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Algebra over a field (reminder)

Fix a ground field k. Recall that a map (V1 × V2)
µ−→ V3 of vector spaces is

called bilinear of for any v1 ∈ V1, v2 ∈ V2, the maps µ(v1, ·) : V2 −→ V3, µ(·, v2) :

V1 −→ V3 (one element is fixed) is k-linear.

To express this, we use the tensor product sign, and write µ : V1⊗ V2 −→ V3.

DEFINITION: Let A be a vector space over k, and µ : A⊗A−→A a bilinear

map (called “multiplication”). The pair (A,µ) is called algebra over a

field k if µ is associative: µ(a1, µ(a2, a3)) = µ(µ(a1, a2), a3)). The product in

algebra is written as a · b or ab. If, in addition, there is an element 1 ∈ A such

that µ(1, a) = µ(a,1) = a for all a ∈ A, this element is called unity, a and A

an algebra with unity.

DEFINITION: A homomorphism of algebras r : A−→A′ is a linear map

which is compatible with a product. Isomorphism of algebras is an invertible

homomorphism. Subalgebra of an algebra A is a vector subspace which is

closed under multiplication.
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Tensor algebra (reminder)

Let V × W map to V ⊗ W by putting v, w to v ⊗ w. Clearly, this map is

bilinear. Similarly, one has a bilinear map V ⊗m × V ⊗n −→ V ⊗m+n putting

x1 ⊗ ...⊗ xn, y1 ⊗ ...⊗ yn to x1 ⊗ ...⊗ xn ⊗ y1 ⊗ ...⊗ yn.

DEFINITION: Let V be a vector space over k. Tensor algebra, or free al-

gebra generated by V is T (V ) :=
⊕∞
i=0 V

⊗i equipped with the multiplicative

structure defined above, Here V ⊗
0

= k (the ground field) and contains unit.

CLAIM: Let ϕ : V −→A be a linear map from a vector space V to an algebra

A (with unit). Then ϕ can be uniquely extended to a homomorphism

Φ : T (V )−→A respecting a unit.
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Two-sided ideals (reminder)

DEFINITION: Let A be an algebra and J ⊂ A its subspace. Then J is caled

left ideal if for all a ∈ A, j ∈ J, one has ja ∈ J, and right ideal if one has

aj ∈ J. J is called two-sided ideal if is is both right and left ideal.

REMARK: Let J ⊂ A be a two-sided ideal, x, y ∈ A/J some vectors, and

x̃, ỹ Define the product xy ∈ A/J by putting x · y to the class represented by

x̃, ỹ. Since ja ∈ J and aj ∈ J, this gives a bilinear map A/J ⊗ A/J −→A/J,

defining an associative multiplicative structure on A/J.

CLAIM: In these assumptions, A/J is an algebra, with the product defined

as above. Conversely, the for any surjective algebra homomorphism A−→A1,

its kernel is a 2-sided ideal.

EXERCISE: Prove it.

4



Algebra, lecture 4 M. Verbitsky

Algebra defined by generators and relations (reminder)

DEFINITION: Let V be a vector space over k (“the space of generators”),

and W ⊂ T (V ) another vector space (“the space of relations”). Consider

a quotient A of T (V ) by the subspace T (V )WT (V ) generated by the vectors

v ⊗ w ⊗ v′, where w ∈W and v, v′ ∈ T (V ).

CLAIM: There is a natural product structure on the space A := T (V )
T (V )WT (V ).

Proof: T (V )WT (V ) is a 2-sided ideal.

DEFINITION: In this situation, we say that A is an algebra defined by

generators and relations.

EXERCISE: Prove that any algebra can be defined by generators and

relations.

DEFINITION: An algebra is called finitely generated if it can be defined by

generators and relations, and the space of generators is finitely-dimensional.

An algebra is called finitely presented if the space W of relations is finitely-

dimensional.
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Clifford algebras

Let V be a vector space with bilinear symmetric form g : V ⊗V −→ R. Consider

the algebra Cl(V ) generated by V and defined by relations

v1 · v2 + v2 · v1 = g(v1, v2) · 1,

for all v1, v2 ∈ V . This algebra is called a Clifford alfebra over k.

EXERCISE: Represent complex numbers as a Clifford algebra over R.

EXERCISE: Represent quaternions as a Clifford algebra over R.

6



Algebra, lecture 4 M. Verbitsky

Graded algebras

DEFINITION: An algebra A is called graded if A is represented as A =
⊕
Ai,

where i ∈ Z, and the product satisfies Ai · Aj ⊂ Ai+j. Instead of
⊕
Ai one

often writes A∗, where ∗ denotes all indices together. Some of the spaces Ai

can be zero, but the ground field is always in A0, so that it is non-empty.

