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Algebra over a field (reminder)

Fix a ground field k. Recall that a map (V1 x V5) L>V3 of vector spaces is
called bilinear of for any vy € V7, vo € V5, the maps u(vy,:) : Vo — Va, u(-,vo) :
Vi1 — V3 (one element is fixed) is k-linear.

To express this, we use the tensor product sign, and write u: V3 ® Vo — V3.

DEFINITION: Let A be a vector space over k, and u: AR A — A a bilinear
map (called “multiplication”). The pair (A,u) is called algebra over a
field k if u is associative: p(aq,pu(ar,a3)) = pu(u(ay,ans),asz)). The product in
algebra is written as a-b or ab. If, in addition, there is an element 1 € A such
that u(1,a) = pu(a,1) = a for all a € A, this element is called unity, a and A
an algebra with unity.

DEFINITION: A homomorphism of algebras r: A— A’ is a linear map
which is compatible with a product. Isomorphism of algebras is an invertible
homomorphism. Subalgebra of an algebra A is a vector subspace which is
closed under multiplication.
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Tensor algebra (reminder)

Let V X W map to VW by putting v,w to v ® w. Clearly, this map is
bilinear. Similarly, one has a bilinear map V®m x y®n __, y®m+n ptting

1R ... 8Tn, Y1 Q... 9Yn t0 1 R ... xn Y1 X ... X yn.

DEFINITION: Let V' be a vector space over k. Tensor algebra, or free al-
gebra generated by V is T(V) := @2, V®' equipped with the multiplicative
structure defined above, Here ve =k (the ground field) and contains unit.

CLAIM: Let o : V — A be a linear map from a vector space V to an algebra
A (with unit). Then ¢ can be uniquely extended to a homomorphism
b T(V)— A respecting a unit.
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Two-sided ideals (reminder)

DEFINITION: Let A be an algebra and J C A its subspace. Then J is caled
left ideal if for all a € A,57 € J, one has ja € J, and right ideal if one has
aj € J. J is called two-sided ideal if is is both right and left ideal.

REMARK: Let J C A be a two-sided ideal, z,y € A/J some vectors, and
z,y Define the product zy € A/J by putting z -y to the class represented by
Z,y. Since ja € J and aj € J, this gives a bilinear map A/J R A/J — A/J,
defining an associative multiplicative structure on A/J.

CLAIM: In these assumptions, A/J is an algebra, with the product defined
as above. Conversely, the for any surjective algebra homomorphism A — A1,
its kernel is a 2-sided ideal.

EXERCISE: Prove it.
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Algebra defined by generators and relations (reminder)

DEFINITION: Let V be a vector space over k£ ( “the space of generators’ ),
and W C T(V) another vector space (‘“‘the space of relations” ). Consider
a quotient A of T'(V) by the subspace T'(V)WT (V) generated by the vectors
v@w v, where w e W and v,v € T(V).

CLAIM: There is a natural product structure on the space A := T(Va(ﬁ‘//T)(v).

Proof: T'(V)WT(V) is a 2-sided ideal. m

DEFINITION: In this situation, we say that A is an algebra defined by
generators and relations.

EXERCISE: Prove that any algebra can be defined by generators and
relations.

DEFINITION: An algebra is called finitely generated if it can be defined by
generators and relations, and the space of generators is finitely-dimensional.
An algebra is called finitely presented if the space W of relations is finitely-

dimensional.
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Clifford algebras

Let V be a vector space with bilinear symmetric form g : V®V — R. Consider
the algebra CI(V) generated by V and defined by relations

v1 - vp +vo - v = g(vy,v2) - 1,

for all v1,v> € V. This algebra is called a Clifford alfebra over k.
EXERCISE: Represent complex numbers as a Clifford algebra over R.

EXERCISE: Represent quaternions as a Clifford algebra over R.
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Graded algebras

DEFINITION: An algebra A is called graded if A is represented as A = @Ai,
where i € Z, and the product satisfies A*- A7 C A'tJ. Instead of @ A’ one
often writes A*, where x denotes all indices together. Some of the spaces A’
can be zero, but the ground field is always in A9, so that it is non-empty.

EXAMPLE: The tensor algebra T'(V) and the polynomial algebra Sym*(V)
are obviously graded.

