Geometry of manifolds

lecture 1

Misha Verbitsky

Université Libre de Bruxelles

September 21, 2015

The Plan.

Preliminaries: I assume knowledge of topological spaces, continuous maps, homeomorphisms, Hausdorff spaces, connected spaces, path connected spaces, metric spaces, compact spaces, groups, abelian groups, homomorphisms and vector spaces.

Plan of today's talk:

- 1. Topological manifolds.
- 2. Smooth manifolds.
- 3. Sheaves of functions.
- 4. 3 different definitions of a smooth manifold

Topological manifolds

REMARK: Manifolds can be smooth (of a given "differentiability class"), real analytic, or topological (continuous).

DEFINITION: Topological manifold is a topological space which is locally homeomorphic to an open ball in \mathbb{R}^n .

EXERCISE: Show that a group of homeomorphisms acts on a connected manifold transitively.

DEFINITION: Such a topological space is called **homogeneous**.

Topological manifolds: some unsolved problems

DEFINITION: Geodesic in a metric space is an isometry $[0, 1] \rightarrow M$.

DEFINITION: A **Busemann space** is a metric space M such that any two points can be connected by a geodesic, any closed, bounded subset of M is compact, and a geodesic connecting x to y is unique when d(x, y) is sufficiently small.

REMARK: A Busemann space is homogeneous.

CONJECTURE: (Busemann, 1955) **Any Busemann space is a topological manifold.**

...Although this (the Busemann Conjecture) is probably true for any G-space, the proof, if the conjecture is correct, seems quite inaccessible in the present state of topology... (Herbert Busemann)

There are many other conjectures about path connected, homogeneous topological spaces (Bing-Borsuk, Moore, de Groot...), implying that they are manifolds, none of them proven, except in low dimension.

Busemann conjecture is unknown for dim M > 4.

Conflict

Herbert Busemann (Berlin, 1905 - Santa Ynez, 1994)

Conflict, 1972

Atlases on manifolds

DEFINITION: An open cover of a topological space X is a family of open sets $\{U_i\}$ such that $\bigcup_i U_i = X$. A cover $\{V_i\}$ is a refinement of a cover $\{U_i\}$ if every V_i is contained in some U_i .

REMARK: Any two covers $\{U_i\}$, $\{V_i\}$ of a topological space admit a common refinement $\{U_i \cap V_j\}$.

DEFINITION: Let M be a topological manifold. A cover $\{U_i\}$ of M is an **atlas** if for every U_i , we have a map $\varphi_i : U_i \to \mathbb{R}^n$ giving a homeomorphism of U_i with an open subset in \mathbb{R}^n . In this case, one defines the **transition maps**

 $\Phi_{ij}:\varphi_i(U_i\cap U_j)\to\varphi_j(U_i\cap U_j)$

DEFINITION: A function $\mathbb{R} \longrightarrow \mathbb{R}$ is of differentiability class C^i if it is *i* times differentiable, and its *i*-th derivative is continuous. A map $\mathbb{R}^n \longrightarrow \mathbb{R}^m$ is of differentiability class C^i if all its coordinate components are. A smooth function/map is a function/map of class $C^{\infty} = \bigcap C^i$.

DEFINITION: An atlas is **smooth** if all transition maps are smooth (of class C^{∞} , i.e., infinitely differentiable), **smooth of class** C^{i} if all transition functions are of differentiability class C^{i} , and **real analytic** if all transition maps admit a Taylor expansion at each point.

Smooth structures

DEFINITION: A refinement of an atlas is a refinement of the corresponding cover $V_i \,\subset U_i$ equipped with the maps $\varphi_i : V_i \to \mathbb{R}^n$ that are the restrictions of $\varphi_i : U_i \to \mathbb{R}^n$. Two atlases (U_i, φ_i) and (U_i, ψ_i) of class C^{∞} or C^i (with the same cover) are **equivalent** in this class if, for all *i*, the map $\psi_i \circ \varphi_i^{-1}$ defined on the corresponding open subset in \mathbb{R}^n belongs to the mentioned class. Two arbitrary atlases are **equivalent** if the corresponding covers possess a common refinement.

