Geometry of manifolds

lecture 4

Misha Verbitsky

Université Libre de Bruxelles

October 19, 2015

Modules over a ring (reminder)

DEFINITION: Let A be a ring over a field k. An A-module is a vector space V over k, equipped with an algebra homomorphism $A \rightarrow \text{End}(V)$, where End(V) denotes the endomorphism algebra of V, that is, the matrix algebra.

EXAMPLE: A ring A is itself an A-module. A direct sum of n copies of A is denoted A^n . Such A-module is called a free A-module.

EXAMPLE: *A*-submodules in *A* are the same as ideals in *A*.

Rings and derivations (reminder)

REMARK: All rings in these lectures are assumed to be commutative and with unit. Algebras are associative, but not necessarily commutative (such as the matrix algebra). **Rings over a field** k are rings containing a field k. We assume that k has characteristic 0.

DEFINITION: Let A be a ring over a field k. A k-linear map $D \to A$ is called **a derivation** if it satisfies **the Leibnitz identity** D(fg) = D(f)g + gD(f). The space of derivations is denoted as $\text{Der}_k(A)$.

REMARK: Let A be a ring over k. The space $Der_k(A)$ of derivations is also an A-module, with multiplicative action of A given by rD(f) = rD(f).

THEOREM: Let $x_1, ..., x_n$ be coordinates on \mathbb{R}^n , $A = C^{\infty} \mathbb{R}^n$, and $Der(A) \xrightarrow{\Psi} (C^{\infty} \mathbb{R}^n)^n$ map D to $(D(x_1), D(x_2), ..., D(x_n))$. Then Ψ : $Der(C^{\infty} \mathbb{R}^n) \longrightarrow A^n$ is an isomorphism.

Sheaves (reminder)

DEFINITION: An open cover of a topological space X is a family of open sets $\{U_i\}$ such that $\bigcup_i U_i = X$.

REMARK: The definition of a sheaf below is a more abstract version of the notion of "sheaf of functions" defined previously.

DEFINITION: A presheaf on a topological space M is a collection of vector spaces $\mathcal{F}(U)$, for each open subset $U \subset M$, together with restriction maps $R_{UW}\mathcal{F}(U) \longrightarrow \mathcal{F}(W)$ defined for each $W \subset U$, such that for any three open sets $W \subset V \subset U$, $R_{UW} = R_{UV} \circ R_{VW}$. Elements of $\mathcal{F}(U)$ are called sections of \mathcal{F} over U, and the restriction map often denoted $f|_W$

DEFINITION: A presheaf \mathcal{F} is called a sheaf if for any open set U and any cover $U = \bigcup U_I$ the following two conditions are satisfied.

1. Let $f \in \mathcal{F}(U)$ be a section of \mathcal{F} on U such that its restriction to each U_i vanishes. Then f = 0.

2. Let $f_i \in \mathcal{F}(U_i)$ be a family of sections compatible on the pairwise intersections: $f_i|_{U_i \cap U_j} = f_j|_{U_i \cap U_j}$ for every pair of members of the cover. Then there exists $f \in \mathcal{F}(U)$ such that f_i is the restriction of f to U_i for all i.

Ringed spaces (reminder)

DEFINITION: A sheaf of rings is a sheaf \mathcal{F} such that all the spaces $\mathcal{F}(U)$ are rings, and all restriction maps are ring homomorphisms.

DEFINITION: A sheaf of functions is a subsheaf in the sheaf of all functions, closed under multiplication.

For simplicity, I assume now that a sheaf of rings is a subsheaf in the sheaf of all functions.

