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Sheaves (reminder)

DEFINITION: An open cover of a topological space X is a family of open
sets {Ui} such that

⋃
iUi = X.

REMARK: The definition of a sheaf below is a more abstract version of the
notion of “sheaf of functions” defined previously.

DEFINITION: A presheaf on a topological space M is a collection of vector
spaces F(U), for each open subset U ⊂ M , together with restriction maps
RUWF(U)−→F(W ) defined for each W ⊂ U , such that for any three open
sets W ⊂ V ⊂ U , RUW = RUV ◦ RVW . Elements of F(U) are called sections
of F over U , and the restriction map often denoted f |W

DEFINITION: A presheaf F is called a sheaf if for any open set U and any
cover U =

⋃
UI the following two conditions are satisfied.

1. Let f ∈ F(U) be a section of F on U such that its restriction to each
Ui vanishes. Then f = 0.

2. Let fi ∈ F(Ui) be a family of sections compatible on the pairwise
intersections: fi|Ui∩Uj = fj|Ui∩Uj for every pair of members of the cover.
Then there exists f ∈ F(U) such that fi is the restriction of f to Ui for
all i.
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Ringed spaces (reminder)

DEFINITION: A sheaf of rings is a sheaf F such that all the spaces F(U)

are rings, and all restriction maps are ring homomorphisms.

DEFINITION: A sheaf of functions is a subsheaf in the sheaf of all func-

tions, closed under multiplication.

For simplicity, I assume now that a sheaf of rings is a subsheaf in the

sheaf of all functions.

DEFINITION: A ringed space (M,F) is a topological space equipped with

a sheaf of rings. A morphism (M,F)
Ψ−→ (N,F ′) of ringed spaces is a con-

tinuous map M
Ψ−→ N such that, for every open subset U ⊂ N and every

function f ∈ F ′(U), the function ψ∗f := f ◦Ψ belongs to the ring F
(
Ψ−1(U)

)
.

An isomorphism of ringed spaces is a homeomorphism Ψ such that Ψ and

Ψ−1 are morphisms of ringed spaces.
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Smooth manifolds (reminder)

DEFINITION: Let (M,F) be a topological manifold equipped with a sheaf

of functions. It is said to be a smooth manifold of class C∞ or Ci if every

point in (M,F) has an open neighborhood isomorphic to the ringed space

(Bn,F ′), where Bn ⊂ Rn is an open ball and F ′ is a ring of functions on an

open ball Bn of this class.

DEFINITION: Diffeomorphism of smooth manifolds is a homeomorphism

ϕ which induces an isomorphisms of ringed spaces, that is, ϕ and ϕ−1 map

(locally defined) smooth functions to smooth functions.

Assume from now on that all manifolds are Hausdorff and of class C∞.
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Partition of unity (reminder)

DEFINITION: Let M be a smooth manifold and let {Uα} a locally finite
cover of M . A partition of unity subordinate to the cover {Uα} is a family of
smooth functions fi : M → [0,1] with compact support indexed by the same
indices as the Ui’s and satisfying the following conditions.
(a) Every function fi vanishes outside Ui
(b)

∑
i fi = 1

THEOREM: Let {Uα} be a countable, locally finite cover of a manifold M ,
with all Uα diffeomorphic to Rn. Then there exists a partition of unity
subordinate to {Uα}.

DEFINITION: Let U ⊂ V be open subsets in M . We write U b V if the
closure of U is contained in V .

DEFINITION: Let f ∈ F(M) be a section of a sheaf F on M . A point x ∈M
does not lie in the support Sup(f) of f if f |U = 0 for some neighbourhood
U 3 x. A section is called section with compact support or supported on
a compact set if its support is compact.

REMARK: Support of a section is obviously closed.
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Sheaves of modules (reminder)

REMARK: Let A : ϕ−→B be a ring homomorphism, and V a B-module.

Then V is equipped with a natural A-module structure: av := ϕ(a)v.