DEFINITION: A smooth structure on a manifold (of class C^{∞} or C^i) is an atlas of class C^{∞} or C^i considered up to the above equivalence. A smooth manifold is a topological manifold equipped with a smooth structure.

DEFINITION: A smooth function on a manifold M is a function f whose restriction to the chart (U_i, φ_i) gives a smooth function $f \circ \varphi_i^{-1} : \varphi_i(U_i) \longrightarrow \mathbb{R}$ for each open subset $\varphi_i(U_i) \subset \mathbb{R}^n$.

Smooth maps and isomorphisms

From now on, I shall identify the charts U_i with the corresponding subsets of \mathbb{R}^n , and forget the differentiability class.

DEFINITION: A smooth map of $U \subset \mathbb{R}^n$ to a manifold N is a map $f : U \longrightarrow N$ such that for each chart $U_i \subset N$, the restriction $f|_{f^{-1}(U_i)} : f^{-1}(U_i) \longrightarrow U_i$ is smooth with respect to coordinates on U_i . A map of manifolds $f : M \longrightarrow N$ is smooth if for any chart V_i on M, the restriction $f|_{V_i} : V_i \longrightarrow N$ is smooth as a map of $V_i \subset \mathbb{R}^n$ to N.

DEFINITION: An isomorphism of smooth manifolds is a bijective smooth map $f: M \longrightarrow N$ such that f^{-1} is also smooth.

Smooth structures, smooth finctions and sheaves

REMARK: For any two equivalent atlases of a given differentiability class C^{i} , the spaces $C^{i}M$ of C^{i} -functions coincide.

Converse is also true.

EXERCISE: Let $f: M \longrightarrow N$ be a map of smooth manifolds such that $f^*\mu$ is smooth for any smooth function $\mu: N \longrightarrow \mathbb{R}$. Show that f is a smooth map.

HINT: Use the chain rule.

Sheaves

DEFINITION: A presheaf of functions on a topological space M is a collection of subrings $\mathcal{F}(U) \subset C(U)$ in the ring C(U) of all functions on U, for each open subset $U \subset M$, such that the restriction of every $\gamma \in \mathcal{F}(U)$ to an open subset $U_1 \subset U$ belongs to $\mathcal{F}(U_1)$.

DEFINITION: A presheaf of functions \mathcal{F} is called a sheaf of functions if these subrings satisfy the following condition. Let $\{U_i\}$ be a cover of an open subset $U \subset M$ (possibly infinite) and $f_i \in \mathcal{F}(U_i)$ a family of functions defined on the open sets of the cover and compatible on the pairwise intersections:

$$f_i|_{U_i \cap U_j} = f_j|_{U_i \cap U_j}$$

for every pair of members of the cover. Then there exists $f \in \mathcal{F}(U)$ such that f_i is the restriction of f to U_i for all i.

Sheaves and exact sequences

REMARK: A presheaf of functions is a collection of subrings of functions on open subsets, compatible with restrictions. **A sheaf of fuctions is a presheaf allowing "gluing"** a function on a bigger open set if its restrictions to smaller open sets are compatible.

DEFINITION: A sequence $A_1 \rightarrow A_2 \rightarrow A_3 \rightarrow ...$ of homomorphisms of abelian groups or vector spaces is called **exact** if the image of each map is the kernel of the next one.

CLAIM: A presheaf \mathcal{F} is a sheaf if and only if for every cover $\{U_i\}$ of an open subset $U \subset M$, the sequence of restriction maps

$$0 \to \mathcal{F}(U) \to \prod_i \mathcal{F}(U_i) \to \prod_{i \neq j} \mathcal{F}(U_i \cap U_j)$$

is exact, with $\eta \in \mathcal{F}(U_i)$ mapped to $\eta |_{U_i \cap U_j}$ and $-\eta |_{U_j \cap U_i}$.

Sheaves and presheaves: examples

Examples of sheaves:

- * Space of continuous functions
- * Space of smooth functions, any differentiability class
- * Space of real analytic functions

Examples of presheaves which are not sheaves:

- * Space of constant functions (why?)
- * Space of bounded functions (why?)