DEFINITION: A ringed space (M, \mathcal{F}) is a topological space equipped with a sheaf of rings. A morphism $(M, \mathcal{F}) \xrightarrow{\Psi} (N, \mathcal{F}')$ of ringed spaces is a continuous map $M \xrightarrow{\Psi} N$ such that, for every open subset $U \subset N$ and every function $f \in \mathcal{F}'(U)$, the function $\psi^* f := f \circ \Psi$ belongs to the ring $\mathcal{F}(\Psi^{-1}(U))$. An isomorphism of ringed spaces is a homeomorphism Ψ such that Ψ and Ψ^{-1} are morphisms of ringed spaces.

Smooth manifolds (reminder)

DEFINITION: Let (M, \mathcal{F}) be a topological manifold equipped with a sheaf of functions. It is said to be a **smooth manifold of class** C^{∞} or C^i if every point in (M, \mathcal{F}) has an open neighborhood isomorphic to the ringed space $(\mathbb{B}^n, \mathcal{F}')$, where $\mathbb{B}^n \subset \mathbb{R}^n$ is an open ball and \mathcal{F}' is a ring of functions on an open ball \mathbb{B}^n of this class.

DEFINITION: Diffeomorphism of smooth manifolds is a homeomorphism φ which induces an isomorphisms of ringed spaces, that is, φ and φ^{-1} map (locally defined) smooth functions to smooth functions.

Assume from now on that all manifolds are Hausdorff and of class C^{∞} .

Partition of unity (reminder)

DEFINITION: Let M be a smooth manifold and let $\{U_{\alpha}\}$ a locally finite cover of M. A partition of unity subordinate to the cover $\{U_{\alpha}\}$ is a family of smooth functions $f_i : M \to [0, 1]$ with compact support indexed by the same indices as the U_i 's and satisfying the following conditions. (a) Every function f_i vanishes outside U_i (b) $\sum_i f_i = 1$

THEOREM: Let $\{U_{\alpha}\}$ be a countable, locally finite cover of a manifold M, with all U_{α} diffeomorphic to \mathbb{R}^n . Then there exists a partition of unity subordinate to $\{U_{\alpha}\}$.

DEFINITION: Let $U \subset V$ be open subsets in M. We write $U \Subset V$ if the closure of U is contained in V.

DEFINITION: Let $f \in \mathcal{F}(M)$ be a section of a sheaf \mathcal{F} on M. A point $x \in M$ does not lie in the **support** Sup(f) of f if $f|_U = 0$ for some neighbourhood $U \ni x$. A section is called **section with compact support** or **supported on** a **compact set** if its support is compact.

REMARK: Support of a section is obviously closed.

Vector fields as derivations

DEFINITION: Let *M* be a smooth manifold. A vector field on *M* is an element in $Der(C^{\infty}M)$.

EXAMPLE: For $M = \mathbb{R}^n$, the space $Der(C^{\infty}M)$ is a free module generated by $\frac{d}{dx_i}$, i = 1, ..., n.

Pros of this definition: it is entirely coordinate-free.

Cons: Restriction to an open subset is a complicated business.

THEOREM: Let $U \in V$ be open subset of a smooth metrizable manifold, and $D \in (C^{\infty}M)$ a derivation. Consider a smooth function $\Phi_{U,V} \in C^{\infty}M$ supported on V, and equal to 1 on U. Given $f \in C^{\infty}V$, define $D(f)|_U := D(\Phi_{U,V}f)$. Choosing a cover $\{U_i\}$ of such sets, we can glue together a section D(f) of $C^{\infty}V$ from such $D(f)|_{U_i}$. This operation is independent of all choices we made and gives an element $D|_V \in Der(V)$. Moreover, this restriction maps define a structure of a sheaf on Der(M).

Proof: Later in this lecture.

M. Verbitsky

Direct limits

DEFINITION: Commutative diagram of vector spaces is given by the following data. There is a directed graph (graph with arrows). For each vertex of this graph we have a vector space, and each arrow corresponds to a homomorphism of the associated vector spaces. These homomorphism are compatible, in the following way. Whenever there exist two ways of going from one vertex to another, the compositions of the corresponding arrows are equal.

