Geometry of manifolds

lecture 3

Misha Verbitsky

Université Libre de Bruxelles

October 12, 2015

Rings and derivations

REMARK: All rings in these lectures are assumed to be commutative and with unit. Algebras are associative, but not necessarily commutative (such as the matrix algebra). Rings over a field k are rings containing a field k. We assume that k has characteristic 0.

DEFINITION: Let A be a ring over a field k. A k-linear map $D \to A$ is called **a derivation** if it satisfies **the Leibnitz identity** D(fg) = D(f)g + gD(f). The space of derivations is denoted as $\text{Der}_k(A)$.

EXAMPLE:
$$\frac{d}{dt}$$
 : $\mathbb{C}[t] \longrightarrow \mathbb{C}[t]$. $\frac{d}{dt}$: $C^{\infty}\mathbb{R} \longrightarrow C^{\infty}\mathbb{R}$.

REMARK: Any derivation $\delta \in \text{Der}_k(A)$ vanishes on $k \subset A$. Indeed, $\delta(1) = \delta(1 \cdot 1) = 2\delta(1)$.

CLAIM: Let K be a finite extension of a field k, that is, a field containing k and finite-dimensional as a K-linear space. Then $\text{Der}_k(K) = 0$.

Proof: Indeed, any $x \in K$ satisfies a non-trivial polynomial equation P(x) = 0 with coefficients in k. Chose P(t) of smallest degree possible. For any $\delta \in \text{Der}_k(A)$, we have $0 = \delta(P(x)) = P'(x)\delta(x)$, and unless $\delta(x) = 0$, one has P'(x) = 0, giving a contradiction.

Modules over a ring

DEFINITION: Let A be a ring over a field k. An A-module is a vector space V over k, equipped with an algebra homomorphism $A \rightarrow \text{End}(V)$, where End(V) denotes the endomorphism algebra of V, that is, the matrix algebra.

REMARK: Let A be a field. Then A-modules are the same as vector spaces over A.

DEFINITION: Homomorphisms, isomorphisms, submodules, quotient modules, direct sums of modules are defined in the same way as for the vector spaces. A ring A is itself an A-module. A direct sum of n copies of A is denoted A^n . Such A-module is called a free A-module.

EXAMPLE: *A*-submodules in *A* are the same as ideals in *A*.

DEFINITION: Finitely generated A-module is a quotient module of A^n .

Derivations as an *A***-module**

REMARK: Let A be a ring over k. The space $Der_k(A)$ of derivations is also an A-module, with multiplicative action of A given by rD(f) = rD(f).

CLAIM: Let $A = k[t_1, .., t_k]$ be a polynomial ring. Then $\text{Der}_k(A)$ is a free *A*-module isomorphic to A^n , with generators $\frac{d}{dt_1}, \frac{d}{dt_2}, ..., \frac{d}{dt_n}$.

Proof: Consider a map $Der_k(A) \longrightarrow A^n$,

 $D \longrightarrow (D(t_1), D(t_2), ..., D(t_n))$

It is surjective, because it maps each $\frac{d}{dt_i}$ to (0, ..., 0, 1, 0, ..., 0), and injective, because each derivation which vanishes on t_i , vanishes on the whole polynomial ring.

Now we prove a similar result for $C^{\infty}\mathbb{R}^n$.

Hadamard's Lemma

LEMMA: (Hadamard's Lemma)

Let f be a smooth function on \mathbb{R}^n , and x_i the coordinate functions. Then $f(x) = f(0) + \sum_{i=1}^n x_i g_i(x)$, for some smooth $g_i \in C^{\infty} \mathbb{R}^n$.

Proof: Let $t \in \mathbb{R}^n$. Consider a function $h(t) \in C^{\infty}\mathbb{R}^n$, h(t) = f(tx). Using chain rule, we get $\frac{dh}{dt} = \sum \frac{d}{dx_i} f(tx) x_i$, obtaining

$$f(x) - f(0) = \int_0^1 \frac{dh}{dt} dt = \sum_i x_i \int_0^1 \frac{df(tx)}{dx_i} (tx) dt.$$

COROLLARY: Let \mathfrak{m}_0 be an ideal of all smooth functions on \mathbb{R}^n vanishing in 0. Then \mathfrak{m}_0 is generated by coordinate functions.