DEFINITION: Let F be a sheaf of rings on a topological space M , and

B another sheaf. It is called a sheaf of F-modules if for all U ⊂ M the

space of sections B(U) is equipped with a structure of F(U)-module, and

for all U ′ ⊂ U , the restriction map B(U)
ϕU,U ′−→ B(U ′) is a homomorphism of

F(U)-modules (use the remark above to obtain a structure of F(U)-module

on B(U ′)).

DEFINITION: A free sheaf of modules Fn over a ring sheaf F maps an

open set U to the space F(U)n.

DEFINITION: Locally free sheaf of modules over a sheaf of rings F is a

sheaf of modules B satisfying the following condition. For each x ∈ M there

exists a neighbourhood U 3 x such that the restriction B|U is free.

DEFINITION: A vector bundle on a smooth manifold M is a locally free

sheaf of C∞M-modules.
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Germs of sheaves (reminder)

DEFINITION: Let M be a manifold, F a sheaf, and x ∈ M a point, and

U1, U2 its neighbourhoods. For any two sections γ1 ∈ F (U1), γ2 ∈ F (U2),

we write γ1 ∼ γ2 if γ1|U = γ2|U for some neighbourhood U 3 x contained in

U1 ∩ U2. The space of equivalence classes is called stalk of a sheaf F in x,

or the space of germs, and its elemens are called germs of F in x.

REMARK: If O is a sheaf of rings, the space of its germs in x is a ring.

If F is a sheaf of modules over a sheaf of rings O, the space of germs Fx

of F in x is a Ox-module.

DEFINITION: A morphism of sheaves is injective (or a monomorphism) if

it is injective on stalks, and surjective (or an epimorphism) if it is surjective

on stalks.
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Locally trivial fibrations (reminder)

DEFINITION: A smooth map f : X −→ Y is called a locally trivial fi-

bration if each point y ∈ Y has a neighbourhood U 3 y such that f−1(U) is

diffeomorphic to U×F , and the map f : f−1(U) = U×F −→ U is a projection.

In such situation, F is called the fiber of a locally trivial fibration.

DEFINITION: A trivial fibration is a map X × Y −→ Y .

DEFINITION: A vector bundle on Y is a locally trivial fibration f : X −→ Y

with fiber Rn, with each fiber V := f−1(y) equipped with a structure of a

vector space, smoothly depending on y ∈ Y .

REMARK: This definition is not very precise or rigorous, because “smoothly

depending on y ∈ Y ” needs to be explained.

REMARK: This definition is compatible with the one we used previously

(“a vector bundle is a locally free sheaf of C∞M-modules”). This will be

explained later.
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Categories: data (reminder)

DEFINITION: A category C is a collection of data called “objects” and

“morphisms between objects” which satisfies the axioms below.

DATA.

Objects: The set Ob(C) of objects of C.

Morphisms: For each X,Y ∈ Ob(C), one has a set Mor(X,Y ) of mor-

phisms from X to Y .

Composition of morphisms: For each ϕ ∈ Mor(X,Y ), ψ ∈ Mor(Y, Z)

there exists the composition ϕ ◦ ψ ∈Mor(X,Z)

Identity morphism: For each A ∈ Ob(C) there exists a morphism IdA ∈
Mor(A,A).

REMARK: In some versions of axiomatic set theory, one considers not a set,

but a class of objects, which could be arbitrarily big, such as the class of all

sets, or the class of all linear spaces. The category with a set of morphisms

and objects is called a small category, and one with a class a big category.
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Categories: axioms (reminder)

AXIOMS.

Associativity of composition: ϕ1 ◦ (ϕ2 ◦ ϕ3) = (ϕ1 ◦ ϕ2) ◦ ϕ3.

Properties of identity morphism: For each ϕ ∈ Mor(X,Y ), one has

Idx ◦ϕ = ϕ = ϕ ◦ IdY

DEFINITION: Let X,Y ∈ Ob(C) – objects of C. A morphism ϕ ∈Mor(X,Y )

is called an isomorphism if there exists ψ ∈Mor(Y,X) such that ϕ ◦ψ = IdX
and ψ ◦ ϕ = IdY . In this case, the objects X and Y are called isomorphic.

