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Rules: Exam problems would be similar to ones marked with ! sign. It is recommended to solve all unmarked

and !-problems or to find the solution online. It’s better to do it in order starting from the beginning, because the

solutions are often contained in the previous problems. The problems with * are harder, and ** are very hard; don’t

be disappointed if you can’t solve them, but feel free to try. Have fun!

2.1 Rings and fields

Consider some “numbers”: real numbers, rational numbers, integer numbers. The “numbers”
are equipped with the following algebraic operations:

a. Addition +, which is commutative (satisfies x + y = y + x) and makes the set of
“numbers” into a group.

b. Multiplication, which is associative and commutative, but does not make the set of
“numbers” into a group, because not all “numbers” are invertible; it is denoted by a
dot, which is often omitted for brevity; one writes x · y or just xy.

Let us axiomatise these structures.

Definition 2.1. Let R be a set, equipped with two operations R × R−→R, “addition”
a, b 7→ a + b and “multiplication” a, b 7→ a · b. Fix two elements 1 and 0 in R (“unit” and
“zero”). The set (R,+, ·, 1, 0) is called a ring if the following axioms hold.

a. R is a commutative group with respect to +, and 0 is unit in this group structure.

b. 1 is unit with respect to multiplication: 1 · a = a · 1 = a for all a ∈ R

c. Multiplication is associative: a · (b · c) = (a · b) · c.

d. Distributivity of multiplication with respect to addition: a · (b + c) = a · b + a · c and
(b+ c) · a = b · a+ c · a.

If the multiplication is commutative, we say that the ring R is commutative. Further on in
this course, we shall assume commutativity in the rings by default. If, in addition, the mul-
tiplication is invertible for all a 6= 0, that is, R\{0} is a group with respect to multiplication,
(R,+, ·, 1, 0) is called a field.

Definition 2.2. Two ringsR,R′ are called isomorphic if there exists a bijection j : R−→R′

which is compatible with addition and multiplication. In this case the map j is called an
isomorphism. An isomorphism from a ring to itself is called an automorphism.

Definition 2.3. Subring of a ring R is a subset R′ ⊂ R which is a subgroup with respect
to addition, contains 1, and is closed under multiplication.

Remark 2.1. The commutativity of multiplication in rings, and existence of unit, are as-
sumed in these lectures, but the terminology might vary: everything depends on which
domain of mathematics you operate with. Even associativity of multiplication might be
dropped sometimes.

Exercise 2.1. Consider the following sets, equipped with standard operations of addition
and multiplication. Check if they satisfy the ring axioms.
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a. Integer numbers

b. Even integers

c. Rational numbers

d. Irrational real numbers

e. Finite decimal fractions

f. Pairs of integers, addition and multiplication pairwise.

g. Pairs of integers, addition pairwise, multiplication given by the formula (a, b) · (c, d) =
(ac− bd, ad+ bc).

h. Pairs of integers, addition pairwise, multiplication given by the formula (a, b) · (c, d) =
(ac+ 2bd, ad+ bc).

i. Subsets of a set M , with addition given by symmetric difference, A+B := (A∪B)\(A∩
B), multiplication A ·B := A ∩B.

j. Maps from a fixed set S to a fixed ring A, with operations (f · g)(s) := f(s)g(s),
(f + g)(s) := f(s) + g(s),

Exercise 2.2. Which rings considered in Exercise 2.1 are also fields?

Exercise 2.3. Let R be a ring. Consider the set of sequences

a = (a0, a1, . . . , ai, . . . , 0, 0, . . . )

of elements ai ∈ R with finitely many non-zero elements. Define operations on this set as

(a+ b)i = ai + bi,

(a · · · b)i =
∑
l+m=i

ambl.

Prove that this set is a ring (in particular, prove associativity of multiplication).

Definition 2.4. The ring defined in Exercise 2.3 is called polynomial ring of one variable
and denoted R[x]. Its elements are called “polynomials”. They are written as a0 + a1x +
· · · + anx

n. Multiplication of two polynomials of form P (x) = a0 + a1x + · · · + anx
n and

Q(x) = b0 + b1x+ · · ·+ bnx
n is given by P (x)Q(x) =

∑
i,j aibjx

i+j .

Exercise 2.4. Fix an integer number n > 1. Division with remainders modulo n gives
remainders 0, 1, 2, ... n− 1. If two integer numbers have the same remainders modulo n, we
write a = b mod n. These numbers are called “equal modulo n”. We define addition and
multiplication on the set of remainders mod n in such a way that

(x mod n) + (y mod n) = ((x+ y) mod n),

(x mod n) · (y mod n) = (xy mod n)

Prove that this definition is unambiguous, and the set of remainders is a ring.