DEFINITION: Let C be a commutative diagram of vector spaces, A, B – vector spaces, corresponding to two vertices of a diagram, and $a \in A, b \in B$ elements of these vector spaces. Write $a \sim b$ if a and b are mapped to the same element $d \in D$ by a composition of arrows from C. Let \sim be an equivalence relation generated by such $a \sim b$. A quotient $\bigoplus_i C_i/E$ is called a direct limit of a diagram $\{C_i\}$. The same notion is also called colimit and inductive limit. Direct limit is denoted lim.

DEFINITION: Let \mathcal{F} be a sheaf on M, $x \in M$ a point, and $\{U_i\}$ the set of all neighbourhoods of x. Consider a diagram with the set of vertices indexed by $\{U_i\}$, and arrows from U_i to U_j corresponding to inclusions $U_j \hookrightarrow U_i$. The **space of germs** of \mathcal{F} in x is a direct limit $\lim_{i \to \infty} \mathcal{F}(U_i)$ over this diagram. The space of germs is also called **the stalk** of the sheaf \mathcal{F} .

Germs of functions

DEFINITION: A diagram C is called **filtered** if for any two vertices C_i, C_j , there exists a third vertex C_k , and sequences of arrows leading from C_i to C_k and from C_j to C_k .

EXAMPLE: The diagram formed by all neighbourhoods of a point is obviously filtered.

CLAIM: Let C be a commutative diagram of vector spaces C_i , with all C_i equipped with a ring structure, and all arrows ring homomorphisms. Suppose that the diagram C is filtered. Then there exists a unique ring structure on $C := \lim C_i$ such that all the maps $C_i \longrightarrow C$ are ring homomorphisms.

DEFINITION: Let M, \mathcal{F} be a ringed space, $x \in M$ its point, and $\{U_i\}$ the set of all its neighbourhoods. Consider a commutative diagram with vertices indexed by $\{U_i\}$, and arrows from U_i to U_j corresponding to inclusions $U_j \hookrightarrow U_i$. For each vertex U_i we take a vector space of sections $\mathcal{F}(U_i)$, and for each arrow the corresponding restriction map. The direct limit of this diagram is called **the ring of germs of the sheaf** \mathcal{F} in x.

Morphisms of sheaves

DEFINITION: Let $\mathcal{B}, \mathcal{B}'$ be sheaves on M. A sheaf morphism from \mathcal{B} to \mathcal{B}' is a collection of homomorphisms $\mathcal{B}(U) \longrightarrow \mathcal{B}'(U)$, defined for each open subset $U \subset M$, and compatible with the restriction maps:

DEFINITION: A sheaf morphism is called **injective**, or **a monomorphism** if it is injective on stalks and **surjective**, or **epimorphism** if it is surjective on stalks.

EXERCISE: Let $\mathcal{B} \xrightarrow{\varphi} \mathcal{B}'$ be an injective morphism of sheaves on M. **Prove** that φ induces an injective map $\mathcal{B}(U) \longrightarrow \mathcal{B}'(U)$ for each U.

REMARK: A sheaf epimorphism $\mathcal{B} \xrightarrow{\varphi} \mathcal{B}'$ does not necessarily induce a surjective map $\mathcal{B}(U) \longrightarrow \mathcal{B}'(U)$.

DEFINITION: A sheaf isomorphism is a homomorphism Ψ : $\mathcal{F}_1 \longrightarrow \mathcal{F}_2$, for which there exists an homomorphism Φ : $\mathcal{F}_2 \longrightarrow \mathcal{F}_1$, such that $\Phi \circ \Psi = \text{Id}$ and $\Psi \circ \Phi = \text{Id}$.

EXERCISE: Show that a morphism of sheaves Ψ : $\mathcal{F}_1 \longrightarrow \mathcal{F}_2$ is an isomorphism if and only if it is epi and mono.