COROLLARY: Let f be a smooth function on \mathbb{R}^n satisfying f(x) = 0 and f'(x) = 0. Then $f \in \mathfrak{m}_x^2$.

Proof: $f(x) = \sum_{i=1}^{n} x_i g_i(x)$, where all g_i vanish in 0.

Derivations of $C^{\infty}\mathbb{R}^n$

THEOREM: Let $x_1, ..., x_n$ be coordinates on \mathbb{R}^n , $A = C^{\infty} \mathbb{R}^n$, and $Der(A) \xrightarrow{\Psi} (C^{\infty} \mathbb{R}^n)^n$ map D to $(D(x_1), D(x_2), ..., D(x_n))$. Then Ψ : $Der(C^{\infty} \mathbb{R}^n) \longrightarrow A^n$ is an isomorphism.

Proof. Step 1: Since Ψ maps each $\frac{d}{dt_i}$ to (0, ..., 0, 1, 0, ..., 0), it is surjective.

Step 2: Let \mathfrak{m}_0 be an ideal of functions vanishing in 0, and $\delta \in \ker \Psi$. Then $\Psi(x_i) = 0$, where x_i are coordinate functions. By Hadamard's Lemma, $f(x) = f(0) + \sum_{i=1}^{n} x_i g_i(x)$, hence $\delta(f) = \sum_{i=1}^{n} x_i \delta(g_i)$. Therefore, $\delta(f)$ lies in \mathfrak{m}_0 .

Step 3: Same argument proves that $\delta(f)$ vanishes everywhere, for all $f \in C^{\infty}M$.

Sheaves

DEFINITION: An open cover of a topological space X is a family of open sets $\{U_i\}$ such that $\bigcup_i U_i = X$.

REMARK: The definition of a sheaf below is a more abstract version of the notion of "sheaf of functions" defined previously.

DEFINITION: A presheaf on a topological space M is a collection of vector spaces $\mathcal{F}(U)$, for each open subset $U \subset M$, together with restriction maps $R_{UW}\mathcal{F}(U) \longrightarrow \mathcal{F}(W)$ defined for each $W \subset U$, such that for any three open sets $W \subset V \subset U$, $R_{UW} = R_{UV} \circ R_{VW}$. Elements of $\mathcal{F}(U)$ are called sections of \mathcal{F} over U, and the restriction map often denoted $f|_W$

DEFINITION: A presheaf \mathcal{F} is called a sheaf if for any open set U and any cover $U = \bigcup U_I$ the following two conditions are satisfied.

1. Let $f \in \mathcal{F}(U)$ be a section of \mathcal{F} on U such that its restriction to each U_i vanishes. Then f = 0.

2. Let $f_i \in \mathcal{F}(U_i)$ be a family of sections compatible on the pairwise intersections: $f_i|_{U_i \cap U_j} = f_j|_{U_i \cap U_j}$ for every pair of members of the cover. Then there exists $f \in \mathcal{F}(U)$ such that f_i is the restriction of f to U_i for all i.

Sheaves and exact sequences

DEFINITION: A sequence $A_1 \longrightarrow A_2 \longrightarrow A_3 \longrightarrow ...$ of homomorphisms of abelian groups or vector spaces is called **exact** if the image of each map is the kernel of the next one.

CLAIM: A presheaf \mathcal{F} is a sheaf if and only if for every cover $\{U_i\}$ of an open subset $U \subset M$, the sequence of restriction maps

$$0 \to \mathcal{F}(U) \to \prod_i \mathcal{F}(U_i) \to \prod_{i \neq j} \mathcal{F}(U_i \cap U_j)$$

is exact, with $\eta \in \mathcal{F}(U_i)$ mapped to $\eta |_{U_i \cap U_j}$ and $-\eta |_{U_j \cap U_i}$.