Examples of categories:

Category of sets: its morphisms are arbitrary maps.

Category of vector spaces: its morphisms are linear maps.

Categories of rings, groups, fields: morphisms are homomorphisms.

Category of topological spaces: morphisms are continuous maps.

Category of smooth manifolds: morphisms are smooth maps.

It is often convenient to express morphisms by arrows, and call them

“maps”.
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Some categorical constructions (reminder)

DEFINITION: A product X1 × X2 of X1, X2 ∈ Ob(C) is an object of C
equipped with projection maps πi : X1 ×X2 −→Xi such that for any pair

of morphisms ϕi ∈Mor(Y,Xi) there is a unique morphism ϕ ∈Mor(Y,X1×
X2) such that ϕ ◦ πi = ϕi.

EXERCISE: Prove that a product is unique up to isomorphism.

EXERCISE: Prove that the product is associative: X×(Y ×Z) ∼= (X×Y )×Z
and commutative: X × Y ∼= Y ×X.

EXERCISE: Find the product in the categories of a. groups b. rings c.

vector spaces d. sets e. topological spaces.
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More categorical constructions

DEFINITION: An initial object of a category is an object I ∈ Ob(C) such

that Mor(I,X) is always a set of one element. A terminal object is T ∈
Ob(C) such that Mor(X,T ) is always a set of one element.

EXERCISE: Prove that the initial and the terminal object is unique, up

to isomorphism.

EXERCISE: Find the initial and the terminal object in the categories of a.

groups b. rings c. vector spaces d. sets e. topological spaces, or show that

it does nor exist.

EXERCISE: Let T be a terminal object. Prove that X × T ∼= X for each

X ∈ Ob(C).
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Group objects in categories

DEFINITION: An object G ∈ Ob(C) is called a group object if there exists
a morphism µ ∈ Mor(G × G,G) (the product), a morphism e ∈ Mor(T,G)
from the terminal object (the unit), and a morphism i ∈ Mor(G,G) (the
inverse), satisfying the following axioms.

Associativity: Consider the morphisms µ12, µ23 : G × G × G−→G × G, the
first map takes the product on the first two objects, and acts as identity on
the third, the second maps is a product on last 2 and identity on the first.
Then µ12 ◦ µ = µ23 ◦ µ : G×G×G−→G.

Unit: The compositions G = G × T IdG×e−→ G × G µ−→ G and G = G × T e×IdG−→
G×G µ−→ G are identities.
Inverse: Let ∆ : G−→G×G be the diagonal map, that is, a map G−→G×G
obtained from a pair of identity maps. Then the composition G

∆−→ G ×
G

IdG×i−→ G×G µ−→ G is equal to G−→ T
e−→ G.

EXAMPLE: A topological group is a group object in the category of topo-
logical spaces.

EXAMPLE: A Lie group is a group object in the category of smooth man-
ifolds.
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Topological groups over a base

DEFINITION: Fix a topological space M , and let CM be a category of pairs

(X, f : X −→M) with morphisms being continuous maps from X1 to X2

commuting with the projections to M . The product in CM is called fiber

product: X1 ×M X2 := {(x1, x2) ∈ X1 × X2 | f1(x1) = f2(x2)}. A group

object in CM is called a topological group over M .

REMARK: Let π : G−→M be a topological group over M . Then the fiber

π−1(m) is a group for each m ∈ M . This group structure depends on

m ∈ M continuously, but to state this dependency formaly, one needs

to define a topological group over M.
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Topological groups over a base (without categories)

REMARK: This definition is equivalent to the following.

DEFINITION: Let B
π−→ M be a continuous map, and B ×M B

Ψ−→ M - a

morphism over M . This morphism is called associative multiplication if it

is associative on the fibers of π, that is, satisfies Ψ(a,Ψ(b, c)) = Ψ(Ψ(a, b), c)

for every triple a, b, c in the same fiber.

