) \cdot 1,
$$

for all $v_{1}, v_{2} \in V$. This algebra is called a Clifford alfebra over k.

EXERCISE: Represent complex numbers as a Clifford algebra over \mathbb{R}.

EXERCISE: Represent quaternions as a Clifford algebra over \mathbb{R}.