Ringed spaces

A ringed space (M, \mathcal{F}) is a topological space equipped with a sheaf of functions. A morphism $(M, \mathcal{F}) \xrightarrow{\Psi} (N, \mathcal{F}')$ of ringed spaces is a continuous map $M \xrightarrow{\Psi} N$ such that, for every open subset $U \subset N$ and every function $f \in \mathcal{F}'(U)$, the function $\psi^* f := f \circ \Psi$ belongs to the ring $\mathcal{F}(\Psi^{-1}(U))$. An isomorphism of ringed spaces is a homeomorphism Ψ such that Ψ and Ψ^{-1} are morphisms of ringed spaces.

EXAMPLE: Let M be a manifold of class C^i and let $C^i(U)$ be the space of functions of this class. Then C^i is a sheaf of functions, and (M, C^i) is a ringed space.

REMARK: Let $f: X \longrightarrow Y$ be a smooth map of smooth manifolds. Since a pullback $f^*\mu$ of a smooth function $\mu \in C^{\infty}(M)$ is smooth, a smooth map of smooth manifolds defines a morphism of ringed spaces.

Converse is also true:

Ringed spaces and smooth maps

CLAIM: Let (M, C^i) and (N, C^i) be manifolds of class C^i . Then there is a bijection between smooth maps $f : M \longrightarrow N$ and the morphisms of corresponding ringed spaces.

Proof: Any smooth map induces a morphism of ringed spaces. Indeed, a composition of smooth functions is smooth, hence a pullback is also smooth.

Conversely, let $U_i \longrightarrow V_i$ be a restriction of f to some charts; to show that f is smooth, it would suffice to show that $U_i \longrightarrow V_i$ is smooth. However, we know that a pullback of any smooth function is smooth. Therefore, Claim is implied by the following lemma.

LEMMA: Let M, N be open subsets in \mathbb{R}^n and let $f : M \to N$ map such that a pullback of any function of class C^i belongs to C^i . Then f is of class C^i .

Proof: Apply f to coordinate functions.

A new definition of a manifold

As we have just shown, this definition is equivalent to the previous one.

DEFINITION: Let (M, \mathcal{F}) be a topological manifold equipped with a sheaf of functions. It is said to be a **smooth manifold of class** C^{∞} or C^i if every point in (M, \mathcal{F}) has an open neighborhood isomorphic to the ringed space $(\mathbb{R}^n, \mathcal{F}')$, where \mathcal{F}' is a ring of functions on \mathbb{R}^n of this class.

DEFINITION: A chart, or a coordinate system on an open subset U of a manifold (M, \mathcal{F}) is an isomorphism between (U, \mathcal{F}) and an open subset in $(\mathbb{R}^n, \mathcal{F}')$, where \mathcal{F}' are functions of the same class on \mathbb{R}^n .

DEFINITION: Diffeomorphism of smooth manifolds is a homeomorphism φ which induces an isomorphim of ringed spaces, that is, φ and φ^{-1} map (locally defined) smooth functions to smooth functions.

Assume from now on that all manifolds are Hausdorff and of class C^{∞} .

Embedded submanifolds

DEFINITION: A closed embedding $\varphi : N \hookrightarrow M$ of topological spaces is an injective map from N to a closed subset $\varphi(N)$ inducing a homeomorphism of N and $\varphi(N)$.

DEFINITION: $M \subset \mathbb{R}^n$ is called a submanifold of dimension m if for every point $x \in N$, there is a neighborhood $U \subset \mathbb{R}^n$ diffeomorphic to an open ball, such that this diffeomorphism maps $U \cap N$ onto a linear subspace of dimension m.

DEFINITION: A morphism of embedded submanifolds $M_1 \subset \mathbb{R}^n$ to $M_2 \subset \mathbb{R}^n$ is a map $f: M_1 \longrightarrow M_2$ such that any point $x \in M_1$ has a neighbourhood Usuch that $f|_{M_1 \cap U}$ can be extended to a smooth map $U \longrightarrow \mathbb{R}^n$.

REMARK: The third definition of a smooth manifold: a smooth manifold can be defined as a smooth submanifold in \mathbb{R}^n .

This definition becomes equivalent to the usual one if we prove the Whitney's theorem.

THEOREM: Any manifold can be embedded to \mathbb{R}^n .

Its proof is given in the next lecture.