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Smooth manifolds in terms of maps and atlases (reminder)

DEFINITION: Topological manifold is a topological space which is locally
homeomorphic to an open ball in Rn.

DEFINITION: An open cover of a topological space X is a family of open
sets {Ui} such that

⋃
iUi = X.

DEFINITION: Let M be a topological manifold. A cover {Ui} of M is an
atlas if for every Ui, we have a map ϕi : Ui → Rn giving a homeomorphism of
Ui with an open subset in Rn. In this case, one defines the transition maps

Φij : ϕi(Ui ∩ Uj)→ ϕj(Ui ∩ Uj)

DEFINITION: A function R−→ R is of differentiability class Ci if it is i

times differentiable, and its i-th derivative is continuous. A map Rn −→ Rm is
of differentiability class Ci if all its coordinate components are. A smooth
function/map is a function/map of class C∞ =

⋂
Ci.

DEFINITION: An atlas is smooth if all transition maps are smooth (of class
C∞, i.e., infinitely differentiable), smooth of class Ci if all transition functions
are of differentiability class Ci, and real analytic if all transition maps admit
a Taylor expansion at each point.
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Sheaves of functions (reminder)

DEFINITION: A presheaf of functions on a topological space M is a

collection of subrings F(U) ⊂ C(U) in the ring C(U) of all functions on U , for

each open subset U ⊂ M , such that the restriction of every γ ∈ F(U) to an

open subset U1 ⊂ U belongs to F(U1).

DEFINITION: A presheaf of functions F is called a sheaf of functions if

these subrings satisfy the following condition. Let {Ui} be a cover of an open

subset U ⊂ M (possibly infinite) and fi ∈ F(Ui) a family of functions defined

on the open sets of the cover and compatible on the pairwise intersections:

fi|Ui∩Uj = fj|Ui∩Uj
for every pair of members of the cover. Then there exists f ∈ F(U) such

that fi is the restriction of f to Ui for all i.
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Sheaves and presheaves: examples (reminder)

Examples of sheaves:

* Space of continuous functions

* Space of smooth functions, any differentiability class

* Space of real analytic functions

Examples of presheaves which are not sheaves:

* Space of constant functions (why?)

* Space of bounded functions (why?)
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Ringed spaces (reminder)

A ringed space (M,F) is a topological space equipped with a sheaf of func-

tions. A morphism (M,F)
Ψ−→ (N,F ′) of ringed spaces is a continuous map

M
Ψ−→ N such that, for every open subset U ⊂ N and every function f ∈ F ′(U),

the function ψ∗f := f ◦Ψ belongs to the ring F
(
Ψ−1(U)

)
. An isomorphism

of ringed spaces is a homeomorphism Ψ such that Ψ and Ψ−1 are morphisms

of ringed spaces.

CLAIM: Let (M,Ci) and (N,Ci) be manifolds of class Ci. Then there is

a bijection between smooth maps f : M −→N and the morphisms of

corresponding ringed spaces.

DEFINITION: Let (M,F) be a topological manifold equipped with a sheaf

of functions. It is said to be a smooth manifold of class C∞ or Ci if every

point in (M,F) has an open neighborhood isomorphic to the ringed space

(Rn,F ′), where F ′ is a ring of functions on Rn of this class.
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Embedded submanifolds (reminder)

DEFINITION: A closed embedding ϕ : N ↪→ M of topological spaces is
an injective map from N to a closed subset ϕ(N) inducing a homeomorphism
of N and ϕ(N).

DEFINITION: M ⊂ M is called a submanifold of dimension m if for every
point x ∈ N , there is a neighborhood U ⊂ K diffeomorphic to an open ball,
such that this diffeomorphism maps U∩N onto a linear subspace of dimension
m.

REMARK: Any submanifold N ⊂ M is equipped with a structure of a
manifold induced from M .

DEFINITION: A smooth embedding f : M −→N of smooth manifolds is
a closed embedding inducing a diffeomorphism of M to its image.

THEOREM: (Whitney theorem)
Any manifold can be embedded to Rn.

Proven in the end of this lecture (for compact manifolds).

Vote now for or against me giving the general proof in the next lecture.
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Locally finite covers

DEFINITION: An open cover {Uα} of a topological space M is called locally
finite if every point in M possesses a neighborhood that intersects only a finite
number of Uα.

Claim 1: Let {Uα} be an atlas on a manifold M . Then there exists a
refinement {Wβ} of {Uα} such that a closure of each Wβ is compact in
M.

Proof: Let {Uα} be an atlas on M , and Uα
ϕα−→ Rn homeomorphisms. Con-

sider a cover {Vi} of Rn given by open balls of radius 2 centered in integer
points, and let {Wβ} be a cover of M obtained as union of ϕ−1

α (Vi).

DEFINITION: Let U ⊂ V be two open subsets of M such that the closure
of U is contained in V . In this case we write U b V .

DEFINITION: An open cover {Uα} of a topological space M is called locally
finite if every point in M possesses a neighborhood that intersects only a finite
number of Uα.