Definition 2.5. The ring of reminders modulo n is denoted as Z/nZ.
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Exercise 2.5 (!). Prove that Z/nZ is a field if and only if n is prime.

Hint. Use Euclidean algorithm (see below).

Exercise 2.6. Construct fields of

a. 2

b. 3

c. (*) 4 elements.

Exercise 2.7 (*). Prove that there is no field of 6 elements.

Definition 2.6. Zero divisors in a ring R are two non-zero elements x, y ∈ R such that
xy = 0.

Exercise 2.8. Let R be a finite ring without zero divisors. Prove that R is a field.

Exercise 2.9. Let p be a prime. Prove that a ring of p elements is unique up to an isomor-
phism.

Definition 2.7. Recall that order of an element g of a group is the number of elements
in the subgroup {e, g, g−1, g2, g−2, g3...} generated by g. Characteristic of a field k is 0 if
1 ∈ k has infinite order, and order of 1 in the additive group of k if 1 has finite order.

Exercise 2.10. Let p be a characteristic of a field k. Prove that p is prime or 0.

Exercise 2.11 (*). Let k be a field of characteristic p. Prove that the Frobenius map
x 7→ xp preserves addition and multiplication.

Definition 2.8. Let P (t) ∈ R[x] be a polynomial over a ring R, P = anx
n + an−1x

n−1 +
...+ a1x+ a0 Root of P (x) is r ∈ R such that P (r) = anr

n + an−1r
n−1 + ...+ a1r+ a0 = 0.

Definition 2.9. Let a, b ∈ R be elements of a ring. We say that a is divisible by b of
a = bc for some c ∈ R.

Exercise 2.12 (!). Let α be a root of a polynomial P (t) in k[t]. Prove that P (t) is divisible
by t− α ∈ k[t].

Hint. Use the long division of polynolials:

x2 + 2x − 12 x+ 5
x2 + 5x x− 3
− 3x − 12
− 3x − 15

3

Exercise 2.13 (!). (Bézout theorem)
Prove that a non-zero polynomial over a field cannot have more than n different roots.

Hint. Use the previous exercise.

Exercise 2.14. Using long division of polynomials, consider the set of remainders in
k[x] modulo P (x) ∈ k[x], denoted as k[x] mod k(x) Prove that it is a ring.

Issued 28.09.2015 – 3 – Handout 2, version 1.1, 05.10.2016



MATH-F-303 handout 2: ring and fields Misha Verbitsky

2.2 Complex numbers

Definition 2.10. The field of real numbers is denoted by R, the ring of integers is Z. Let
C be the set of pairs of real numbers (a, b) ∈ R2, with addition (a, b) + (c, d) = (a+ c, b+ d)
and multiplication

(a, b) · (c, d) = (ac− bd, ad+ bc).

Elements of C are called complex numbers.

Exercise 2.15 (!). Prove that C is a ring which is isomorphic to R[x] mod P (x), where
P (x) = x2 + 1.

Exercise 2.16. Prove that an equation x2 + 1 = 0 has precisely 2 solutions in C.

Exercise 2.17. Choose a solution of x2 + 1 = 0, and denote it by
√
−1. Prove that any

complex number can be unambiguously expressed as z = a+ b
√
−1.

Exercise 2.18. Let z = a + b
√
−1 be a complex number. Its complex conjugate is

z̄ := a− b
√
−1. Prove that the map z −→ z̄ is an isomorphism of the ring C with itself.

Exercise 2.19. Prove that for any non-zero z = a+ b
√
−1, the number zz̄ = a2 + b2 is real

and invertible.

Definition 2.11. Absolute value |z| of a complex number is |z| :=
√
zz̄.

Exercise 2.20. Let z′ := z̄|z|−2. Prove that zz′ = 1.

Remark 2.2. This implies that C is a field.

Exercise 2.21 (!). Prove that |z1| − |z2| 6 |z1 − z2| 6 |z1|+ |z2| for any z1, z2 ∈ C.

Exercise 2.22. Prove that |z1z2| = |z1||z2|.

Exercise 2.23 (!). Let z be a complex number satisfying |z| = 1. We identify C with the
complex plane R2 in the standard way. Consider the map t−→ zt as a map from R2 to R2.
Prove that it is a rotation of angle φ, where φ satisfies z = cosφ+

√
−1 sinφ.

Exercise 2.24. Find all automorphisms of C which act as identity on R ⊂ C.