EXAMPLE: The tensor algebra T (V ) and the polynomial algebra Sym∗(V )

are obviously graded.

DEFINITION: A subspace W ⊂ A∗ of a graded algebra is called graded if

W is a direct sum of components W i ⊂ Ai.

EXERCISE: Let W ⊂ T (V ) be a graded subspace. Prove that then the

algebra generated by V with relation space W is also graded.
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Symmetric algebra

DEFINITION: Consider a subspace W ⊂ V ⊗ V generated by vectors x ⊗
y − y ⊗ x. Then the algebra Sym∗(V ) := T (V )

T (V )WT (V ) is commutative (check
this). Since W is a graded subspace, Sym∗(V ) is a graded algebra.

CLAIM: For any commutative algebra A over k and any linear map ϕ :
V −→A, ϕ can be uniquely extended to an algebra homomorphism Φ :
Sym∗(V )−→A.

Proof. Step 1: Clearly, ϕ can be extended to a homomorphism Φt :
T ∗V −→A from the tensor algebra T ∗V .

Step 2: Since A is commutative, Φt(xy) = Φt(yx). Therefore, Φt vanishes
on the ideal T (V )WT (V ).

COROLLARY: Let V be a vector space over k with basis x1, ..., xn. Then
Sym∗ V is isomorphic to the polynomial algebra k[x1, ..., xn].

Proof: Consider the linear map V = 〈x1, ..., xn〉 −→ k[x1, ..., xn] mapping a
vector to the corresponding homogeneous degree 1 polynomial. This map
can be extended to a homomorphism Sym∗ V −→ k[x1, ..., xn] as shown above.
Inverse map takes xi ∈ k[x1, ..., xn] to the corresponding vector xi ∈ V .
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The Grassmann algebra

DEFINITION: Let V be a vector space, and W ⊂ V ⊗ V a subspace gen-

erated by vectors x ⊗ y + y ⊗ x and x ⊗ x, for all x, y ∈ V . A graded algebra

defined by the generator space V and the relation space W is called Grass-

mann algebra, or exterior algebra, and denoted Λ∗(V ). The space Λi(V ) is

called i-th exterior power of V , and the multiplication in Λ∗(V ) – exterior

multiplication. Exterior multiplication is denoted ∧.

REMARK: Grassmann algebra is a a Clifford algebra with the symmetric

form g = 0 (for g 6= 0 Clifford algebra is no longer graded).

EXERCISE: Prove that Λ1V is isomorphic to V .

DEFINITION: An element of Grassmann algebra is called even if it lies in⊕
i∈Z Λ2i(V ) and odd if it lies in

⊕
i∈Z Λ2i+1(V ). For an even or odd x ∈ Λ∗(V ),

we define a number x̃ called parity of x. The parity of x is 0 for even x and

1 for odd.

CLAIM: In Grassmann algebra, x ∧ y = (−1)x̃ỹy ∧ x.
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Signature of a permutation

DEFINITION: The group Σn acts on the polynomial ring P [x1, ..., xn] by

permutation of variables. Consider the polynomial P (x1, ..., xn) :=
∏
i<j(xi −

xj). Clearly, for any permutation σ ∈ Σn, we have σ(P ) = ±P . This defines

a homomorphism sign : Σn −→ {±1}, with σ(P ) = sign(σ)P .

REMARK: This homomorphism maps a product of odd number of

transpositions to -1 and a product of even number of transpositions

to 1.

DEFINITION: The number sign(σ) is called signature of a permutation σ.

Permutation σ is called odd if sign(I) = −1 and even if sign(σ) = 1. For odd

permutation σ we write σ̃ := 1, for even permutation, σ̃ = 0.
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Antisymmetric tensors

DEFINITION: Let V ⊗
n

be n-th product of V with itself, equipped with the

natural symmetric group Σn-action exchanging the tensor components. A

tensor ψ ∈ V ⊗
n

is called antisymmetric if for any permutation σ ∈ Σn we

have σ(ψ) = (−1)σ̃psi, and symmetric if σ(ψ) = ψ. We denote the space

of all antisymmetric tensors by Λ̃nV and the space of symmetric tensors by

S̃ym
n
V .

Theorem 1: Let V be a vector space over a field of char = 0, ΛnV the

n-th component of its Grassmann algebra, and Symn V the n-th component

of its symmetric algebra. Then ΛnV is naturally identified with Λ̃nV , and

Symn V with S̃ym
n
V .

Proof: See later.
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Representations of finite groups

DEFINITION: Let V be a vector space. We denote by GL(V ) the group of

all invertible linear maps from V to itself. It is called the matrix group, or

the group of linear automorphisms of V .