REMARK: If the atlas {Uα} considered in Claim 1 is locally finite then the
atlas {Wβ} is also locally finite.
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Locally finite covers and their refinements

Exercise: Let U ⊂M be an open subset with compact closure, and V ⊃M\U
another open subset. Prove that there exists U ′ ⊂ U such that the closure

of U ′ is contained in U, and V ∪ U ′ = M.

THEOREM: Let {Uα} be a countable locally finite cover of a Hausdorff

topological space, such that a closure of each Uα is compact. Then there

exists another cover {Vα} indexed by the same set such that Vα b Uα.

Proof. Step 1: Let U1, U2, ... be all elements of the cover. Suppose that

V1, ..., Vn−1 is already found. To take an induction step it remains to find

Vn b Un

Step 2: Replacing Ui by Vi and renumbering, we may assume that n = 1.

Then the statement of Theorem follows from the previous exercise

applied to V =
⋃∞
i=2Ui and U = U1.
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Construction of a partition of unity

REMARK: If all Uα are diffeomorphic to Rn, all Vα can be chosen diffeo-

morphic to an open ball. Indeed, any compact set is contained in an open

ball.

COROLLARY: Let M be a manifold admitting a locally finite cover {Uα},
with ϕα : Uα −→ Rn diffeomorphisms. Then there exists another atlas

{Uα, ϕ′α : Uα −→ Rn}, such that ϕ′α(B) is also a cover of M, and B ⊂ Rn a

unit ball.

EXERCISE: Find a smooth function ν : Rn −→ [0,1] which vanishes

outside of B ⊂ Rn and is positive on B.

REMARK: In assumptions of Corollary, let να(z) := ν(ϕ′α), and µi := νi∑
α να

.

Then µα : M −→ [0,1] are smooth functions with support in Uα satisfying∑
α µα = 1. Such a set of functions is called a partition of unity.
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Partition of unity: a formal definition

DEFINITION: Let M be a smooth manifold and let {Uα} a locally finite

cover of M . A partition of unity subordinate to the cover {Uα} is a family of

smooth functions fi : M → [0,1] with compact support indexed by the same

indices as the Ui’s and satisfying the following conditions.

(a) Every function fi vanishes outside Ui
(b)

∑
i fi = 1

The argument of previous page proves the following theorem.

THEOREM: Let {Uα} be a countable, locally finite cover of a manifold M ,

with all Uα diffeomorphic to Rn. Then there exists a partition of unity

subordinate to {Uα}.
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Whitney theorem for compact manifolds

THEOREM: Let M be a compact smooth manifold. Then M admits a
closed smooth embedding to RN.

Proof. Step 1: Choose a finite atlas {Vi, ϕi : Vi −→ Rn, i = 1,2, ...,m}, and
subordinate partution of unity µi : M −→ [0,1]. Let α : [0,1]−→ [0,1] be
a smooth, monotonous function mapping 0 to 0 and [1/2m,1] to 1, and
νi := α(µi).

Step 2: Denote by Wi the set of interior points of W i := {z | νi(z) = 1} =
{z | µi(z) > 1

2m}. Since
∑m
i=1 µi = 1, the set {Wi} is a cover of M.

Step 3: For each i, the map Φi(z) := (νiϕi(z),1−νi(z))
|(νiϕi(z),1−νi(z))| is smooth and induces

a diffeomorphism of Wi and an open subset of Sn ⊂ Rn+1.

Step 4: The product map

Ψ :=
m∏
i=1

: Φi : M −→ Sn × Sn × ...× Sn︸ ︷︷ ︸
m times

is an injective, continuous map from a compact, hence it is a homeomor-
phism to its image. It is a smooth embedding, because its differential is
injective (use “implicit/inverse function theorem”).
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Embedding to R∞

QUESTION: What if M is non-compact?

DEFINITION: Define RIf as a direct sum of several copies of R indexed by

a set I, that is, the set of points in a product where only finitely meny of

coordinates can be non-zero. The set RIf has metric

d((x1, ..., xn, ...), (y1, ..., yn, ...)) :=
√
|x1 − y1|2 + |x2 − y2|2 + ...+ |xn − yn|+ ....

It is well-defined, because only finitely many of xi, yi are non-zero.

THEOREM: Let M be a compact smooth manifold, {Vi, ϕi : Vi −→ Rn, i ∈ I}
be a locally finite atlas, and µi : M −→ [0,1] a subordinate partition of unity.

Define νi := α(µi) and Φi as above, and let

Ψ :=
∏
I

: Φi : M −→ Sn × Sn × ...× Sn︸ ︷︷ ︸
I times

⊂ (Rn+1)I

be the corresponding product map. Then Ψ is a homeomorphism to its

image.
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Embedding to R∞ (cont.)

THEOREM: Let M be a compact smooth manifold, {Vi, ϕi : Vi −→ Rn, i ∈ I}
be a locally finite atlas, and µi : M −→ [0,1] a subordinate partition of unity.
Define νi := α(µi) and Φi as above, and let

Ψ :=
∏
I

: Φi : M −→ Sn × Sn × ...× Sn︸ ︷︷ ︸
I times

⊂ (Rn+1)I

be the corresponding product map. Then Ψ is a homeomorphism to its
image.