DEFINITION: A subspace W C A* of a graded algebra is called graded if
W is a direct sum of components W* C At

EXERCISE: Let W C T(V) be a graded subspace. Prove that then the
algebra generated by V with relation space W is also graded.
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Symmetric algebra

DEFINITION: Consider a subspace W C V ® V generated by vectors =z ®
y—y ®@x. Then the algebra Sym*(V) = T(VT‘(A‘//%(V) is commutative (check

this). Since W is a graded subspace, Sym*(V) is a graded algebra.

CLAIM: For any commutative algebra A over k and any linear map ¢ :
V — A, ¢ can be uniquely extended to an algebra homomorphism o :
Sym*(V) — A.

Proof. Step 1: Clearly, ¢ can be extended to a homomorphism &;
T*V — A from the tensor algebra T*V.

Step 2: Since A is commutative, ®4(xy) = P(yx). Therefore, d; vanishes
on the ideal T(V)WT(V). m

COROLLARY: Let V be a vector space over k with basis zq,...,zn. Then
Sym*V is isomorphic to the polynomial algebra k[x1,...,zy].

Proof: Consider the linear map V = (z1,...,zn) — k[x1,...,xn] Mapping a
vector to the corresponding homogeneous degree 1 polynomial. This map
can be extended to a homomorphism Sym*V — k[xq, ..., zn] as shown above.
Inverse map takes z; € k[xq,...,xn] tO the corresponding vector z; € V. =

3
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The Grassmann algebra

DEFINITION: Let V be a vector space, and W C V ® V a subspace gen-
erated by vectors z ®y+y®x and x ® x, for all x,y € V. A graded algebra
defined by the generator space V and the relation space W is called Grass-
mann algebra, or exterior algebra, and denoted A*(V). The space AY(V) is
called i-th exterior power of V, and the multiplication in A*(V) — exterior
multiplication. Exterior multiplication is denoted A.

REMARK: Grassmann algebra is a a Clifford algebra with the symmetric
form g = 0 (for g = O Clifford algebra is no longer graded).

EXERCISE: Prove that AlV is iIsomorphic to V.

DEFINITION: An element of Grassmann algebra is called even if it lies in
B,z NH(V) and odd if it lies in @;cz A2 T1(V). For an even or odd x € A*(V),
we define a number x called parity of x. The parity of x is O for even x and
1 for odd.

CLAIM: In Grassmann algebra, z Ay = (—1)%y A z.
)
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Signature of a permutation

DEFINITION: The group X, acts on the polynomial ring P[xq,...,zn] by
permutation of variables. Consider the polynomial P(x1,...,zn) ‘= [[;<;(z; —
xj). Clearly, for any permutation o € >, we have ¢(P) = £P. This defines
a homomorphism sign: >, — {£1}, with o(P) = sign(o)P.

REMARK: This homomorphism maps a product of odd number of
transpositions to -1 and a product of even number of transpositions
to 1.

DEFINITION: The number sign(o) is called signature of a permutation o.
Permutation o is called odd if sign(I) = —1 and even if sign(c) = 1. For odd
permutation ¢ we write o := 1, for even permutation, ¢ = 0.
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Antisymmetric tensors

DEFINITION: Let V®" be n-th product of V with itself, equipped with the
natural symmetric group 2 p,-action exchanging the tensor components. A
tensor ¢y € V®" is called antisymmetric if for any permutation o € >, we
have o(¢) = (—=1)%psi, and symmetric if o(¢)) = 9. We denote the space
of all antisymmetric tensors by A™V and the space of symmetric tensors by
Sym"V.

Theorem 1: Let V be a vector space over a field of char = 0, A"V the
n-th component of its Grassmann algebra, and Sym™V the n-th component
of its symmetric algebra. Then A"V is naturally identified with A™V, and
Sym”™V with S?anv.

Proof: See later.
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Representations of finite groups

DEFINITION: Let V be a vector space. We denote by GL(V) the group of
all invertible linear maps from V to itself. It is called the matrix group, or
the group of linear automorphisms of V.

DEFINITION: Let G be a group, V a vector space, and p: G — GL(V)
a group homomorphism. Then p is called representation of &, and V the
space of representation p. We often denote the action v — p(g)(v) by
v— g(v).