DEFINITION: Let G be a group, V a vector space, and ρ : G−→GL(V )

a group homomorphism. Then ρ is called representation of G, and V the

space of representation ρ. We often denote the action v 7→ ρ(g)(v) by

v 7→ g(v).

EXAMPLE: Symmetric group Σn acting on the direct sum V n of n copies

of W by exchanging its summands.

EXAMPLE: Symmetric group Σn acting on the tensor product W⊗
n
n copies

of W by exchanging the tensor components.
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Invariants and coinvariants

DEFINITION: Let ρ : G−→GL(V ) be a group representation. The space

of invariants V G is the space of all vectors v ∈ V which are invariant under

G-action, that is, satisfy g(v) = v for all g ∈ G. The space of coinvariants

VG is the quotient of V by its subspace generated by v − g(v) for all v ∈ V ,

g ∈ G.

EXAMPLE: By definition, Symn V is the space of coinvariants of Σn-

action on V ⊗n, and S̃ym
n
V is the space of invariants of this action:

Symn V = (V ⊗
n
)Σn, S̃ym

n
V = (V ⊗

n
)Σn.

EXAMPLE: Let An ⊂ Σn be the group of all even permutations. Then the

group Σn/An = {±1} acts on the space of An-invariants and An-coinvariants.

Anti-invariants of this groups are vectors where its generator acts as −1.

Clearly, Λ̃nV is the space of Σn/An-anti-invariant vectors in (V ⊗
n
)An, and

ΛnV is the space of Σn/An-anti-invariant vectors in (V ⊗
n
)An.

REMARK: To prove Theorem 1, it would suffice to identify invariants

and coinvariants of Σn (for symmetric tensors) and An for antisymmetric.
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Symmetrization

Proposition 1: Let G be a finite group acting on a vector space V over a
field of char = 0, and Π : V −→ VG the natural projection to coinvariants.
Then the Π induces an isomorphism of invariants and coinvariants Π :
V G −→ VG.

Proof. Step 1: Consider the symmetrization map SG(v) := 1
|G|

∑
g∈G g(v).

Since G exchanges the summands in the sum
∑
g∈G g(v), all vectors in the

image of SG are G-invariant.

Step 2: Clearly, ker SG contains all vectors of form v−g(v), hence SG defines
a map from coinvariants to invariants: SG : VG −→ V G, and SG(Π(v)) = v for
all G-invariant vectors v ∈ V G.

Step 3: For any coinvariant w ∈ VG, represented by w̃ ∈ V ,

Π(SG(w)) = Π

 1

|G|
∑
g∈G

g(w̃)

 = w

hence SG : VG −→ V G is inverse to Π : V G −→ VG.

EXERCISE: Find a counterexample to this proposition for an infinite group
G.
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Antisymmetrization

Similarly, the natural map from Λ̃nV to ΛnV is given by antisymmetrization

Alt(x1 ⊗ ...⊗ xn) :=
1

n!

∑
σ∈Σn

(−1)σ̃xσ(1) ⊗ ...⊗ xσ(n)).

Its properties:

1. Clearly, im Alt lies in the space of antisymmetric tensors, and Alt(η −
(−1)σ̃η) = 0, hence Alt defines a map from Grassmann algebra to the space

of antisymmetric tensors.

2. The natural projection from antisymmetric tensors to the Grassmann

algebra is inverse to Alt (check this; the argument is literally the same

as proves isomorphism of invariants and coinvariants). Therefore, the

natural projection from antisymmetric tensors to ΛiV is an isomorphism.

We proved Theorem 1 for antisymmetric tensors; for symmetric tensors

it follows directly from Proposition 1.
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Grassmann algebra and determinant

Grassmann algebra is “algebra generated by anticommuting variables”, simi-
larly to polynomial algebra which is generated by commuting variables.

EXERCISE: Prove that dim ΛiV =
(

dimV
i

)
, dim Λ∗V = 2dimV .

REMARK: Let W be a one-dimensional vector space over k. Then EndW
is naturally isomorphic to k.

REMARK: Let A ∈ End(V ) be a linear endomorphism of a vector space V .
Then the action of A on V ∼= Λ1V is uniquely extended to a multiplicative
homomorphism of the algebra Λ∗V .

DEFINITION: Let V be a d-dimensional vector space and A ∈ End(V ). Con-
sider the induced endomorphism of the space of determinant vectors Λd(V )
denoted as detA ∈ End(Λd(V )). Since Λd(V ) is 1-dimensional, the space
End(Λd(V )) is naturally identified with k. This allows to consider detA as
a number, that is, an element of k. This number is called determinant
of A.

REMARK: From the definition it is clear that det defines a homomorphism
from the group GL(V ) if invertible matrices to the multiplicative group
k∗ of the ground field.
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