Proof. Step 1: Ψ is injective by construction. To prove that it is a home-
omorphism, it suffices to check that an image of an open set U is open in
Ψ(M), for each U ⊂Wi, for some open cover {Wi}

Step 2: However, the set Ψ(Wi) is determined by νi(z) = 1, that is, by
Φi(z)n+1 = 1, where Φi(z)n+1 is the last coordinate of Φi(z). Therefore, Ψ
maps Wi to an open subset of Ψ(M).

Step 3: Since Φi

∣∣∣W i
(restriction to a closure) is a continuous, bijective map

from a compact, it’s a homeomorphism. Therefore, an image of any open
subset U ⊂Wi is open in Ψ(Wi), which is open in Ψ(M) as follows from
Step 2.
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Measure 0 subsets and Sard’s theorem

DEFINITION: A subset Z ⊂ Rn has measure zero if, for every ε > 0, there

exists a countable cover of Z by open balls Ui such that
∑
iVolUi < ε.

DEFINITION: A subset Z ⊂M of a manifold M has measure 0 if intersec-

tion of M with each chart Ui ↪→ Rn has measure 0.

Properties of measure 0 subsets.

A countable union of measure 0 subsets has measure 0.

A measure 0 subset Z ⊂ M satisfies (M\Z) ∩ U 6= ∅ for any non-empty

open subset U ⊂M .

THEOREM: (a special case of Sard’s Lemma) Let f : M −→N be a

smooth map of manifolds, dimM < dimN . Then f(M) has measure zero

in N.

EXERCISE: Prove it.
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Whitney’s theorem (with a bound on dimension): strategy of the proof

THEOREM: Let M be a smooth n-manifold. Then M admits a closed

embedding to R2n+2.

Strategy of the proof:

1. M is embedded to R∞.

2. We find a linear projection R∞ π−→ R2n+2 such that π|M is a closed

embedding of manifolds.

LEMMA: Let M ⊂ RI be a subset, and π : RI −→ RJ a linear projection.

Consider the set W of all vectors R(x− y), where x, y ∈M are distinct points.

Then π|M is injective if and only if ker π ∩W = 0.

Proof: π|M is not injective if and only if π(x) = π(y), which is equivalent to

π(x− y) = 0.
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Whitney’s theorem: injectivity of projections

REMARK: Let M ⊂ RI be a submanifold, and W ⊂ RI the set of all vectors

R(x−y), where x, y ∈M are distinct points. Then W is an image of a 2m+1-

dimensional manifold, hence (by Sard’s Lemma) for any projection of RI

to a (2m+ 2)-dimensional space, image of W has measure 0.

COROLLARY: Let M ⊂ RI be an m-dimensional submanifold, and S ⊂ RI

a maximal linear subspace not intersecting W . Then the projection of W

to RI/S is surjective.

Proof: Suppose it’s not surjective: v /∈ S. Then S ⊕ Rv satisfies assumptions

of lemma, hence M −→ RI/(S + Rv) is also injective.

THEOREM: Let M be a smooth n-manifold, M ↪→ RI an embedding con-

structed earlier. Then there exists a projection π : RI −→ R2n+2 which is

injective on M.

Proof: Let S be the maximal linear subspace such that the restriction of

π : RI −→ RI/S to M is injective. Then the 2m + 1-dimensional manifold W

surjects to RI/S, hence dimRi/S 6 2m+ 1 by Sard’s lemma.
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Tangent space to an embedded manifold

DEFINITION: Let M ↪→ Rn be a smooth m-submanifold. The tangent
plane at p ∈ M is the plane in Rn tangent to M (i.e, the plane lying in the
image of the differential given in local coordinates). A tangent vector is an
arbitrary vector in this plane with the origin at p. The space of all tangent
vectors at p is denoted by TpM . Given a metric on Rn, we can define the
space of unit tangent vectors Sm−1M as the set of all pairs (p, v), where
p ∈M , v ∈ TpM , and |v| = 1.

REMARK: Sm−1M is a smooth manifold, projected to M with fibers isomor-
phic to m− 1-spheres, hence Sm−1M is (2m− 1)-dimensional.

LEMMA: Let M ⊂ RI be a subset, and π : RI −→ RJ a linear projection.
Consider the set W ′ of all vectors Rt, where t ∈ TxM Then the differential
Dπ|M is injective if and only if ker π ∩W ′ = 0.

Now the above argument is repeated: we take a maximal space S ⊃ RI such
that the restriction of π : RI −→ RI/S to M is injective and has injective
differential, and the projection of W ∪W ′ to RI/S has to be surjective. How-
ever, W ′ is an image of an 2m-dimensional manifold Sm−1M × R, hence the
projection of W ∪W ′ to RI/S can be surjective only if dimRI/S 6 2m+ 2.

This proves Whitney’s theorem.
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