M. Verbitsky

Sheaves of modules

REMARK: Let $A : \varphi \longrightarrow B$ be a ring homomorphism, and V a B-module. Then V is equipped with a natural A-module structure: $av := \varphi(a)v$.

DEFINITION: Let \mathcal{F} be a sheaf of rings on a topological space M, and \mathcal{B} another sheaf. It is called a sheaf of \mathcal{F} -modules if for all $U \subset M$ the space of sections $\mathcal{B}(U)$ is equipped with a structure of $\mathcal{F}(U)$ -module, and for all $U' \subset U$, the restriction map $\mathcal{B}(U) \xrightarrow{\varphi_{U,U'}} \mathcal{B}(U')$ is a homomorphism of $\mathcal{F}(U)$ -modules (use the remark above to obtain a structure of $\mathcal{F}(U)$ -module on $\mathcal{B}(U')$).

DEFINITION: A free sheaf of modules \mathcal{F}^n over a ring sheaf \mathcal{F} maps an open set U to the space $\mathcal{F}(U)^n$.

DEFINITION: Locally free sheaf of modules over a sheaf of rings \mathcal{F} is a sheaf of modules \mathcal{B} satisfying the following condition. For each $x \in M$ there exists a neighbourhood $U \ni x$ such that the restriction $\mathcal{B}|_U$ is free.

DEFINITION: A vector bundle on a smooth manifold M is a locally free sheaf of $C^{\infty}M$ -modules.

Dual sheaves

CLAIM: Let $U \subset V$ be open subsets of a Hausdorff space M. A section $f \in \mathcal{F}(U)$ with compact support $Z \subset U$ can be uniquely extended to $\tilde{f} \in \mathcal{F}(V)$, also with support in Z.

Proof: Consider a cover $\{U_1 = U, U_2 = V \setminus Z\}$ of V, and let $f_1 = f \in F(U_1)$ and $f_2 = 0 \in F(U_2)$. Since $f_i|_{U_1 \cap U_2} = 0$, we can glue f_1 and f_2 , obtaining the extension \tilde{f} and $0 \in \mathcal{F}(U_2)$.

DEFINITION: Let \mathcal{F} be a sheaf. Denote the space of sections of \mathcal{F} on U with compact support by $\mathcal{F}_c(U)$. Let $\mathcal{F}^*(U)$ map U to the dual space $\mathcal{F}_c(U)^*$. Using the claim above, we obtain a restriction map $\mathcal{F}^*(V) \longrightarrow \mathcal{F}^*(U)$ for each open $V \supset U$. This gives dual presheaf \mathcal{F}^*

EXERCISE: Let M be a manifold, and \mathcal{F} a sheaf of modules over $C^{\infty}M$. **Prove that** \mathcal{F}^* is a sheaf.

HINT: Use partition of unity.

Smooth functions with prescribed support

EXERCISE: Let $X, Y \subset M$ be non-intersecting closed subsets in a metric space. Find non-intersecting open neighbourhoods $U_1 \supset X$ and $U_2 \supset U$.

Proposition 1: Let $U \in V$ – open subsets in a smooth metrizable manifold. Then there exists a smooth function $\Phi_{U,V} \in C^{\infty}M$, supported on V, and equal to 1 on U.

Proof. Step 1: Let U_1 , U_2 be non-intersecting open sets containing the closure $X = \overline{U}$ and $Y = M \setminus V$, and $U_3 = V \setminus \overline{U}$. Since $U_1 \cup U_2$ contains \overline{U} and $M \setminus V$, U_1, U_2, U_3 is a cover of M.

Step 2: Consider a cover of M by open sets $\{V_i\}$ which are contained in either U_1, U_2 or U_3 , but never intersect both U_1 and U_2 . Let ψ_i be a partition of unity supported in V_i , and $\Phi_{U,V}$ be the sum of all ψ_i with support in $U_1 \cap U_3$ and intersecting U_2 . Then $\Phi_{U,V} = 0$ in $M \setminus U_2 \supset M \setminus V$, because support of $\Phi_{U,V}$ does not intersect U_2 , and $\Phi_{U,V} = 1$ on $U_1 \supset U$, because $\Phi_{U,V}$ is a sum of all ψ_i with support intersecting U_2 .