A section M
e−→ B is called the unit if the maps B

IdB ×e−→ B ×M B
Ψ−→ B

and B
e×IdB−→ B ×M B

Ψ−→ B are equal to IdB.

A morphism ν : B −→B over M is called a group inverse if each of

the maps B
∆−→ B ×M B

IdB ×ν−→ B ×M B
Ψ−→ B and B

∆−→ B ×M B
ν×IdB−→

B ×M B
Ψ−→ B is a constant map, mapping b to e(π(b)).

A map B
π−→ M equipped with associative multiplication, unit and group

inverse is called a topological group over M .
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Vector spaces over a base

DEFINITION: Let k = R or C. An abelian topological group B
π−→ M over

M is called relative vector space over M if for each continuous k-valued

function f there exists a continuous automorphism ϕf : B −→B of a group

B over M which makes each fiber π−1(b) into a vector space in such a way

that ϕf acts on π−1(b) as a multiplication by ϕf(b).

REMARK: Let B
π−→ M be a relative vector space over M , U ⊂M an open

subset, and B(U) the space of sections of a map π−1(U)
π−→ U . Then B(U)

defines a sheaf of modules over a sheaf C0(M) of continuous functions.

EXAMPLE: Let S ⊂ Rn be a subset (not necessarily a smooth submanifold),

s ∈ S a point, and v ∈ TsRn a vector. We sat that v belongs to a tangent cone

CsS if the distance from S to a point s+tv converges to 0 as t→ 0 faster than

linearly: lim
t→0

d(S,s+tv)
t = 0. Then the set CS of all pairs (s, v), s ∈ S, v ∈ CsS

is a relative vector space over S.
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Total space of a vector bundle

DEFINITION: Let B −→M be a smooth locally trivial fibration with fiber

Rn. Assume that B is equipped with a structure of relative vector space

over M , and all the maps used in the definition of a relative vector space are

smooth. Then B is called the total space of a vector bundle.

REMARK: Let π : B −→M be a total space of a vector bundle, U ⊂M open

subset, and B(U) the space of all smooth sections of π−1(U)
π−→ U . Then

B is a locally free sheaf of C∞M-modules.

THEOREM: Every locally free sheaf C∞M-modules is defined from a

total space of a vector bundle, which is determined uniquely by a sheaf.

The proof will be given later.
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Fiber of a locally free sheaf

DEFINITION: Let B be an n-dimensional locally free sheaf of C∞-modules

on M , x ∈ M a point, Bx the space of germs of B in x, and mx ⊂ C∞x M the

maximal ideal in the ring of germs C∞x M of smooth functions. Define the

fiber of B in x as a quotient Bx/mxBx. A fiber of B is denoted B|x.

REMARK: A fiber of an n-dimensional bundle is an n-dimensional vec-

tor space.

REMARK: Let B = C∞Mn, and b ∈ B|x a point of a fiber, represented by a

germ ϕ ∈ Bx = C∞mM
n, ϕ = (f1, ..., fn). Consider a map Ψ from the set of all

fibers B to M ×Rn, mapping (x, ϕ = (f1, ..., fn)) to (f1(x), ..., fn(x)). Then Ψ

is bijective. Indeed, B|x = Rn.
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Total space of a vector bundle from its sheaf of sections

DEFINITION: Let B be an n-dimensional locally free sheaf of C∞-modules.

Denote the set of all vectors in all fibers of B over all points of M by TotB.

Let U ⊂M be an open subset of M , with B|U a trivial bundle. Using the local

bijection TotB(U) = U × Rn we consider topology on TotB induced by open

subsets in TotB(U) = U×Rn for all open subsets U ⊂M and all trivializations

of B|U . Then TotB is called a total space of a vector bundle B.

CLAIM: The space TotB with this topology is a locally trivial fibration

over M, with fiber Rn. Moreover, it is a relative vector space over M , and

the sheaf of smooth sections of TotB −→M is isomorphic to B.

REMARK: This gives an equivalence between locally free sheaves of

C∞-modules and the total spaces of vector bundles, defined abstractly

in terms of locally trivial fibrations.
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