EXAMPLE: Symmetric group >, acting on the direct sum V"™ of n copies
of W by exchanging its summands.

EXAMPLE: Symmetric group 2., acting on the tensor product we" n copies
of W by exchanging the tensor components.

12
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Invariants and coinvariants

DEFINITION: Let p: G— GL(V) be a group representation. The space
of invariants VC is the space of all vectors v € V which are invariant under
G-action, that is, satisfy g(v) = v for all g € G. The space of coinvariants
Vi is the quotient of V by its subspace generated by v — g(v) for all v € V,
geaq.

EXAMPLE: By definition, Sym™V is the space of coinvariants of > ,-
action on V®", and Sym'V is the space of invariants of this action:
Sym"V = (V®)s , Sym'V = (V®")Zn,

EXAMPLE: Let A, C >, be the group of all even permutations. Then the
group >,/An = {£1} acts on the space of Ap-invariants and Ay-coinvariants.
Anti-invariants of this groups are vectors where its generator acts as —1.
Clearly, A"V is the space of ¥, /A,-anti-invariant vectors in (V®")4», and
A"V is the space of X, /A,-anti-invariant vectors in (V®n)An.

REMARK: To prove Theorem 1, it would suffice to identify invariants
and coinvariants of X, (for symmetric tensors) and A,, for antisymmetric.

13
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Symmetrization

Proposition 1: Let G be a finite group acting on a vector space V over a
field of char = 0, and Il : V — V& the natural projection to coinvariants.
Then the Il induces an isomorphism of invariants and coinvariants [1 :
VG — Vg.

Proof. Step 1: Consider the symmetrization map Sg(v) '= % Sgec 9(v).
Since G exchanges the summands in the sum 3 c5g(v), all vectors in the
image of S, are G-invariant.

Step 2: Clearly, ker S contains all vectors of form v —g(v), hence S defines
a map from coinvariants to invariants: Sz : Vo — V&, and Sa(M(v)) = v for
all G-invariant vectors v € VG.

Step 3: For any coinvariant w € Vg, represented by w € V,

> g(’&?)) = w

geG

1
S(w)) = —
N(Sg(w)) ”(|G|

hence S;: Vo— VG isinverseto N: VG — V.. =

EXERCISE: Find a counterexample to this proposition for an infinite group
G.
14
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Antisymmetrization

Similarly, the natural map from A™V to A"V is given by antisymmetrization

1 5
Alt(z1 ® ... @ xp) = E Z (—1)0330(1) X ... ® azo(n)).
o€ )

Its properties:

1. Clearly, imAIt lies in the space of antisymmetric tensors, and Alt(n —
(=1)°n) = 0, hence Alt defines a map from Grassmann algebra to the space
of antisymmetric tensors.

2. The natural projection from antisymmetric tensors to the Grassmann
algebra is inverse to Alt (check this; the argument is literally the same
as proves isomorphism of invariants and coinvariants). Therefore, the
natural projection from antisymmetric tensors to AV is an isomorphism.

We proved Theorem 1 for antisymmetric tensors; for symmetric tensors
it follows directly from Proposition 1.

15
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Grassmann algebra and determinant

Grassmann algebra is “algebra generated by anticommuting variables”, simi-
larly to polynomial algebra which is generated by commuting variables.

EXERCISE: Prove that dimAlV = (4MV), dimA*y = 2dimV,

REMARK: Let W be a one-dimensional vector space over k. Then End W
IS naturally isomorphic to k.

REMARK: Let A € End(V) be a linear endomorphism of a vector space V.
Then the action of A on V = AlV is uniquely extended to a multiplicative
homomorphism of the algebra A*V.

DEFINITION: Let V be a d-dimensional vector space and A € End(V). Con-
sider the induced endomorphism of the space of determinant vectors /\d(V)
denoted as det A € End(A%(V)). Since A4(V) is 1-dimensional, the space
End(A%(V)) is naturally identified with k. This allows to consider det A as
a number, that is, an element of £. This number is called determinant
of A.

REMARK: From the definition it is clear that det defines a homomorphism
from the group GL(V) if invertible matrices to the multiplicative group
k* of the ground field.
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