Local operators

DEFINITION: A linear map Ψ : $C^{\infty}(M) \longrightarrow C^{\infty}(M)$ is called **local** if for any function f supported in a compact subset $Z \subset M$, its image $\Psi(f)$ is supported in Z.

LEMMA: Any derivation $D: C^{\infty}(M) \longrightarrow C^{\infty}(M)$ is local.

Proof: Let f be a function supported in Z. For each g with support outside of Z, we have 0 = D(fg) = fD(g) + gD(f).

Proposition 1 gives a function g which is equal to 1 on any compact subset K not intersecting Z and 0 in a neighbourhood of Z. Then $0 = D(fg)|_K = gD(f)|_K = D(f)$. Therefore, K does not intersect support D(f). However, the union of all such K is $M \setminus Z$.

REMARK: By definition, differential operator is an operator expressed through derivations and multiplication by a function. From the above lemma, we obtain that all differential operators are local. The converse is also true, but harder to prove: any local operator on $C^{\infty}M$ is a differential operator.

M. Verbitsky

Local operators and sheaves

CLAIM: For any local operator $D : C^{\infty}M \longrightarrow C^{\infty}M$, and any $f \in C^{\infty}M$, the germ D(f) in x is determined uniquely by the germ of f in x.

Proof: Consider $f, f_1 \in C^{\infty}M$ with the same germ in x. Then $f - f_1 = 0$ in a neighbourhood $U \ni x$, hence $D(f) = D(f_1)$ in this neighbourhood (by locality of D).

Proposition 2: Let $D: C^{\infty}M \to C^{\infty}M$ be a local operator, $U \subset M$ an open subset, and $f \in C^{\infty}U$ a function with germs f_x at each $x \in U$. Then there exists a unique function $D(f) \in C^{\infty}U$ such that its germs are equal to $D(f_x)$, where $D(f_x)$ is an application of D to the germ f_x defined as above.

Proof. Step 1: Consider a partition of unity $\sum \psi_i = 1$ on U, and let $D(f) = \sum_i D(\psi_i f)$. Since the functions $\psi_i f$ have compact support, they can be extended to M, and $\sum_i D(\psi_i f)$ is well defined.

Step 2: For any $x \in U$, let g be the sum of $\psi_i f$ with support of ψ_i containing x. Then $\sum_i D(\psi_i f)_x = D(g)_x$, because the rest of summands have support outside of x. However, the germs of these functions are equal: $g_x = f_x$. This implies that the germs of $\sum_i D(\psi_i f)$ are equal to $D(f_x)$.

Derivations as a sheaf

PROPOSITION: Let $U \subset V$ be open subsets of a smooth manifold M, and $D \in \text{Der}(C^{\infty}V)$. Define $D|_U$ as a derivation with the same germs at each point as D (Proposition 2). This defines a structure of a sheaf $U \longrightarrow \text{Der}(U)$.

Proof. Step 1: A vector field is uniquely determined by its restriction to the germs of all sections, hence a derivation D which vanishes on all germs for all $x \in M$ vanishes everywhere. This takes care of the first sheaf axiom.

Proof. Step 2: Let $\{U_i\}$ be a cover of M. To glue a derivation D from its bits $D_i \in \text{Der}(C^{\infty}(U_i))$, consider a partition of unity ψ_i subordinate to $\{U_i\}$. **Then** $D(f) := \sum D_i(\psi_i f)$ is a derivation which restricts to all D_i .

COROLLARY: The sheaf of derivations is locally free, that is, $Der C^{\infty}M$ defines a vector bundle on M.

DEFINITION: It is called **the tangent bundle**, and denoted TM.