Ringed spaces (reminder)

DEFINITION: A sheaf of rings is a sheaf \mathcal{F} such that all the spaces $\mathcal{F}(U)$ are rings, and all restriction maps are ring homomorphisms.

DEFINITION: A sheaf of functions is a subsheaf in the sheaf of all functions, closed under multiplication.

For simplicity, I assume now that a sheaf of rings is a subsheaf in the sheaf of all functions.

DEFINITION: A ringed space (M, \mathcal{F}) is a topological space equipped with a sheaf of rings. A morphism $(M, \mathcal{F}) \xrightarrow{\Psi} (N, \mathcal{F}')$ of ringed spaces is a continuous map $M \xrightarrow{\Psi} N$ such that, for every open subset $U \subset N$ and every function $f \in \mathcal{F}'(U)$, the function $\psi^* f := f \circ \Psi$ belongs to the ring $\mathcal{F}(\Psi^{-1}(U))$. An isomorphism of ringed spaces is a homeomorphism Ψ such that Ψ and Ψ^{-1} are morphisms of ringed spaces.

Smooth manifolds (reminder)

DEFINITION: Let (M, \mathcal{F}) be a topological manifold equipped with a sheaf of functions. It is said to be a **smooth manifold of class** C^{∞} or C^i if every point in (M, \mathcal{F}) has an open neighborhood isomorphic to the ringed space $(\mathbb{B}^n, \mathcal{F}')$, where $\mathbb{B}^n \subset \mathbb{R}^n$ is an open ball and \mathcal{F}' is a ring of functions on an open ball \mathbb{B}^n of this class.

DEFINITION: Diffeomorphism of smooth manifolds is a homeomorphism φ which induces an isomorphisms of ringed spaces, that is, φ and φ^{-1} map (locally defined) smooth functions to smooth functions.

Assume from now on that all manifolds are Hausdorff and of class C^{∞} .

Partition of unity (reminder)

DEFINITION: Let M be a smooth manifold and let $\{U_{\alpha}\}$ a locally finite cover of M. A **partition of unity** subordinate to the cover $\{U_{\alpha}\}$ is a family of smooth functions $f_i : M \to [0, 1]$ with compact support indexed by the same indices as the U_i 's and satisfying the following conditions. (a) Every function f_i vanishes outside U_i (b) $\sum_i f_i = 1$

THEOREM: Let $\{U_{\alpha}\}$ be a countable, locally finite cover of a manifold M, with all U_{α} diffeomorphic to \mathbb{R}^n . Then there exists a partition of unity subordinate to $\{U_{\alpha}\}$.

DEFINITION: Let $U \subset V$ be open subsets in M. We write $U \Subset V$ if the closure of U is contained in V.

DEFINITION: Let $f \in \mathcal{F}(M)$ be a section of a sheaf \mathcal{F} on M. A point $x \in M$ does not lie in the **support** Sup(f) of f if $f|_U = 0$ for some neighbourhood $U \ni x$. A section is called **section with compact support** or **supported on** a **compact set** if its support is compact.

REMARK: Support of a section is obviously closed.

Vector fields as derivations

DEFINITION: Let *M* be a smooth manifold. A vector field on *M* is an element in $Der(C^{\infty}M)$.

Pros of this definition: it is entirely coordinate-free.Cons: Restriction to an open subset is a complicated business.

EXAMPLE: For $M = \mathbb{R}^n$, the space $Der(C^{\infty}M)$ is a free module generated by $\frac{d}{dx_i}$, i = 1, ..., n.

REMARK: We want to prove that vector fields form a sheaf. However, it is not immediately clear how to restrict a vector field from U to $W \subset U$.

Idea: Let $V \subset U$. To show that Der(M) is a sheaf we have to learn how to differentiate functions in V using vectors $X \in Der(U)$. When f has compact support in V, it is extended to a smooth function on U tautologically, and you can differentiate. It remais to show that the space $Der_c(V)$ of derivations on functions with compact support in V is equal to Der(V).