Exercise 2.25 (!). In the definition of complex numbers, replace

(a, b) · (c, d) = (ac− bd, ad+ bc).

by
(a, b) · (c, d) = (ac+ bd, ad+ bc).

a. Prove that this is a ring.

b. Denote this ring by R2. Find all solutions of z2 = 1 in R2.

c. Find all solutions of z2 = 0 in R2.

d. Find zero divisors in R2.
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Exercise 2.26 (!). In the definition of complex numbers, replace

(a, b) · (c, d) = (ac− bd, ad+ bc).

by
(a, b) · (c, d) = (ac, ad+ bc).

a. Prove that this is a ring.

b. Denote this ring by Rε. Find all solutions of z2 = 1 in R2.

c. Find all solutions of z2 = 0 in R2.

Exercise 2.27 (*). For the previous two examples of the rings, find all solutions of the
equation z2 = z.

2.3 Gaussian integers

Definition 2.12. An element v ∈ R of a ring is called invertible of there exists w ∈ R such
that vw = 1.

Definition 2.13. Gaussian integers Z[
√
−1] are complex numbers of form x+ y

√
−1.

Exercise 2.28. Find all invertible elements in the ring of Gaussian integers.

Hint. If a complex number z is invertible in Z[
√
−1], the number zz̄ is also invertible in

Z[
√
−1].

Exercise 2.29 (!). Let n > 0 be a positive integer number, and Z[
√
−n] the set of complex

numbers of form x+ y
√
−n, where x, y ∈ Z. Prove that it is a subring of complex numbers,

and find all invertible elements.

Exercise 2.30 (*). Let n be a positive, integer number, and A the set of numbers of form
x+y
√
−n

2 , where both x, y are even or odd. Assume that n = 3 mod 4. Prove that A is a
subring of complex numbers. Find all invertible elements in A.

2.4 Divisibility and primes

Definition 2.14. Let x, y ∈ R be elements of a ring. Greatest common divisor GCD(a, b)
is z ∈ R such that x and y are divisible by z, and for any z′ such that x and y are divisible
by z′, z is also divisible by z′. Lowest common denominator LCD(a, b) is a ∈ R which is
divisible by x and y, and for any a′ divisible by x and y, a′ is divisible by a.

Remark 2.3. A caution: in arbitrary rings, GCDs and LCDs do not always exist.

Definition 2.15. An element p ∈ R of a ring is called prime if for any q such that p = qu,
either q or u is invertible.

Exercise 2.31. Prove that if GCD(a, b) or LCD(a, b) exists, it is exists up to an invertible
elements: if z, z′ are both GCD(a, b) or LCD(a, b), then z = z′u, where u is invertible.

Exercise 2.32. Let Q(2) be the set of all rational numbers represented by the fractions p
q

with odd q. Prove that it is a subring of rationals.
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Exercise 2.33. Describe all invertible elements in Q(2).

Exercise 2.34. Describe all non-invertible primes in Q(2).

Exercise 2.35. Prove that Q(2) contains greatest common divisor and lowest common de-
nominator of any two elements.

2.5 Prime decomposition and Euclidean algorithm

Definition 2.16. Euclidean algorithm takes two positive integers x, y ∈ Z>0 and produces
a positive integer z as follows.

A: If x is divisible by y, algorithm stops and gives y as its result.

B: Otherwise, we return to A: above, with x and y replaced by x1 and y1, with x1 = y,
y1 = x− ky, where x− ky is a remainder of division x by y.

Exercise 2.36. Prove that algorithm of Euclides finishes its work after a finite number of
iterations.

Exercise 2.37. Prove that result of application of Euclidean algorithm to integers x, y can
be expressed as z = ax+ by, where a, b are integers. Prove that z is a divisor of a and b.

Hint. Use induction.

Exercise 2.38. Let x, y be integers, and z = x−ky. Prove that if GCD(z, y) exists, GCD(x, y)
also exists, and GCD(x, y) = GCD(z, y).

Exercise 2.39. Prove that the result of application of the Euclidean algorithm is equal to
GCD(x, y).

Hint. Use the previous exercise

Exercise 2.40. Let p be a prime integer. Prove that all non-zero remainders modulo p are
invertible.

Hint. Let y is not divisible by p. Using the algorithm of Euclides, solve an equation 1 =
pa+ yb, where a, b are integers.

Exercise 2.41. Let x, y be integers without non-trivial common denominators, and p a
prime. Suppose that xy is divisible by pα for some integer α > 0. Prove that either x is
divisible by pα or y divisible by pα.

Hint. Use the previous exercise.

Exercise 2.42 (!). Deduce the uniqueness of prime decomposition: if x is represented as a
product of primes in two different ways, these two different ways are different only by the
order of prime multipliers.

Hint. Use the previous exercise.
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